Title: Seawater feed reverse osmosis preheating appraisal, Part II: system performance

Authors: Aly Karameldin

Addresses: Reactors Department, Nuclear Research Center, Atomic Energy Authority, P.O. Box 13759 Inshas, Cairo, Egypt

Abstract: The present work evaluates the seawater feed Reverse Osmosis (RO) preheating system process. In this respect, the basic transport equations, which describe the system elements, are used for determining the performance of the process operating parameters and for assessing the feed preheating process. A seawater membrane, FTSW30HR-380, was used to perform this study. In Part I of the work, the leading element, which governs the whole system, was studied. Also, the limitations of the leading element operating parameters were determined. In the recent work, a computer program is developed using the RO-governing process equations to obtain the system design and projection for the seawater feed preheating assessment, which enabled the determination of the whole system by solving the system elements, one by one. Also, an evaluation of the power needed for freshwater production. The RO system feed preheating is studied for feed temperatures ranging from 15°C to 45°C. The study shows that the permeate salt concentration increases as the feed temperature increases and the system salt rejection decreases. The present study concluded that the permeate productivity decreases with the increase in the feed temperature. Results also show that the product|s specific power consumption is dependent on the number of elements used, and energy recovery. In the case of the maximum available number of elements, it is found that the feed temperature increases as the specific power consumption increases, with or without brine pressure energy recovery. However, in the case of a constant number of elements, seven elements, the specific power consumption decreases as the feed temperature increases.

Keywords: nuclear desalination; feed preheating; FTSW30HR-380; membrane permeability; seawater reverse osmosis; specific power consumption; system element number; system performance; system permeate flux; system salt rejection.

DOI: 10.1504/IJND.2006.012522

International Journal of Nuclear Desalination, 2006 Vol.2 No.2, pp.179 - 192

Published online: 20 Feb 2007 *

Full-text access for editors Full-text access for subscribers Purchase this article Comment on this article