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Abstract: A more general and physically intuitive alternative to the classical 
macroscopic derivation of second law results is proposed. Instead of using 
imaginary reversible processes occurring within heat engines that operate 
between infinite temperature reservoirs, the new derivation is applicable to any 
arbitrary control volume across which heat and/or work interactions occur.  
The arbitrary control volume is discretised into infinitesimally small elements. 
So-called ‘Interface Equations’ are developed at the interfaces of these 
elements, utilising the second law statement that heat transfer occurs from 
higher to lower temperatures. Terms from the interface equations are then 
rearranged at each element to show that ;dQ

TdS ≥  all other second-law 
formulation follow from this result. The derivation allows reversible processes 
to be mathematically defined, which in turn, allows irreversibilities and entropy 
generation to be understood in terms of spatial non-uniformity of temperature 
distribution. 
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1 Introduction 

The approximate sequence of the classical macroscopic presentation of second law 
concepts and results has not changed for more than a century. All concepts and results  
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originate from very specific thought experiments that utilise imaginary reversible 
processes occurring within heat engines that operate between infinite temperature 
reservoirs. Figure 1 shows a schematic of the approximate sequence found in engineering 
textbooks used to teach introductory thermodynamics courses over the last few decades 
(Cengel and Boles, 2011; Moran et al., 2014; Klein and Nellis, 2012; Borgnakke and 
Sonntag, 2009; Bejan, 2006; Dugdale, 1996; Wark, 1983; Holman, 1980; Keenan, 1970), 
based on the edifice constructed by Carnot, Clausius and Kelvin (Kestin and Keenan, 
1976). This intellectual journey commencing with the Kelvin-Planck/Clausius statements 
of the Second Law and culminating with Exergy analysis is mathematically simple but 
conceptually complex, sometimes spanning more than 200 pages in recent textbooks 
(Cengel and Boles, 2011). The concepts of exergy, entropy generation and entropy 
successively follow from the Clausius inequality, all of which are derived from arguments 
that utilise imaginary reversible heat engines (RHEs) in imaginary situations, e.g., an 
infinite number of miniature RHEs operating together within a finite cycle (Keenan, 
1970). The relationship between work and heat in an RHE in turn, originate from a 
seemingly arbitrary choice of temperature function used to define the thermodynamic 
temperature scale (TTS). Ultimately, all second law formulations are derived using 
reversible processes where properties change uniformly in space over an infinite amount 
of time. The classical derivation is therefore far removed to any actual problem requiring 
second-law analysis. 

Figure 1 Schematic of the sequence of steps in the classical presentation of the second law in 
engineering textbooks over the last few decades (Cengel and Boles, 2011; Moran et al., 
2014; Klein and Nellis, 2012; Borgnakke and Sonntag, 2009; Bejan, 2006; Dugdale, 
1996; Wark, 1983; Holman, 1980; Keenan, 1970). The proposed presentation derives 
the principle of increase of entropy directly, for any general process involving work 
and/or heat transfer (see online version for colours) 

 

This specific-to-general approach is unusual in science and engineering. It is for this 
reason that the second law has been expressed and formulated in many different ways  
for different audiences, e.g., works by Morales (2009), MacDonald (1995), Muschik 
(1990), Thomsen (1961) and Baierlein (1994). A discussion of different second-law 
approaches can be found in a review paper by Muschik (1988). Many Introductory 
physics textbooks at the college level have accordingly modified their presentation of the 
second law by introducing entropy from a microscopic perspective. However, all of these 
alternative second law formulations or modified presentations still derive macroscopic 
results such as the Carnot cycle efficiency or the exergy relations in the same 
approximate manner as shown in Figure 1. Some introductory physics textbooks 
(Halliday et al., 1997; Giancoli, 2000; Young et al., 2016; Serway and Jewett, 2014)  
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skip the Clausius theorem altogether and address only reversible cycle efficiency starting 
from ∆S = 0. Others derive the Clausius theorem from the Carnot cycle efficiency 
(Fishbane et al., 1992), which is presented as the upper limit of efficiency (without the 
RHE corollaries presented in almost all engineering textbooks) and derived for an ideal 
gas. 

The primary distinguishing feature of this work compared to all of the works 
mentioned above is that the relation dQ

TdS ≥  is derived for an arbitrary and real process. 
As in some of the referenced works, all other results such as the Carnot cycle efficiency 
and exergy relations follow from dQ

TdS ≥ . 
It is easier to understand the new derivation if a particular example is presented first. 

