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Abstract: This paper applies research in dependency modelling to a  
process-based risk assessment methodology suitable for critical infrastructures. 
The proposed methodology dynamically assesses the evolution of cascading 
failures over time between assets involved in a business process of an 
infrastructure. This approach can be applied by a CI operator/owner to explore 
how a failure in a single component (asset) affects the other assets and relevant 
business processes. It could also be applied in an analysis that includes multiple 
CI operators in the same supply chain to explore the dependencies between 
their assets and explore how these affect the provision of key societal services. 
The paper presents a proof-of-concept tool, based on business-process risk 
assessment and graph modelling, and a realistic case example of a rail 
scheduling process. The approach allows risk assessors and decision makers to 
analyse and identify critical dependency chains and it can reveal 
underestimated risks due to dependencies. 
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1 Introduction 

Typical risk assessment (RA) for critical infrastructures (CIs) includes dependency 
analysis when the RA refers to a cross-CI or cross-sector analysis. It is not part of the 
operator’s RA by definition; rather it depends on the sector and the CI’s maturity level. 
Still, relevant research in this area has proved that dependency analysis of CIs can yield 
interesting results when assessing potential threats. Being an intensive problem when it 
comes to cross-sectoral, cascading and common-cause failures, few tools and 
methodologies have been able to automatically analyse these dependencies, map the 
chain of effect and propose mitigation countermeasures. The problem intensifies when 
attempting a dynamic, time-based dependency analysis. 

This paper utilises a graph-based risk analysis methodology previously proposed for 
analysing cross-infrastructure dependency failures (Stergiopoulos et al., 2016a; 
Kotzanikolaou et al., 2013a, 2013b, 2013c) and applies it to a process-based RA. The 
proposed methodology can dynamically assess the evolution of cascading failures over 
time between assets involved in an infrastructure’s business processes. Various impact 
growth models are employed to capture slow, linear and rapidly evolving effects, but 
instead of using static impact ranks, the impact evolution in each asset dependency is 
modelled by a fuzzy system that also considers the effects of nearby dependencies. For 
each dependency, this is achieved through the quantification of impact on a time axis in 
the form of many-valued logic. The methodology is also able to analyse failures triggered 
by concurrent common cause cascading threats. The proposed methodology for  
process-based asset dependency analysis was implemented in Java and tested on the IT 
systems of a real-world CI. The output of the tool can assist decision makers in 
proactively analysing dynamic and complex dependency risk paths between assets and 
business processes by identifying potentially underestimated low risk asset dependencies 
and reclassifying them to a higher risk category or by simulating the effectiveness of 
countermeasures on assets. 

1.1 Motivation 

Several RA methodologies and tools have been developed; some focus on the assets 
(CRAMM, 2010; Caralli et al., 2007; http://www.ar-tools.com/en/tools/pilar/) and others 
on the business processes (de Haes and Debreceny, 2013; Simonsson et al., 2007). Other 
methodologies focus on the risk derived from CI dependencies (Stergiopoulos et al., 
2016a; Kotzanikolaou et al., 2013a, 2013b, 2013c; Alpcan and Bambos, 2009) and their 
potential cascading effects. Most methodologies and tools are usually entity-specific and 
oriented towards providing assessment reports and countermeasures on specific parts of 
an IT system; either assets or business processes alone. These tools and methodologies 
are very useful for targeted analyses of scenarios (e.g., identifying the critical assets and 
processes in an infrastructure). However, they may fall short when high-level analyses 
are needed in order to model asset and process dependency scenarios that may include 
asset dependencies from external infrastructures. One example is the identification of 
dependency paths of assets that simultaneously affect multiple business processes. 

The overall impact (or risk) of a given infrastructure failure on a multitude of its 
business processes is not a tangible value, especially when multi-order asset 
dependencies are present. A high-level risk analysis of asset dependencies between all 
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processes allows the identification of complex cascade or common-cause risk paths and 
the comparison of alternative mitigation strategies. 

1.2 Contributions 

This paper utilises parts of a CI dependency analysis proposed in Stergiopoulos et al. 
(2016a) and Kotzanikolaou et al. (2013a, 2013b, 2013c) in process-based RA. The new, 
proposed methodology dynamically assesses the evolution of cascading failures over time 
between assets involved in the same business processes. This approach can be applied by 
a single CI operator to explore how a failure in a single component (asset) affects the 
other assets and relevant business processes. It could also be applied in an analysis that 
include multiple CI operators in the same supply chain to explore the dependencies 
between their assets and how they affect key societal services (of this particular supply 
chain). 

