Title: CFD modelling for atmospheric pollutants/aerosols studies within the complex terrains of urban areas and industrial sites

Authors: Michal Střižík; Zdeněk Zelinger; Václav Nevrlý; Pavel Kubát; Pavel Berger; Alexandr Černý; Pavel Engst; Petr Bitala; Radmila Janečková; Eva Grigorová; Iva Bestová; Jan Čadil; Pavel Danihelka; Petr Kadeřábek; Milada Kozubková; Sylva Drábková; David Hartman; Marian Bojko; Ondřej Zavila

Addresses: J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic; Faculty of Safety Engineering, VŠB – Technical University of Ostrava, Lumírova 13, CZ-700 30, Ostrava 3 – Výškovice, Czech Republic; Institute of Thermomechanics, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 5, CZ-182 23 Prague 8, Czech Republic ' J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic ' Faculty of Safety Engineering, VŠB – Technical University of Ostrava, Lumírova 13, CZ-700 30, Ostrava 3 – Výškovice, Czech Republic; Institute of Thermomechanics, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 5, CZ-182 23 Prague 8, Czech Republic ' J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic ' LIDAR, s.r.o., Washingtonova 17, CZ-110 00 Prague 1, Czech Republic ' LIDAR, s.r.o., Washingtonova 17, CZ-110 00 Prague 1, Czech Republic ' LIDAR, s.r.o., Washingtonova 17, CZ-110 00 Prague 1, Czech Republic ' Faculty of Safety Engineering, VŠB – Technical University of Ostrava, Lumírova 13, CZ-700 30, Ostrava 3 – Výškovice, Czech Republic; Institute of Thermomechanics, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 5, CZ-182 23 Prague 8, Czech Republic ' J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic; Faculty of Safety Engineering, VŠB – Technical University of Ostrava, Lumírova 13, CZ-700 30, Ostrava 3 – Výškovice, Czech Republic ' J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic; Institute of Thermomechanics, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 5, CZ-182 23 Prague 8, Czech Republic ' Faculty of Mining and Geology, VŠB – Technical University of Ostrava, 17. listopadu 15, CZ-708 33, Ostrava – Poruba, Czech Republic ' Unicorn College, V Kapslovně 2767/2, CZ-130 00, Prague 3, Czech Republic ' Faculty of Safety Engineering, VŠB – Technical University of Ostrava, Lumírova 13, CZ-700 30, Ostrava 3 – Výškovice, Czech Republic ' Česká spořitelna, a.s., Olbrachtova 1929/62, Prague 4, Czech Republic ' Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15, CZ-708 33, Ostrava – Poruba, Czech Republic ' Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15, CZ-708 33, Ostrava – Poruba, Czech Republic ' Unicorn College, V Kapslovně 2767/2, CZ-130 00, Prague 3, Czech Republic ' Faculty of Mechanical Engineering, VŠB – Technical University of Ostrava, 17. listopadu 15, CZ-708 33, Ostrava – Poruba, Czech Republic ' Faculty of Safety Engineering, VŠB – Technical University of Ostrava, Lumírova 13, CZ-700 30, Ostrava 3 – Výškovice, Czech Republic

Abstract: Computational fluid dynamic (CFD) modelling of pollution dispersion and chemical conversion to aerosol particles in the atmospheric boundary layer (ABL) has been studied. The investigation focused on the numerical modelling above complex orographic terrains of urban areas and industrial sites including the dispersion of toxic substances in the air as a result of accidents. A finite-rate model of chemical reactions, including the turbulence chemistry for modelling the reaction between nitric acid and ammonia, has been applied. As supporting experiments, online monitoring of the spatial distribution of pollutants and aerosols has been performed above real complex areas. Minimal detectable concentrations 8 µg m−3 (SO2), 20 µg m−3 (NO2), 2 µg m−3 (O3) and minimal detectable absorptivity 5 × 10−7 cm−1 (aerosols) have been reached.

Keywords: computational fluid dynamics; CFD; modelling; pollution dispersion; aerosol formation; spatial distribution; NH4NO3; ammonium nitrate; aerosols; turbulence; atmospheric pollutants; complex terrains; urban areas; industrial sites; air pollution.

DOI: 10.1504/IJEP.2014.064051

International Journal of Environment and Pollution, 2014 Vol.54 No.1, pp.73 - 90

Accepted: 11 Mar 2014
Published online: 30 Aug 2014 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article