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Abstract: Many software packages have been developed for Genome-Wide 
Association Studies (GWAS) based on various statistical models. One key 
factor influencing the statistical reliability of GWAS is the amount of input 
data used. In this paper, we investigate how input data quantity influences 
output of four widely used GWAS programs, PLINK, TASSEL, GAPIT, and 
FaST-LMM, in the context of plant genomes and phenotypes. Both synthetic 
and real data are used. Evaluation is based on p- and q-values of output SNPs, 
and Kendall rank correlation between output SNP lists. Results show that for 
the same GWAS program, different Arabidopsis thaliana datasets demonstrate 
similar trends of rank correlation with varied input quantity, but differentiate 
on the numbers of SNPs passing a given p- or q-value threshold. We also show 
that variations in numbers of replicates influence the p-values of SNPs, but do 
not strongly affect the rank correlation. 

Keywords: GWAS; genome-wide association study; Arabidopsis thaliana; 
plant phenomics; plant genomics; PLINK; TASSEL; GAPIT; FaST-LMM; 
statistical power; input data quantity; epistasis. 
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1 Introduction 

Genome-Wide Association Studies (GWAS) have served as primary methods for the past 
decade for identifying associations between genetic variants and traits or diseases 
(Hirschhorn and Daly, 2005; Bush and Moore, 2012). The most often used genetic 
variants are Single Nucleotide Polymorphisms (SNPs), which are changes of single DNA 
base-pairs. In plant breeding, GWAS have been widely used to link genotypes of plants 
to phenotypes of interest, and provide valuable insights into the mechanisms of causal 
SNPs (and related genes) linked to complex traits (Wang et al., 2012; Branham et al., 
2015). 

GWAS perform statistical hypothesis tests for each SNP, with the null hypothesis 
being no association between the SNP and the phenotype. Many software packages have 
been developed for GWAS analysis based on varied statistical models. When dealing 
with quantitative phenotypes, linear regression approaches are usually applied, often 
based on Generalised Linear Models (GLMs) and Mixed Linear Models (MLMs). MLMs 
are also known as Linear Mixed Models (LMMs) in the literature. In this work, we will 
also refer to them as LMMs. 

Many GWAS packages have been developed. Some well-known ones include PLINK 
(Purcell et al., 2007), FaST-LMM (Lippert et al., 2011), BOLT-LMM (Loh et al., 2015), 
TASSEL (Bradbury et al., 2007), GAPIT (Lipka et al., 2012), GenABEL (Aulchenko  
et al., 2007) and GCTA (Yang et al., 2011). PLINK is a tool set for GWAS and 
population-based linkage analyses that provides rapid computation for large biological 
datasets. It was one of the earliest packages for GWAS and is viewed as a standard 
method. FaST-LMM applies a factorised log-likelihood function within a LMM and 
claims to support expanded data size and increased computational speed. BOLT-LMM 
utilises an efficient Bayesian mixed-model and claims to increase association power and 
computation speed for large datasets. TASSEL can utilise both GLMs and LMMs in 
determining associations, and takes into account the population and family structure. 
GAPIT is an R package implementing a compressed LMM. It can perform both GWAS 
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and genomic prediction/selection. GCTA is a tool for genome-wide complex trait 
analysis. It fits, by a LMM, the contribution of all SNPs as random effects, and addresses 
the “missing heritability” problem of human genomes. GenABEL is an R library 
implementing effective storage and exploration of genome-wide data, with efficient 
procedures for genetic data quality control. Among all these applications, we find 
PLINK, FaST-LMM, TASSEL and GAPIT to be widely used in the literature. The latter 
two are particularly popular in plant genome analysis. 

Different GWAS programs often produce dissimilar association results. Newer 
proposed approaches usually claim to have increased statistical power over previous 
methods. However, there are few independent evaluations of GWAS programs, 
especially in a plant and plant genomics context. It is important to understand the 
behaviour of these popular GWAS programs, and their sensitivity to input data quantity 
and to phenotypes where varying numbers of biological replicates are observed. 

When considering the effects of input data, intuitively, better results and higher 
statistical power would be expected with more data (samples). However, since 
genotyping can be resource intensive, there is pressure to limit the sample size while still 
achieving satisfying results. 

Power analysis of GWAS is often used to provide insight into choosing sample sizes 
(Klein, 2007; Spencer et al., 2009). Statistical power is the probability of correctly 
rejecting the null hypothesis when the alternative hypothesis is true. In GWAS, it reflects 
the ability to identify genetic variants that are genuinely associated with phenotypic 
variations (Teo, 2008). For real-experiment data, power analysis usually relies on many 
factors, including knowledge of Linkage Disequilibrium (LD), which SNPs have been 
genotyped and selected within the LD for GWAS (called tagged SNPs), and a good 
representative sample. Since it is hard to control each of these factors precisely (e.g. a 
perfect representative sample), results from a power calculation may be difficult to obtain 
and may not reflect what would actually happen in real experiments. Therefore, it is 
worthwhile to take a practical approach to examine how input data quantity (sample size) 
influences GWAS results in real experiments. 