This is done in Section 2 followed by the general derivation in Section 3. Conceptual 
implications are discussed in Section 6. 

2 A particular example 

Consider one-dimensional heat conduction along an insulated rod at any instant of time, 
as shown in Figure 2. The rod receives an infinitesimal amount of heat dQsource from an 
external source and rejects dQsink to an external sink during an infinitesimal time period. 
The rod is not at steady state. It is divided into elements of length ∆x small enough to 
ensure uniform properties throughout the element. Since heat transfer is one-dimensional, 
the temperature decreases monotonically from left to right, as shown in the figure, 
according to the second law statement that heat transfer occurs from higher to lower 
temperatures. 

Figure 2 One-dimensional unsteady heat conduction along an insulated rod. The rod is divided 
into infinitesimally small elements. Heat transfer across the boundaries of these 
elements is used to develop the interface equations. The two terms across each interface 
shown in the figure are equal in magnitude but different in sign, as indicated by the 
superscripts. The element (and not the interface) is indicated by the subscript  
(see online version for colours) 

 

The dQ terms at the interfaces of the infinitesimal elements have a positive superscript if 
heat is transferred to the element (dQ+ is positive) and a negative superscript if heat is 
transferred from the element (dQ– is negative) to the next element. The heat transfer 
across the right interface of element 1, for example, is 1dQ−  (negative) and is equal to 

2dQ+  (positive), the heat transferred to element 2 through it’s left interface. Therefore 
1 2 0dQ dQ− ++ = , and since 1 2T T> , it follows that 1 2

1 2
0dQ dQ

T T

− +

+ > , because the second 
positive term exceeds the first negative term. Similar equations can be written for all 
interfaces: 
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The equations above will henceforth be referred to as interface equations, since each 
equation corresponds to an interface. Note that the first and last equations are boundary 
interfaces. Adding all interface equations: 

source 1 sink1 1 2 2

source 1 1 2 2 1 sink

.... 0N N N

N N N

dQ dQ dQ dQ dQdQ dQ dQ dQ
T T T T T T T T T

− − + − ++ − + −
−

−

+ + + + + + + + ≥  (2) 

The terms can be re-arranged by collecting them for each node, i.e., the terms can 
grouped at each element rather than at the interfaces: 

source sink1 1 2 2

source 1 2 sink

.... 0N N

N

dQ dQ dQ dQdQ dQ dQ dQ
T T T T T

− + − ++ − + −      ++ +
+ + + + ≥    
     

 (3) 

or 

source sink

1 2 source sink

.... ,
N

dQ dQdQ dQ dQ
T T T T T

− +      + + ≥ − +      
       

 (4) 

where i i idQ dQ dQ+ −= +  is the net heat transfer to any element. Each term on the left-
hand-side represents the entropy change. That entropy is a property is shown later in 
Section 5. Equation (4) can then be written as: 

source sink
1 2

source sink

.... N
dQ dQ

dS dS dS
T T

+ −

+ + ≥ +  (5) 

where sourcedQ−−  and sinkdQ+−  have been written as sourcedQ+  and sinkdQ−  respectively. 

Equation (5) is essentially the famous result dQ
TdS ≥ , derived without using any 

reversible processes or heat engines. The Clausius and Carnot theorems, as well as exergy 
relations, follow readily from it. The general case is derived next. 
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3 The general case 

The example just presented in easy to visualise, but no aspect of the derivation is 
particular to it. The interface equations (1) hold true for heat transfer at any location, in 
every situation. The presence or nature of work interactions do not matter, e.g., Figure 2 
could represent a thermoelectric element that produces electric work; this would make no 
difference to the interface equations. Hence interface equations can be written for any 
arbitrary control volume, and the terms re-grouped to obtain the generalised version of 
equation (5). The only required modification is a change to generalised notation. 

Consider an arbitrary control volume (CV) undergoing work and heat interactions as 
shown in Figure 3. 

Figure 3 The general case of heat transfer occurring across the surfaces of infinitesimal elements 
(interface equations) within any arbitrary control volume (CV) undergoing arbitrary 
exchange of work or heat with the environment (see online version for colours) 

 

The CV is discretised into infinitesimally small cubic elements, as shown. The interface 
equations are then true for all surfaces of these three-dimensional elements for the same 
reason that equation (1) is true, i.e., heat transfer occurs from higher to lower temperature 
across the interface. 