This paper also presents a proof-of-concept tool based on business-process RA and 
graph modelling. Particularly, we developed a proactive modelling and asset dependency 
analysis tool for evaluating large-scale, cross-sectoral asset dependency scenarios based 
on business processes that they adhere to. This allows risk assessors and decision makers 
to analyse and identify critical dependency chains at the preparedness stage. Thus, it can 
reveal underestimated risks due to dependencies. The methodology can also assess 
alternative risk mitigation strategies and contribute in enhancing resilience. 

Any CI is an instance of a system of systems (SoS) (Jamshidi, 2010; Sousa-Poza  
et al., 2008; Gorod et al., 2008). While regular complex IT systems still got boundaries 
and defined architecture, a SoS is blurrier in boundaries and may evolve in time 
(Giannopoulos et al., 2012). An infrastructure does not work in isolation, so disruptions 
propagate to entire networks of dependent services. The modelling scope of the presented 
methodology stems from the concept of SoS (Giannopoulos et al., 2012). The proposed 
methodology can model systems of systems no matter the concept behind their business 
process model and can thus support the detection of any type of service failure found in 
CIs, unlike most typical RA methodologies which tend to model specific IT systems with 
predefined types of links between standard threats and assets. New types of processes, 
input or assets can be modelled on-the-fly as nodes without having to update the 
methodology nor any supporting tools. 

2 Literature review 

Managing risk effectively protects CIs against threats, reduces their vulnerabilities and 
potential impacts from threat manifestation (economic, societal or otherwise). Currently, 
a plethora of heterogeneous RA methods are available, having a different focus based on 
the type of organisation (e.g., government agency, SME, etc.) or based on the critical 
sector. Still, no RA methodology exists that can act as a ‘silver bullet’: Analysts have to 
choose from a plethora of different methods to select one that best fits the CI to be 
assessed. According to the work of Giannopoulos et al. (2012), the selection of an 
appropriate methodology to assess the information security risk of a CI depends on 
several criteria (scope and objectives of the methodology, applied techniques and 
standards, interdependencies coverage, etc.). 
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Several methods currently exist to assess risks in infrastructures and systems. Most of 
them require different skills and experience from their users. Asset-based methodologies 
like MAGERIT, CORAS and MEHARI involve their users in the assessment (Amutio et 
al., 2014; CLUSIF, 2010; CORAS, 2010). CRAMM, OCTAVE and RiskSafe require 
extensive standardised documentation throughout RA to ensure traceability of results 
(CRAMM, 2010; Platinum Squared, 2014; Caralli et al., 2007). In addition, each of these 
RA methods demands a knowledgeable team (analysts, system administrators, users, etc.) 
with a comprehensive set of skills and experience. On the other hand, there are methods, 
such as EBIOS, which are tailored to administrators (ANSSI, 2010). The aforementioned 
methods analyse relationships between assets and threats along with the impact of the 
occurrence of a threat and the occurrence of the threat in relation to the existing 
vulnerabilities of the system (e.g., CRAMM, CORAS) (ENISA, 2006). 

Still, most modern RA methodologies and tools are ‘asset-based’, meaning that they 
approach the entire RA process through the value of assets (data, information or 
resources) of an infrastructure. ISO 27001:2013, an international standard for the 
certification of IT systems, clearly states the ability to utilise process-based RA: “You do 
not need to use the assets-threats-vulnerabilities methodology to identify risks - for 
example, you can identify risks based on your processes, based on your departments, 
using only threats and not vulnerabilities, or any other methodology you like” ((ISO, 
2013)). On top of those standards, the 2016/1148 Directive of the European Parliament 
and the Council states that the existence of a service-driven risk management is needed 
(European Parliament, 2016). This implies an approach, which places the primary focus 
on processes, as the objective is to protect essential for the citizen services. Such services 
(processes) could be provided by single or multiple infrastructures. The RA method 
described in this paper adopts such an approach and, also, takes into account the 
requirements described within ISO 27005 (ISO, 2011) and NIST SP800-39 standards 
(NIST, 2011). 

Regarding the analytical techniques used by the various methods, they are either 
qualitative, quantitative or their combination. Methods such as EBIOS, MEHARI, 
CRAMM and OCTAVE, follow the qualitative approach, which relies on expert opinion, 
but introduces a degree of subjectivity on the results. Methods that follow the quantitative 
or the hybrid approach, such as MAGERIT and CORAS, allows a mathematical evidence 
to be used in support of decision making under uncertainty, but they require high-quality 
input data and a well-developed project model. Our methodology can be considered a 
hybrid, since it follows a qualitative approach on asset identification, but also supports a 
mathematical formula to support decision making through fuzzy logic (FL), when 
multiple business processes exhibit different risk valuations over time. Our approach 
combines a method for discovering dependency risk paths with an automated modelling 
and analysis tool. It enables the dependencies-per-business-process of interconnected 
assets to be depicted as a graph and critical paths to be identified. 