In experimental designs in plant science, it is common to see biological replications 
of samples; for example, 3 replicates planted for each genotype. However, the 
phenotypes of these replicates could be different even though their genomes are the 
same. As well, actual numbers of replicates can vary due to missing data. For instance, it 
might be that 3 replicates of each of genotypes A and B are planted, but due to 
uncontrollable circumstances only 2 replicates of genotype B are ultimately available. 
Dealing with data containing varied numbers of biological replicates in phenotypes is 
therefore a practical issue, and it is important to understand the effect on GWAS output 
of different approaches to handling it. 

In this study, we investigate the effects of the amount of input data on GWAS results 
in the context of plants. Four widely used GWAS programs, PLINK, TASSEL, FaST-
LMM, and GAPIT are used. GWAS program performance comparisons exist in the 
literature (Galesloot et al., 2014; Eu-Ahsunthornwattana et al., 2014), but none of them 
are focused on input data quantity or plant genomes. To conduct this study, we use  
real-data sets from a well-studied model plant, Arabidopsis thaliana, as well as synthetic 
datasets. Population structures of the Arabidopsis thaliana datasets are inferred and 
served as (optional) input when applicable. Findings of this study provide guidance on 
GWAS program selection, on determining how much data is necessary to yield 
significant results for downstream analysis, and on experimental design with respect to 
biological replicates. 
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2 Method 

To address the research question of how the quantity of input genome information 
influences GWAS output, we use the following procedure. For a given dataset D  having 
d samples (with either real or synthetic data), we gradually reduce the input data amount 

by ratio r   0 < < 1r  to produce 1t   subsets of D , where 
1

=r
t

. For example, when 

= 0.25r  and = 4t , the input data is reduced by 25% each time, yielding 3  
subset sizes, 25%, 50%, and 75% of the original. For each subset of size ird  

= , = 1,2,..., 1i

i
r i t

t
  
 

, k  sets are generated by random sampling without replacement 

from D . Therefore, a total of  1k t   subsets of D  are generated. When ird  is not an 

integer, its ceiling  ird   is used. 100% of the original set is D  itself. All these sets 

(  1k t   randomly generated subsets and D  itself) are then used to perform GWAS. 

Prior to the actual analysis, the genotype data is filtered, removing any SNPs with minor 
allele frequency <  0.05. Population structure determined by each subset, denoted as 

setK , is inferred and served as (optional) input when applicable. 

In a GWAS experiment, SNPs along with their p-values are typically output.  
P-values are used to evaluate the significance of SNPs associated with phenotypes of 
interest. Since tens to hundreds of thousands of SNPs are tested simultaneously in 
GWAS, there arises the multiple testing problem (Noble, 2009; Pollard et al., 2005). To 
address the problem Bonferroni correction is sometimes used. However, the Bonferroni 
method is generally considered to over-correct results and be too conservative. Therefore, 
we apply an alternate approach, q-value correction (Storey and Tibshirani, 2003), which 
is a False Discovery Rate (FDR) based adjustment for p-values. 

From GWAS output, SNPs with significant p-values (or q-values) are used for 
downstream analysis. When selecting these SNPs, either a predefined threshold (such as 
p <  10–5 or q <  0.05) is set and all SNPs with a p- or q-value lower than that threshold 
are selected, or a predefined number, e.g. 20, is set and that number of SNPs with lowest 
p-values (or q-values) are selected for further analysis. 

To compare the GWAS output of different runs, we consider several measures based 
on the following information for each reported SNP: p-value, q-value, and SNP ranking. 
The first two measures are the numbers of SNPs passing given thresholds p  and q  for 

p- and q-values. They are denoted as pn  and qn , respectively. The q-value is calculated 

from the p-value based on the method of Storey and Tibshirani (2003) and is 
implemented in R. Next, the 20 most significant SNPs (SNPs with the lowest p-values 
for each run) are compared. Their p-values are transformed by a 10log  function and 

visualised in box plots to illustrate the effects of reducing input quantity on p-values. 
Finally, the p-values for all SNPs are used to determine the similarity in ranking of SNPs 
between the output lists from a subset and the whole data D . Kendall rank correlation 
coefficient (denoted as ) is used for this last measure. Its calculation is implemented in 
Python 2.7. 

Kendall coefficient  evaluates the degree of similarity between two ranked lists of 
the same objects.  is between 0 and 1. Larger  indicates a higher similarity of two 
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rankings, and = 1  means the exact same ranking. Here, the objects are SNPs, and the 
ranking criterion is their p-values. Pearson’s correlation coefficient is not applicable in 
this case because it measures the strength of linear correlation between two sets of data 
and is sensitive to outliers. There is no evidence that the p-values from orderings of the 
same SNPs would be linearly correlated, and it is possible that some of the p-values are 
outliers. Therefore, the Kendall’s rank correlation coefficient is used. 