( ) high low
high low high low

All Interfaces All interfaces high low

0 Since , 0.
dQ dQ

dQ dQ T T
T T

− +
− +

 
+ = > + ≥  

 
∑ ∑  

 (5) 

Both terms highdQ−
 and lowdQ+  denote the heat transferred across any interface. They are 

equal in magnitude but opposite in sign. The superscripts denote whether the term is 
positive or negative, while the subscripts ‘high’ and ‘low’ simply refer to the higher  
and lower temperature sides of the interface. The system is identical to that used for 
equation (1) and Figure 1. 

The analogue of equation (2) is then obtained by separating the summations based on 
the whether the interface is internal to the CV or occurs at the surface of the CV, i.e., 
source or sink interfaces: 
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 (6) 

If the terms are re-arranged by re-grouping terms within each element rather than at each 
interface, the analogue of equation (3) results: 

high high low low

Source interfaces Internal Elements Sink interfaceshigh low

0.
dQ dQ dQ dQ

TT T

− − + + +
+ + ≥  

 
∑ ∑ ∑  (7) 

The only interface terms that remain in equation (7) are those that are external to the CV. 
Noting that high highdQ dQ− +− =  and low lowdQ dQ+ −− = , equation (7) can be re-arranged to 
obtain the analogue of equation (4): 

high low high low

Internal Elements Source Interfaces Sink Interfaceshigh low

dQ dQ dQ dQ
T T T

− + + − +
≥ +  

 
∑ ∑ ∑  (8) 

or 

Internal Elements Surface Interfaces

.
dQ

dS
T

≥∑ ∑  (9) 

Note that the positive dQ+ term and negative dQ- terms have been replaced by dQ on the 
RHS, by following the usual sign convention of heat transfer into the CV being positive 
and heat loss from the CV being negative. Since the elements need to be small enough for 
properties to be uniform, they must be infinitesimally small in general. The summations 
can then be replaced by integration: 

CV CS

.dQdS
T

 ≥  
 ∫ ∫  (10) 

The LHS is an integration over infinitesimal elements inside the CV while the RHS is an 
integration over the control surface of the CV, denoted by CS. Note that the infinitesimal 
elements change volume during each infinitesimal time step, so that no mass transfer 
occurs from one element to another. Equation (10) is the main result of this work.  
All other second law results follow from this, as shown in the next section. 

4 Carnot cycle efficiency and exergy relations 

Both sides of equation (10) are still differential quantities over an infinitesimal time 
duration, identical to the dQ

TdS ≥  result in engineering thermodynamics textbooks, which 
always consider a finite control volume undergoing quasi-static processes (so there is no 
reason to integrate over space). Stated in another way, if q″ is the heat flux, then 

. .dQ q A dt′′=  in the classical approach but . .dQ q dA dt′′=  in the proposed approach. 
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Notice the product of two differentials for time and surface area in the latter term; this 
necessitates double integration to produce a finite quantity. 

If both sides of equation (10) are integrated over time, we obtain: 

CS
.

t

dQS
T

 ∆ ≥  
 ∫ ∫  (11) 

This is the mathematical form of the second law in the proposed approach, i.e., the 
increase in entropy principle. For any cyclic process, the property change ∆S = 0 and 
equation (11) reduces to the Clausius Inequality: 

CS
0.

t

dQ
T

  ≤ 
 ∫ ∫  (12) 

It is evident that in order to convert heat into work, at least one heat sink would be 
required in order for the left-hand-side to be negative. This is essentially the Kelvin-
Planck statements of the second law. For the limiting case where the CV encloses a cyclic 
and RHE operating between a single source and a single sink of constant temperature, 
equation (12) reduces to: 

Source Sink

Source Sink 0.Q Q
T T

+ =  (13) 

This results in the familiar expression for the thermal efficiency of a RHE operating 
between two temperature reservoirs: 

Source Sink Source

reversible Source Sink1 .Q Q T
Q T

η += = −  (14) 

The second law equation (11) can also be used to determine the exergy of a substance. If 
a CV is drawn around any substance to determine its exergy, and the boundaries are 
drawn far enough so that the heat interactions occur at ambient temperature To (without a 
heat source), equation (11) integrates to: 

,
o

QS
T

∆ ≥  (15) 

where ∆S corresponds to the change between current and dead state. Maximum work 
production will correspond to the limiting equality corresponding to an imaginary 
reversible process: 

reversible 0 .Q T S∆ = ∆  (16) 