For identifying a way to cope with business-processes in our RA in our methodology, 
we utilised the methodical analysis of COBIT 5. COBIT 5 is a comprehensive framework 
for developing, implementing, monitoring and enhancing information technology 
governance and management practices (de Haes and Debreceny, 2013). It offers a 
business process-based RA method by identifying and modelling end-to-end business and 
functional areas of responsibility, while taking into consideration the IT-related interests 
of internal and external stakeholders. However, even if COBIT 5 is able to bridge the gap 
between business control models and IT asset-based RAs, it comes with the disadvantage 
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of utilising over-complicated concepts and structures that make COBIT difficult and 
time-consuming to apply it as a RA tool (Simonsson et al., 2007). Our approach tries to 
simplify the business-process modelling of COBIT by utilising each business process 
output as a single end-node in a chain of inter-depended assets that are utilised in the 
specific business process. 

According to Ouyang (2014), there exist multiple mathematical models that study 
dependencies of CIs; these models most often fall into one of the following categories: 

1 empirical 

2 agent-based 

3 system dynamics-based 

4 economic theory-based 

5 network (topology or flow)-based 

6 others (hierarchical holographic modelling-based, high-level architecture, etc.). 

Admittedly, a practical comparison of the proposed methodology with multiple RA 
methods against a real-world CI testing example is not feasible, since this would require 
multiple access to both numerous proprietary methodologies and tools (i.e., great cost) 
along with a CI that would allow us to re-assess its risk in its entirety; something that 
would need gratuitous amounts of time and extra pages in this paper. Still, the advantages 
of the presented method compared to others using high-level quality criteria is presented 
at Section 5 ‘Comparison with other approaches’. 

3 Building blocks 

Two fundamental building blocks are used in the proposed methodology, extracted from 
previous research (Stergiopoulos et al., 2016a; Kotzanikolaou et al., 2013a, 2013b, 
2013c) and redefined to suit our RA needs: 

1 the subjacent multi-risk dependency analysis methodology for cascading failures 

2 the fuzzy modelling approach applied for the time-based analysis of dependencies. 

3.1 Multi-risk asset dependency analysis methodology 

Essentially, a business process is a step-by-step description of what users have to do to 
accomplish a specific task. Those steps utilise resources and assets from the IT system. 
Mapping these asset dependencies per business process allow us to calculate dependency 
chains and utilise them to assess the cascading and cumulative risk of potential threats on 
a business process. While such a detailed analysis may not be required in typical 
information systems, it could be valuable when analysing complex systems of high 
societal value. 

The multi-risk dependency analysis method (Stergiopoulos et al., 2016a; 
Kotzanikolaou et al., 2013a, 2013b, 2013c) is a network-based modelling technique that 
takes advantage of the results of organisation-level RAs carried out by owners and 
operators of enterprises. Directed graphs are used to visualise the relationships 
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(dependencies) between assets arising from the business processes that manage them in 
order to assess the risk of nth-order dependencies. A dependency can be defined as a 
“one-directional reliance of an asset, system, network or collection thereof – within or 
across sectors – on an input, interaction or other requirement from other sources in order 
to function properly” (Amutio et al., 2014). In the proposed methodology, a graph is used 
in order to model the dependencies. Let G = (N, E) denote this graph where N is a set of 
nodes (assets) and E is a set of edges (or dependencies). The graph is directional in nature 
to model dependencies from one asset to other assets. An edge from node Ai to node Aj, 
i.e., Ai → Aj, implies a risk relation that is derived from the dependence of node Aj on Ai 
due to a business process relating them. This relation is quantified using the impact Ii,j 
and the likelihood Li,j of a disturbance occurrence. The product of these two values is 
defined as the dependency risk Ri,j to asset Aj due to its dependence on asset Ai. Each 
edge of the graph is associated with a numerical value which ascribes the level of the 
cascade-resulting risk for the receiver due to the dependency. A risk scale [1 … .9], 
where 9 is the most rigorous risk, is used to depict this risk. All the parameters (Li,j, Ii,j, 
Ri,j) are defined in order to assess the risk of first-order dependencies. The main input to 
this method is provided by enterprise owners and operators, and refers to the obvious 
upstream dependencies as mentioned above. 