In our experiment, k random sets are generated for each subset size ir D , and each 

produces its own pn , qn  and . The mean and standard deviation of the k values  

is calculated to represent the result for .ir D  The overall workflow is summarised in 

Figure 1. 

Figure 1 Workflow of the study 

 

3 Experiments 

In this study, two kinds of data are used. One is a synthetic dataset generated using 
PLINK (Purcell et al., 2), and the other is a group of Arabidopsis thaliana datasets with 
multiple phenotypes. PLINK is excluded from the synthetic data comparison to avoid 
potential bias. All datasets have quantitative phenotypes, and their summary is listed in 
Table 1. 

Table 1 Summary of datasets used in the experiments 

Dataset name Number of  
SNPs 

Number of  
samples 

Selected  
phenotype 

Biological  
replicates? 

AtOil 214,051 1100 18_2 Yes, up to 3 

AtPolyDB 214,051 195 FT10 No 

Simu_data 200,100 2000 Simulated No 
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3.1 Synthetic data 

The synthetic dataset, named Simu_data, is generated by PLINK using its built-in 
function “--simulate-qt” for quantitative traits. It contains 2000 samples across 200,100 
SNPs. Among all SNPs, 100 are causal. All simulated SNPs (200,100) are unlinked. The 
lower and upper allele frequencies are set to 0.05 and 0.95, respectively. The generated 
dataset is in PLINK file format (.ped and .map), and transformed to HapMap format 
using TASSEL. 

Other synthetic data generators such as AlphaDrop (Hickey and Gorjanc, 2012) and 
GPOPSIM (Zhang et al., 2015) can be used. However, our experience is that these 
alternatives are either difficult to use due to a lack of clear documentation regarding 
various parameters, or because they have portability issues. In contrast, the PLINK 
simulation function is easy to use and the implementation is portable and stable. 

3.2 Arabidopsis thaliana data 

Two Arabidopsis thaliana datasets, named AtOil and AtPolyDB, are used. AtOil is 
obtained from a study of the seed oil composition of Arabidopsis thaliana (Branham  
et al., 2015). The entire dataset has 391 records (accessions) from the study. The 
genotype data contains 214,051 SNPs for each accession, and the phenotype data 
contains the relative proportions of nine principle fatty acids in Arabidopsis thaliana seed 
oil and four composite traits related to oil quality. The accessions have up to three 
biological replicates each, for a total of 1100 samples. The phenotype 18_2, which 
represents the total proportion of polyunsaturated fatty acids, is used in this work. This 
phenotype is chosen from among all nine fatty acid phenotypes because it has the largest 
variation across samples. 

The AtPolyDB dataset is available from the easyGWAS website (http://easygwas. 
ethz.ch), and originated from two papers describing GWAS on Arabidopsis thaliana data 
(Atwell et al., 2010; Horton et al., 2012). It has 1307 samples with 214,051 SNPs  
each and 107 different phenotypes, though not every sample has 107 phenotypes. 
Phenotype FT10 (quantitative) is selected for this study since it has the largest sample 
size (195). 

3.3 Sampling strategy 

For all three source datasets, random sampling without replacement on all samples is 
used to generate subsets. For the AtOil dataset, an additional sampling strategy is 
applied. The naive random sampling on all 1100 samples might result in bias since some 
of the selected samples might be replicates. Therefore, a second strategy of random 
sampling from only the 331 accessions having three biological replicates is used. In this 
case, when an accession is selected, the phenotype values of all three replicates are 
selected, and the number of samples is always a multiple of three. The resulting subsets 
are balanced. The first strategy is denoted as replicate-ignorant sampling and the second 
as replicate-aware sampling. A diagram of performing GWAS using the two sampling 
strategies on AtOil is shown in Figure 2. 
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Figure 2 GWAS workflow on the AtOil data with two sampling strategies 

 

3.4 Parameters 

Parameters used in experiments are summarised in Table 2. The p-value threshold of 10–5 
is an often used cut-off value in the literature. GWAS programs settings are listed in 
Table 3. The population structure matrix of each experimental dataset is interpreted using 
the STRUCTURE program (Pritchard et al., 2000) with default parameters and settings. 

Table 2 Values and meanings of the parameters used in the experiments 

Parameter Explanation of parameter Value 

t number of different subset sizes 10 

r reduced input ratio 0.1 

k number of random generatedsubsets per size 30 

p p-value threshold 10–5 

q q-value threshold 0.05 

Table 3 GWAS program settings in the study 

 PLINK TASSEL FaST-LMM GAPIT 

GWAS model 
Quantitative trait 

association 
LMM  

(mlm module) 
LMM 

(single-snp) 
LMM 

Population structure 
used? 