The mathematical expressions for exergy of any closed or open system readily follow 
from equation (16) when combined with the first law, and can be found in most 
textbooks. The ∆S term must include the entropy change of the flow terms if mass crosses 
the CV boundaries. 
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5 Entropy as a property 

The interface equations hold true irrespective of the temperature scale used. To establish 
entropy as a property however, it is necessary to use the ideal gas temperature scale 
(IGTS). The IGTS coincides with the TTS, but is based on the constant volume 
thermometer, commonly described in textbooks. Using the IGTS, it is obvious that 
entropy change for an ideal gas is a property, because of the exact differential: 

.vCdu pdv Rds dT dv
T T v
+    = = +      

 (17) 

It is easy to extend the argument to non-ideal gas substances by imagining an ideal and 
non-ideal substance enclosed in infinitesimally small fixed volumes, within a finite CV, 
undergoing a slow cycle of heating and cooling. The mass of the ideal gas is adjusted so 
that both infinitesimal volumes have identical heat capacity. The process is slow enough 
and the packets are small/close enough to result in identical temperature trajectories, as 
well as identical surrounding temperature trajectories for both infinitesimal volumes. 
Heat flux between the surroundings and both infinitesimal volumes will therefore be 
identical. If 0dQ

T =∫  for the ideal gas, it must be so for the other arbitrary substance too, 
since both the numerator and denominator are identical. Hence 0dQ

T =∫  for all 
substances and entropy must be a property. This is a fascinating result because the 
knowledge of ideal gas behaviour allows us to define a property for any arbitrary 
substance without any knowledge of the physical processes governing changes in internal 
energy and work production within that substance. 

An alternate method of establishing entropy as a property is to imagine two RHE’s 
operating with an ideal gas and arbitrary non-ideal gas substance respectively. Both must 
have the same efficiency given by equation (14) so ∆S = 0 for the arbitrary substance 
undergoing a cyclical process. 

6 Comparison with classical approach 

The main difference is in the derivation of dQ
TdS ≥ . The classical presentation relies on 

RHE’s to derive this result, see Figure 1, and this can be done in a few ways. One 
commonly used method, e.g., Borgnakke and Sonntag (2009), is to first establish the 
efficiency of a RHE by doing a thought experiment to show that RHE efficiency can only 
depend on the ratio of sink and source temperature functions. This temperature function 
is then chosen to be simply Φ(T) = T to define the thermodynamics temperature scale 
(TTS), and to obtain equation (14). 

The Clausius inequality 0dQ
T ≤∫  is then obtained with a thought experiment by 

comparing RHE and non-RHE efficiency by subtracting equation (14) from its non-
reversible counterpart (inequality). The Second Law corollary that RHE efficiency cannot 
be exceeded by any heat engine is employed. 

Next, entropy is defined as a property by considering the special reversible case 

Rev
0dQ

T =∫  and performing a thought experiment involving two cyclical processes that 
transition from state A to B along different reversible paths, but return through the same 
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path, see mid-path in Figure 4 (left). The ( )
Rev

dQ
T

 
of the different paths from A to B must, 

therefore, be identical, since the sum is zero. Therefore ( )
Rev

dQ
T

 
must be path-independent 

and must be a property, termed entropy. 

Figure 4 Commonly used thought experiments in the classical presentation to establish entropy 
as a property (left) and to show that dQ

TdS ≥  (right) (see online version for colours) 

 

This is then followed by another similar thought experiment, but this time one of the 
initial paths is irreversible, shown by the dotted line in Figure 4 (right). The Clausius 
inequality is then applied to both the reversible (equality) and irreversible cycle 
(inequality). Two equations result, which are then subtracted from each other to obtain 

dQ
TdS ≥ , see textbook by Borgnakke and Sonntag (2009) for details. 

All exergy relations follow from this result, in a manner sometimes similar to  
Section 4. Note that the above is one of a few different approaches in the classical 
presentation, all of which use specific imaginary processes. 

The classical presentation is perhaps simpler mathematically, but involves a lengthy 
chain of reasoning. The proposed derivation might appear to be more complex 
mathematically, but has a number of conceptual advantages. The conceptual implications 
of both approaches have been discussed below. 

