Int. J. of Modelling, Identification and Control   »   2010 Vol.9, No.1/2

 

 

Title: Dynamic zone modelling for HVAC system control

 

Author: Jiaming Li, Geoff Poulton, Glenn Platt, Josh Wall, Geoff James

 

Addresses:
CSIRO ICT Centre, PO Box 76, Epping, NSW 1710, Australia.
CSIRO ICT Centre, PO Box 76, Epping, NSW 1710, Australia.
CSIRO Energy Technology, PO Box 330, Newcastle NSW 2300, Australia.
CSIRO Energy Technology, PO Box 330, Newcastle NSW 2300, Australia.
CSIRO Energy Technology, PO Box 330, Newcastle NSW 2300, Australia

 

Abstract: This paper presents the development and validation of a dynamic zone model used for improved control of a heating, ventilation and air conditioning (HVAC) system to reduce energy consumption and improve the quality of the indoor environment. In particular, the paper focuses on a zone modelling technique that uses physical-principles based real-time model fitting and prediction methodology, taking advantage of genetic algorithm based problem solving. An air-conditioning zone model is deduced from an energy and mass balance and then expressed in terms of electric circuit theory, where the electric circuit is used to represent functions of the building elements. Experimental results for real-time zone model fitting and prediction are given. The results show that our model is capable of accurately predicting the indoor temperature of a dynamic zone. This dynamic model is useful for control strategies that require knowledge of the dynamic characteristics of HVAC systems.

 

Keywords: dynamic zones; dynamic modelling; model fitting; room modelling; genetic algorithms; GA; temperature prediction; HVAC control; heating; ventilation; air conditioning; energy consumption; indoor environment quality.

 

DOI: 10.1504/IJMIC.2010.032354

 

Int. J. of Modelling, Identification and Control, 2010 Vol.9, No.1/2, pp.5 - 14

 

Available online: 01 Apr 2010

 

 

Editors Full text accessPurchase this articleComment on this article