No Yes Yes Yes 

Kinship used? No Yes No Yes 
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4 Results and discussion 

In this section, we report the experimental results for all three datasets and compare the 
performance differences between programs in detail. The report starts with the AtOil 
dataset and two sampling strategies followed by a comparison between two Arabidopsis 
thaliana datasets, and finally the synthetic datasets. 

4.1 Comparison of sampling strategies 

In this subsection, the AtOil dataset is used to investigate the sampling strategy’s impact 
on GWAS results. Original p-values output from each program are used as the results.  
Q-values are studied in the next subsection. First, numbers of SNPs with p-value <  10–5 
using replicate-aware sampling and replicate-ignorant sampling are shown in Figures 3 
and 4, respectively. These figures show that sampling strategies impact the results 
significantly. For PLINK, the replicate-aware strategy produces many more SNPs than 
the replicate-ignorant one when using the same amount of input. TASSEL demonstrates a 
similar trend. FaST-LMM shows the opposite effects; the replicate-ignorant case outputs 
more SNPs. GAPIT, different than all the others, shows little variation between the two 
strategies. 

One noticeable difference among the four GWAS outputs is that PLINK generates 
many more SNPs with p-value < 10–5 than the other three with the same input. Further 
examination of the results reveals that p-values of the same SNPs from PLINK are much 
lower than from the other programs by orders of magnitude; for example, 10–30 versus 
10–8. This explains why PLINK outputs a vastly larger number of SNPs given the same 
p-value cut-off. The statistics model difference between PLINK (linear regression with 
Wald statistic) and the rest (LMM) is the likely key contributor to the dramatic difference 
in p-values. 

Figure 3 Average numbers of SNPs with p-value < 10–5 for AtOil data using the replicate-aware 
sampling strategy. Secondary y-axis (in red) is for PLINK results 
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Figure 4 Average numbers of SNPs with p-value < 10–5 for AtOil data using the replicate-
ignorant sampling strategy. Secondary y-axis (in red) is for PLINK results 

 

TASSEL shows a decrease in the number of reported SNPs going from 90 to 100% of the 
data in Figure 4. However, the decrease may be an artefact. The result for the 90% subset 
is the average across 30 randomly generated subsets, while that for 100% is for a single 
dataset. More detailed results for TASSEL, specifically means and standard deviations 
for different subsets, are given in Table 4. (We do not show error bars in Figure 4 to 
prevent overcrowding.) As seen from the table, the drop from 90 to 100% of the data 
might be due to the variance among the 90% replicates rather than suggesting that more 
data leads to fewer SNPs. 

Table 4 Means and standard deviations of the numbers of SNPs with p-value < 10–5 from 
TASSEL for AtOil data using replicate-ignorant sampling. “NA” indicates that there 
are no SNPs output for this subset size 

Percentage of data Mean Standard deviation 

100% 22.00 0.00 

90% 28.45 6.82 

80% 27.05 8.88 

70% 26.60 8.79 

60% 24.75 6.45 

50% 17.85 5.52 

40% 17.90 8.80 

30% 10.35 4.89 

20% 6.25 2.80 

10% NA NA 
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We next investigate the effect of sample size on the p-values of the most significant 
SNPs reported by each program. The negative log10 of the p-values of the 20 most 
significant SNPs of each GWAS run are plotted in box plots. Figures 5 to 8 demonstrate 
the results using the replicate-aware sampling strategy for PLINK, TASSEL, FaST-
LMM, and GAPIT, respectively. Results using the replicate-ignorant sampling strategy 
are shown in Figures 9 to 12. For each subset size there are 30 randomly generated 
subsets, and for each subset, the 20 most significant SNPs are considered. Therefore,  
p-values for a total of 600 SNPs are represented in each of 9 columns of the box plot. For 
100% of the data on the other hand, there is only one set of the 20 most significant SNPs 
plotted. Hence, there are far fewer points (1/30) shown in the column for 100% of data 
than in columns for the subsets. 

Figure 5 Negative log10 of p-values of the top 20 SNPs from PLINK for AtOil data using the 
replicate-aware sampling strategy. “x” in each box represents the mean value 

 

Figure 6 Negative log10 of p-values of the top 20 SNPs from TASSEL for AtOil data using the 
replicate-aware sampling strategy. “x” in each box represents the mean value 
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Figure 7 Negative log10 of p-values of the top 20 SNPs from FaST-LMM for AtOil data using 
the replicate-aware sampling strategy. “x” in each box represents the mean value 

 

Figure 8 Negative log10 of p-values of the top 20 SNPs from GAPIT for AtOil data using the 
replicate-aware sampling strategy. “x” in each box represents the mean value 

 

We first focus on the results from replicate-aware sampling. PLINK demonstrates a clear 
linear increase in the values of the negative log10 of p-values, which indicates that the 
actual p-values are steadily decreasing with more input data. The trend is consistent with 
the result shown in Figure 3 since higher negative log10 of p-values correspond to more 
p-values being less than a set threshold. FaST-LMM in Figure 7 shows a clear linear 
increase with greater input size as well, though variation also increases with more input. 
The plot for TASSEL in Figure 6 also shows a generally increasing trend for values of 
the negative log10 of p-values. This is consistent with the generally upward trend of the 
plot for TASSEL in Figure 3. 