6.1 Dependence on reversible processes and RHE’s 

The thought experiments of the classical approach depend on imaginary reversible 
processes and RHE’s, making it difficult to relate the derivation to any practical problem. 
In most of science and engineering, derivations are made for a general case, and then 
applied to specific problems. This is flipped in the classical approach where the 
derivations are made using imaginary processes and specific devices, i.e., RHE’s and then 
applied to everything that is not imaginary, and not an RHE. 

In contrast, the proposed approach only utilises real processes. Although the 
mathematics might appear complicated, they only involve two conceptual steps: writing 
down the interface equations, and re-grouping the terms at each infinitesimal element. 
The interface equations follow from the simple second-law statement that heat transfer 
occurs from higher to lower temperature. The use of infinitesimal elements and re-
grouping of terms is consistent with computational methods used to analyse most 
contemporary problems. The understanding gained from the derivation is then 
transferable to practical problems. 
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Consider the particular example of Figure 2. If the rod is a thermoelectric element, 
and at steady state, then the maximum theoretical efficiency is given by equation (14). 
This is easily understood from equation (5); the LHS will be zero at steady state. But it is 
conceptually difficult to relate the thought experiments of the classical approach to a 
thermoelectric element. It is not immediately obvious how results derived for a specific 
situation, i.e., RHE operating between two temperature reservoirs, would be transferable 
to another specific device, i.e., a thermoelectric element. This specific-to-general 
approach is an outlier in engineering science. 

Consider another slightly different problem of extracting the maximum possible work 
from the same heated rod with an initial non-uniform temperature distribution, but with 
no heat source. An engineer tasked with this problem will discretise the rod into small 
segments and apply exergy relations to each of them. The only way to conceptually relate 
the classical derivation to this problem would be to imagine a tiny RHE attached to each 
segment, but this will add little insight to the physics of the problem at hand. On the other 
hand, the conceptual framework of the interface equations suggest that maximum work 
will correspond to an infinitely slow cooling to ambient temperature such that the 
interface equation (6) is an equality, possible only if the temperature gradient is zero 
everywhere; resulting in the equality of equation (16). It is physically impossible to 
achieve zero-temperature gradients, particularly if the rod has an initial non-uniform 
temperature distribution. But the equality suggests that the rod should be cooled as 
uniformly and as slowly as possible; a valuable insight for the engineer. 

6.2 Mathematical definition of reversible processes 

Although reversible processes form the backbone of engineering thermodynamics 
process/cycle analysis, the classical presentation does not define them mathematically. 
The proposed approach provides a simple definition. A reversible process is any process 
where the interface equations are zero everywhere, at all times, corresponding to the 
equality in equation (6). This means that temperature distribution must be uniform, and 
must change uniformly. This is a physical impossibility, but a mathematical limiting case. 
Contemporary textbooks seldom state that all processes plotted with solid lines are 
limiting cases. 

6.3 Conceptual understanding of reversible processes 

Non-zero interface equations imply heat transfer from higher to lower temperature 
somewhere within the CV, leading to a loss of work potential as per equation (14).This is 
an important idea that can be used to understand reversible thermodynamic cycles better. 
Most students have trouble understanding why the Carnot cycle is fundamentally more 
efficient than other cycles (except the Stirling and Ericson cycle), when operating 
between identical temperature limits. These ‘other’ cycles, e.g., the Otto cycle, differ 
from the Carnot cycle in that heat addition and rejection is not isothermal, but is still 
reversible. This means that the heat source or sink changes temperature continuously to 
be equal to the temperature of the working fluid at every instant. If this situation is 
understood to be equivalent to irreversible heat exchange with constant temperature 
reservoirs, then equation (14) demonstrates how work potential is destroyed in these 
cycles but not the Carnot cycle. 
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The primary conceptual advantage of the proposed approach is the connection 
between reversibility and spatial uniformity. A reversible process must be spatially 
uniform by definition. Any kind of frictional dissipation, including turbulent dissipation, 
is a result of relative motion, and hence spatially non-uniform by definition. External heat 
transfer in a reversible process, if any, must occur uniformly across the CV, and not just at 
the boundaries, to prevent internal temperature gradients that would render the interface 
equations non-zero. Even an adiabatic and frictionless process such as adiabatic 
expansion would need to occur infinitely slowly so that property gradients (resulting in 
internal heat transfer) are absent. Spatial uniformity is obviously impossible to achieve in 
practice because it requires the process to be infinitely slow. But the concept is important 
when attempting to conserve work potential in real dynamic processes. For example, 
exergy destruction during combustion within internal combustion engines can be reduced 
by initiating the combustion reaction as uniformly as possible throughout the combustion 
chamber. Such strategies can be observed in recent combustion systems, e.g., 
Homogenous Charge Compression Ignition (HCCI) engines (Epping et al., 2002). It is 
obvious from these arguments that a frictionless fluid could undergo an irreversible 
process due to spatially non-uniform processes, e.g., non-uniform heat addition. This 
distinction is useful to those who conflate ‘reversible’ with ‘frictionless’, and don’t 
understand the difference between the two concepts. 