As in Figure 3, the result for GAPIT in Figure 8 is different from the results for the 
other GWAS programs in Figures 5 to 7. The plot in Figure 8 shows limited variation of 
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p-values after 30% of the input. This is consistent with the trend in Figure 3 for GAPIT 
where the numbers of SNPs below the p-value threshold stay at a relatively constant level 
above a subset size of 30–40%. 

The box plots in Figures 9 to 12 for replicate-ignorant sampling show similar trends 
as for replicate-aware sampling (Figures 5 to 8), though the –log10 of p-values are 
generally lower. Again the plots for PLINK, TASSEL, and FaST-LMM steadily increase 
with greater input size, corresponding to increasing trends for these programs in Figure 4. 
GAPIT’s behaviour in Figure 12 is again similar to that in Figure 8. PLINK shows 
unusual behaviour for 10% of the data in Figure 9. There is no corresponding observable 
behaviour for the PLINK curve in Figure 4, but this could be due to the scale of the plot; 
the effect is likely too small to be observed in Figure 4. 

Figure 9 Negative log10 of p-values of the top 20 SNPs from PLINK for AtOil data using the 
replicate-ignorant sampling strategy. “x” in each box represents the mean value 

 

Figure 10 Negative log10 of p-values of the top 20 SNPs from TASSEL for AtOil data using the 
replicate-ignorant sampling strategy. “x” in each box represents the mean value. 
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Figure 11 Negative log10 of p-values of the top 20 SNPs from FaST-LMM for AtOil data using 
the replicate-ignorant sampling strategy. “x” in each box represents the mean value 

 

Figure 12 Negative log10 of p-values of the top 20 SNPs from GAPIT for AtOil data using the 
replicate-ignorant sampling strategy. “x” in each box represents the mean value 

 

Finally, we compare the Kendall coefficient   for the four GWAS programs using 
replicate-aware and replicate-ignorant sampling. Results are shown in Figures 13 and 14, 
respectively. The figures reveal that the choice of sampling strategy has little impact on . 
Results are almost identical except at 10% data for PLINK, and 60–70% data for 
TASSEL. This indicates the overall ranking of SNPs varies little between sampling 
strategies. 
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Figure 13 Average Kendall coefficient  for AtOil data using the replicate-aware sampling 
strategy 

 

Figure 14 Average Kendall coefficient   for AtOil data using the replicate-ignorant sampling 
strategy 

 

PLINK, TASSEL, and FaST-LMM demonstrate linear-like increases in  with more 
input data. GAPIT’s  values are significantly smaller than other programs’ using the 
same subsets. Even with 90% of the original data, GAPIT’s  is below 0.1. This suggests 
that GAPIT is very sensitive to input genomes on this dataset. A little change of input 
leads to a substantial difference of output SNP lists. Further study is being carried out to 
investigate the reasons for this singular behaviour of GAPIT. 
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To conclude the above analysis, when the experimental data have varied biological 
replicates (one to three for this dataset), sampling strategy can heavily influence the 
number of SNPs passing the predefined p-value threshold for a given GWAS program. 
The replicate-aware strategy gives a balanced dataset for GWAS while the replicate-
ignorant sampling strategy can give an unbalanced one. These two sampling strategies 
can therefore expose the effect of bias in a dataset. When the SNP selection for 
downstream analysis is based on predefined p-value thresholds, using balanced data with 
the same number of replicates per sample (replicate-aware strategy) versus unbalanced 
data (replicate-ignorant strategy) can lead to differing results, as shown in Figures 3 to 
12. Of the four tested GWAS programs, PLINK, TASSEL, and FaST-LMM are more 
sensitive than GAPIT to the choice of balanced versus biased data. 

As shown by comparing the results for PLINK versus the three other programs,  
the choice of p-value threshold for selecting significant SNPs should be program specific. 
A permutation test can be used to set an appropriate p-value threshold. It is a 
straightforward approach to empirically generate p-values related to a given null 
hypothesis distribution but can be time-consuming and computationally expensive. By 
contrast, in practice it is more common to adjust p-values for multiple testing using 
techniques such as Bonferroni or FDR-based correction. The latter will be discussed in 
detail in the next subsection by applying q-values as the correction method. It should be 
noted that the effects of different threshold values for significant SNPs was not examined 
in this study; as shown in Table 4, a constant p-value threshold was used. 

Finally, for a given GWAS program, no clear difference of   was observed between 
the two sampling strategies in our experiments. That is to say, when the selection for 
downstream analysis is based on rankings of SNPs, balanced versus biased data has no 
appreciable effect. 

4.2 P-values and Q-value correction 

We now investigate the effects on GWAS output of varying amounts of input based on q-
values of reported SNPs. The results of using replicate-aware and replicate-ignorant 
sampling on the AtOil dataset are summarised in Figures 15 and 16, respectively. One 
noticeable phenomenon after the q-value correction is that none of the q-values from 
GAPIT pass the 0.05 threshold. We are investigating GAPIT’s singular behaviour, the 
reasons for it, and potential methods to compensate, and will report the findings in a 
separate study. In this paper, we provide results from the other tested GWAS programs 
using q-value correction. 

PLINK shows a linear trend with more input data, and outputs many more SNPs with 
q-value passing the threshold than other programs. Therefore, after the p-value 
adjustment, the dramatic difference seen in Figures 3 and 4 does not disappear, but is 
even more pronounced. This suggests that our previous recommendation to choose  
p-value thresholds in a program specific manner is also applicable to when q-values are 
used. Comparing PLINK’s results between replicate-aware and replicate-ignorant 
sampling, the latter produced many more SNPs passing the q-value threshold than the 
former. This phenomenon is also observed in the p-value cases (in Figures 3 and 4). 

Results for TASSEL and FaST-LMM show a generally increasing trend in Figures 15 
and 16. However, in Figure 15, there is a decrease in the average numbers of SNPs with 
q-value < 0.05 for FaST-LMM when the amount of input data increases from 30 to 40%. 
Referring to Table 5, one can see that the standard deviation for 30% of all data is 
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substantially larger than the ones for other proportions. On further investigation, we find 
that this is due to two runs (out of the total, 30) yielding extremely large numbers of 
SNPs passing the threshold. The runs not only cause large standard deviation, but also 
inflate the average number of SNPs for 30% of the data. Therefore, the decrease  
(for 30 to 40% of the data) is because of a small number of outliers rather than suggesting 
that more data leads to fewer SNPs. The decrease seen in TASSEL for 60% of the data is 
attributable to the same phenomenon and explained in the same way. 

Figure 15 Average numbers of SNPs with q-value < 0.05 for AtOil data using the replicate-aware 
sampling strategy. Secondary y-axis (in red) is for PLINK results 

 

Figure 16 Average numbers of SNPs with q-value < 0.05 for AtOil data using the replicate-
ignorant sampling strategy. Secondary y-axis (in red) is for PLINK results 

 



   

 

   

   
 

   

   

 

   

   36 Y. Yan et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 5 Standard deviations of the numbers of SNPs with q-value < 0.05 for each subset size 
from GWAS programs using AtOil data and replicate-aware sampling. “NA” 
indicates that there are no output SNPs at this subset size and hence no standard 
deviation can be calculated 

Percentage of data TASSEL FaST-LMM PLINK 

90% 5.75 4.19 2282.15 

80% 3.71 3.40 3540.04 

70% 3.99 4.95 5421.08 

60% 10.59 4.82 6013.97 

50% 2.06 2.16 9754.23 

40% 1.32 2.57 8693.76 

30% 0.22 12.33 8013.20 

20% 1.13 0.37 9293.72 

10% NA 1.57 7601.06 

It may appear that standard deviations for PLINK in Table 5 are quite large (in a scale  
of 104). However, compared to the mean values (in a scale of 105 to 106), they are still 
relatively small (typically within 10% of the mean). 

Finally, because of GAPIT’s singular behaviour upon q-value correction and because 
the latter is just one method for p-value adjustment, we use unadjusted p-values from all 
programs for the subsequent analyses. Consequently, GAPIT can again be included in the 
analysis. This decision to use unadjusted p-values is supported by the observation that 
rankings of SNPs stay the same before or after the correction, so it does not change the 
results for Kendall coefficient  . 

4.3 Comparison between Arabidopsis thaliana datasets 

In this subsection, we compare results between two Arabidopsis thaliana datasets, AtOil 
and AtPolyDB. P-values output from GWAS programs and SNP rankings are used. 
Numbers of SNPs with p-value < 10–5 and Kendall coefficient  for the AtPolyDB dataset 
with FT10 phenotype are shown in Figures 17 and 18, respectively. Since the plots of the 
negative log10 of p-values tend to only confirm the counts of SNPs below a given p-value 
threshold, the former are not shown for the AtPolyDB dataset. 