In contrast to all of the above, the classical approach defines reversibility quite 
broadly, and perhaps vaguely; Holman (1980) for example, defines a reversible process 
as any process that can be hypothetically reversed without violating the second law of 
Thermodynamics. Reversibility is explained by illustrating different kinds of frictional 
and thermal irreversibilities, qualitatively, without a uniting mathematical argument. 
Spatial uniformity is implied but rarely stated explicitly. No connection is made between 
irreversibility and spatial non-uniformity of processes and properties. RHE thought 
experiments are used to show that reversible cycles are more efficient than irreversible 
cycles but no attempt is made to demonstrate, mathematically or otherwise, that a 
reversible process conserves work potential. 

6.4 Mathematical understanding of entropy generation and irreversibility 

In the proposed approach, entropy generation can simply be understood as the difference 
between the RHS and LHS of equation (8). This difference will be large if temperature 
gradients inside the CV are large, i.e., higher degree of spatial non-uniformity 
corresponding to larger inequalities in the interface equations and a larger LHS for 
equation (6).  

No such mathematical interpretation is possible in the classical approach, because 
everything is derived from imaginary reversible processes. Irreversibilities are often 
calculated using the entropy generation term derived from entropy balance. Even though 
the entropy balance equation follows from dQ

TdS ≥ , it does not add any insight about the 
physical processes inside the CV. The same can be said about the exergy balance 
equations. 
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6.5 The thermodynamic temperature scale (TTS) 

The proposed approach starts with the Ideal Gas Temperature Scale (IGTS), uses it for 
the preceding derivations, and then shows that it coincides with the TTS. The TTS 
follows from equation (13), i.e., for any RHE: 

Source Source

Sink Sink .T Q
T Q

=  (18) 

In contrast, the classical approach defines the TTS as a scale that satisfies equation (18), 
based on an arbitrary choice of temperature function within an RHE thought experiment. 
Since the TTS is vital to the derivation of every result in the classical presentation,  
this choice is quite important. The apparent randomness of this choice obscures the fact 
that if a different temperature function were to be chosen e.g., Φ(T) = T2, then two 
different temperature scales would be required: the TTS to calculate entropy, and the 
IGTS for the ideal gas law and other physical laws; a clearly untenable situation. 
Although the two temperature scales have historically originated from two different 
concepts (Bejan, 2006), the classical definition of the TTS is therefore very much 
intertwined with the IGTS. 

That the TTS is derived from an imaginary RHE, involves an arbitrary choice, and 
appears to coincide with the IGTS by chance, can cause considerable confusion to the 
non-expert. 

7 Conclusion 

Since macroscopic states can only be defined at equilibrium, classical engineering 
thermodynamics requires imaginary quasi-static reversible processes in order to develop 
second law results. The proposed derivation takes a differential approach to tackle the 
non-equilibrium of real processes. It uses properties existing at infinitesimally small 
elements that result from discretising any arbitrary but finite control volume. The result 

dQ
TdS ≥

 
is then derived by developing ‘interface equations’ at the interfaces of these 

elements, adding them over all elements, and rearranging the terms. All other second law 
results follow in a conventional manner from this result. The derivation is possibly more 
mathematically complex than the classical thought experiments with RHEs. However, it 
is conceptually concise. The interface equations directly follow from the second law 
statement that heat flows from higher to lower temperatures. No thought experiments 
with specific processes or systems are required, and no arbitrary choices are made. The 
interface equations allow a mathematical definition of reversibility, and a conceptual 
understanding of irreversibility/entropy generation that is tied to temperature gradients 
resulting from spatial non-uniformity of the process. The author has supplemented the 
classical approach with the proposed derivation by using only a single 52 min lecture 
period in an introductory thermodynamics course to alternatively derive dQ

TdS ≥ . 
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