From Figures 3, 4, and 17, one can see that PLINK shows similar trends as for the 
AtOil data: PLINK consistently generates orders of magnitude more SNPs than the other 
programs with the same input. GAPIT, for most cases, outputs the fewest SNPs among 
the four programs. GAPIT also shows a decrease after the 80% data point in Figure 17, 
which is not observed in Figures 3 and 4. TASSEL exhibits a linear-like relationship 
between the number of SNPs and amount of input data in Figure 17; the behaviour is 
more similar to that in Figure 4 and less to what is observed in Figure 3 (where TASSEL 
fluctuates more). 
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Figure 17 Average numbers of SNPs with p-value < 10–5 for AtPolyDB data with FT10 
phenotype. Secondary y-axis (in red) is for PLINK results 

 

Figure 18 Average Kendall coefficient  for AtPolyDB data with FT10 phenotype 

 

FaST-LMM displays an unusual trend in Figure 17 compared with Figures 3 and 4. 
Figures 3 and 4 show generally increasing trends with more input data despite some 
fluctuation in Figure 4. However, in Figure 17, FaST-LMM produces vast numbers of 
SNPs for the 10% and 20% subsets, followed by a dramatic decrease at 30%. It fluctuates 
and increases marginally with more input data afterward, but never overtakes the 10% 
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and 20% data points, even with the whole dataset. Detailed analysis as summarised in 
Table 6 reveals that this behaviour is probably due to large standard deviations in the 
number of SNPs with p-value <  10–5. This also implies that different sample subsets 
could yield varying results, and more randomly generated subsets (increasing k) could 
reduce the large standard deviations. One more general observation is that the AtPolyDB 
dataset is much smaller than the AtOil dataset; it is only about 1/6 the size of the AtOil 
dataset (195 versus 1100 samples). Therefore, results for the AtOil dataset are much 
more vulnerable to the effects of outliers caused by the random sampling. 

Table 6 Means and standard deviations of the numbers of SNPs with p-value < 10–5 from 
FaST-LMM for AtPolyDB 

Percentage of data Mean Standard deviation 

100% 80.00 0.00 

90% 67.15 10.05 

80% 69.45 11.58 

70% 64.6 22.16 

60% 66.85 13.63 

50% 70.25 10.98 

40% 71.25 18.42 

30% 65 26.59 

20% 117.6 48.75 

10% 121.6 127.81 

Figure 18 demonstrates trends similar to the AtOil cases (see Figures 13 and 14).  
When given the same input, PLINK produces the highest  , followed by FaST-LMM, 
TASSEL, and GAPIT. That is to say, generally, PLINK has the highest SNP ranking 
similarity between subsets and the whole dataset. GAPIT demonstrates high sensitivity to 
input data amount. 

To conclude, we see that the influence of input data quantity on the ranking of SNPs 
(as shown by ) is consistent between the two Arabidopsis thaliana datasets, while for 
the number of SNPs below a set threshold, results are program specific. In the case of the 
latter criterion, PLINK demonstrates similar trends between the two datasets, and GAPIT 
shows the strongest sensitivity (of input quantity) among all programs. It usually 
generates the least number of SNPs for a given amount of input. For TASSEL and FaST-
LMM, they exhibit differing results between the two datasets, especially the unusual 
decrease by FaST-LMM shown in Figure 17. 

Results from both Arabidopsis thaliana datasets imply that when having small 
sample sizes for GWAS, PLINK is expected to produce the most similar SNP rankings as 
additional samples are added. Viewed in another way, PLINK can best approximate the 
SNP ranking for a (potentially) large population when only a small dataset is available. 
For other programs, especially GAPIT, rankings change dramatically with even a small 
change in sample size. 
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4.4 Comparison between synthetic and real data 

In this subsection, we focus on the differences between using the synthetic dataset, 
Simu_data, versus the two Arabidopsis thaliana datasets. PLINK is excluded from 
Simu_data analysis to avoid potential bias since it was used to generate the data. Counts 
of significant SNPs and ranked SNP lists are used for comparison. Numbers of SNPs 
with p-value < 10–5 and Kendall coefficient  of Simu_data with quantitative phenotype 
are shown in Figures 19 and 20, respectively. 

Figure 19 Average numbers of SNPs with p-value < 10–5 for Simu_data with quantitative 
phenotype 

 

Figure 20 Average Kendall coefficient  for Simu_data with quantitative phenotype 
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Figure 19 shows that the numbers of SNPs fluctuate for TASSEL and FaST-LMM, while 
GAPIT demonstrates a linear increase except from 50 to 60% of the data. Numbers of 
SNPs differ less for TASSEL and FaST-LMM on Simu_data (7 to 16, and 19 to 25, 
respectively, from 10 to 100% of total data) than on Arabidopsis thaliana datasets 
(Figures 3, 4, and 17). This suggests that for TASSEL and FaST-LMM on Simu_data, 
using just subsets of data could produce significant SNPs comparable to using the whole 
dataset. 

The Kendall coefficient   results for Simu_data (see Figure 20) show mildly 
exponential increases with more input, and there is only a minor difference between the 
programs. This is quite different from the results for the AtOil and AtPolyDB datasets 
where programs differ in Kendall coefficient . Despite the minor difference between 
TASSEL and the others, all three tested programs produce almost identical   with the 
same input. On this dataset, use of different programs has little impact on SNP rankings. 

One possible reason for this phenomenon is that some specific features of real-data 
sets are not accurately reflected or are hardly distinguishable in the synthetic dataset, 
such as population structure or kinships. SNPs in Simu_data are generated based on the 
assumption that they are independent, so there are no kinship relations between samples 
(and PLINK does not provide an option to include kinship in the data generator). Further 
study of this phenomenon is warranted to generate a conclusive explanation. Methods for 
generating synthetic data besides that provided by PLINK are also being explored. 

To conclude, we see dramatic differences between the results on synthetic and real 
data. Many consistent observations from the real data disappear when using the synthetic 
data. For example, for the number of SNPs with p-value < 10–5, GAPIT no longer 
demonstrates higher sensitivity to input data compared to the other programs. For the 
Kendall coefficient , differences between programs with the same input are barely 
discernible compared to the results in Figures 13, 14, and 18. Results from our 
experiments suggest that the data simulation method in PLINK might not accurately 
model real plant data and capture their features. Therefore, better synthetic data 
generators are needed in this field. 

5 Conclusions and future work 

This study investigated how input data quantity influences GWAS results in plant 
genomics. Four widely used GWAS programs, PLINK, TASSEL, GAPIT, and FaST-
LMM, were compared in the experiments. Both synthetic data and real Arabidopsis 
thaliana data were used. For determining results, p-values, q-values, and SNP ranking 
measurements were determined. To be specific, numbers of SNPs passing given p- and  
q-value thresholds, and Kendall rank correlation coefficient  between output SNP lists 
were used. As well, for one dataset the negative log10 of p-values for the 20 most 
significant SNPs in each run were visualised using box plots. In practice, plant samples 
with a varied number of biological replicates are often obtained. This situation was also 
explored in our experiments. 

From the experimental results, we see that balanced (same number of replicates per 
genotype-phenotype combination) versus unbalanced (any data, no matter the number of 
replicates) input data affect GWAS results. These differences are most pronounced for 
PLINK, FaST-LMM, and TASSEL. When considering the ranking of SNPs, minimal 
variations between the two situations are generally observed. 
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PLINK consistently generates orders of magnitude more SNPs than the other 
programs with the same input. GAPIT, for most cases, outputs the fewest SNPs. This 
may be because of its alternate statistical model. GAPIT also demonstrates singular 
behaviour in the results of Kendall coefficient   and even failed to report any SNPs with 
q-values less than 0.05. This is being investigated in detail for a conclusive explanation. 

Results differ between synthetic data and real data. One possible reason for this 
phenomenon is that the synthetic data does not adequately reflect the characteristics of 
real data. Future research will explore other methods to generate synthetic data that is 
more similar to real data. 

In terms of the effects of input data quantity on GWAS results, it is both program and 
measurement specific. One can expect a linearly increasing relationship between input 
quantity and numbers of SNPs passing a threshold for PLINK, but no guarantee for 
TASSEL, FaST-LMM, and GAPIT. Viewed alternatively, it appears that the latter three 
programs are less robust to a reduction in the amount of input. The experimental results 
also suggest that setting a threshold p- or q-value for significant SNPs should be program 
specific. 

The SNP ranking generally demonstrates a linear increase in the similarity between 
subsets and the whole dataset with more input data. On real-data sets, PLINK achieves 
the highest similarity while GAPIT the lowest. Therefore, when only limited samples  
are available, PLINK is expected to produce a ranked SNP list that is closest to the SNP 
list generated for a large sample. For a program like GAPIT, rankings can change 
dramatically with even a small change in the sample size. Hence, researchers should 
conduct additional GAPIT runs whenever the amount of experimental data changes. 

For situations of small sample sizes, this study suggests that PLINK is a good choice 
for GWAS as its performance is expected to be similar to that for a potentially larger 
sample size. If a GWAS method based on a LMM is desired, either of TASSEL or FaST-
LMM can be used. However, GAPIT appears to be quite sensitive to input quantity and 
dissimilar results can be expected with even small changes in amount of input. 

In addition, balanced experimental data is recommended as it is known to enhance 
the power of the statistical tests. When only unbalanced data is available, proper pre-
processing to make it balanced is encouraged. If one has to use unbalanced data for 
GWAS, SNP ranking is recommended as a selection criterion over a pre-defined p-value 
threshold since the ranking is not heavily influenced by the unbalanced versus balanced 
data. 

In some applications, generating and collecting genotype and phenotype data is 
resource intensive. There is a trade-off between acquiring more data and getting better 
results. This study suggests that some programs such as TASSEL and FaST-LMM could 
produce improved results with added data for most cases, while other programs might 
not. There might even be worse results with more input data quantity in some situations. 
Choices should be made according to the program performing GWAS analysis and the 
criteria for selecting SNPs for downstream study. We believe that the results from this 
study can provide guidance on selecting GWAS programs given varied amounts of 
experimental data and on understanding how the quantity of input data effects results. 
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