3.1.1 nth-order dependency risk 

Given the first-order dependencies as described in the subsection above and according to 
Kotzanikolaou et al. (2013a), it is possible to assess the potential nth-order cascading risks 
using a recursive algorithm. Let A = (A1, …, Am) be the set of assets. Let 

0 1 nY Y YA A A→ → →…  denote a chain of connected assets of length n derived from 
business processes. Then, the recursive algorithm examines each of these nodes as the 
potential root of a cascading effect (denoted as 0 )YA  and computes the dependency risk 
DR exhibited by ,nYA  due to the nth-order dependence. 

If 0 1 nY Y YA A A→ → →…  is a chain of dependencies, 0 , , nY YL …  is the likelihood of the 
nth-order cascading effect and 1, ,n nY YI − …  is the impact of the 1n nY YA A− →  dependency, 
then the cascading risk exhibited by nYA  due to the nth-order dependency is computed as: 

0 0 1 1 1

1

, , , , , , ,
0

n n n n i i n n

n

Y Y Y Y Y Y Y Y Y Y
i

R L I L I− + −

−

=

= ⋅ ≡ ⋅∏… …  (1) 

The cumulative dependency risk deems the overall risk exhibited by all the assets in the 
sub-chains of the nth-order dependency. The cumulative dependency risk, denoted as 

0 1, , , ,nY Y YDR …  is defined as the overall risk produced by an nth-order dependency: 

0 0 1 1, , , , , ,
1 1 1

n i j j i i

in n

Y Y Y Y Y Y Y Y
i i j

DR R L I− −

= = =

⎛ ⎞
= ≡ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∏… …  (2) 

Equation (2) calculates the overall dependency risk as the sum of the dependency risks of 
the affected nodes in the chain due to a failure realised in the source node of the 
dependency chain. In order to compute the risk, a risk matrix that combines the likelihood 
and incoming impact values of each vertex in the chain is used. Interested readers are 
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referred to Kotzanikolaou et al. (2013a) for additional details about dependency risk 
estimation. 

But often the estimation of likelihood values is difficult or the required data for its 
estimation are not available. Therefore, while the identification of a dependency between 
two nodes is possible, the probability of a failure to propagate between the two nodes is 
either unknown or certain (likelihood = 1). In both cases, the following simplified version 
of equation (2), which follows the assumption that if a node fails, then the dependent 
nodes will also fail (likelihood = 1), is used: 

0 0 1, , , , ,
1 1

n i i i

n n

Y Y Y Y Y Y
i i

DR R I −

= =

= ≡∑ ∑… …  (3) 

Then, the nth-order dependency risk is calculated as the cumulative impacts on the 
affected nodes in the dependency chain. 

3.2 Fuzzy logic combination of impact values 

The equations (1) through (3) are based on the maximum expected impact of each 
dependency. Therefore, the multi-risk methodology described above is static in time. 
These equations do not take into account the factor of time and the values produced by 
them assume that: 

1 each dependency chain will always produce its worst-case impact (and risk) 

2 all the dependencies exhibit the same impact growth rate. 

However, these assumptions are not met in reality. Neither do all nodes in a chain 
escalate to their maximum consequences nor do they experience the same impact growth 
rate over time. For this reason, the multi-risk methodology is extended to embody a 
dynamic, time-based analysis and to assess partial failure scenarios. Fuzzy set theory is 
used to model this behaviour. 

Fuzzy set theory and FL, in contrast with classical set theory and classical logic, 
attempt to find approximations of ambiguous groupings in order to project objective 
evaluations of values requiring much effort and many resources to compute (CRAMM, 
2010). FL variables may have a truth value that ranges in degree between 0 and 1. The 
goal is to use fuzzy approximations of impact evolution for various growth models in 
order to approximate the time evolution of a cascading failure, similar to a real failure. 
For instance, an incident might initially have a slow cascading effect on other dependent 
assets and, as time passes, a failure to restore operations might lead to catastrophic 
effects. 

The main advantages of using FL is that it can work with no real-life training data 
since we know the domain we are modelling and its reaction/behaviour rules; e.g., we 
model chains of assets depending on business process needs and we know their 
impact/likelihood rules in case of failures through standard RA. The second advantage is 
FL’s interpretability and simplicity, as it is used to “compute with words” and allows 
modelling near natural language rules. This is ideal in RA, where concepts of ‘critical’, 
‘high risk’ or ‘partial failure’ are found in abundance. FL permits auditors to control 
these concepts through standard quantitative risk scales. 
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When new data or rules are added to the system, there is no need to re-train the 
system, mainly just adding new rules (besides rule conflict check). 

3.3 A business process-based asset dependency analysis methodology 

A business process is a step-by-step description of what users have to do to accomplish a 
specific task. Those steps utilise resources and assets from the IT system. Mapping these 
asset dependencies per business process allows us to calculate dependency chains and 
utilise them to assess the cascading and cumulative risk of potential threats on a business 
process. 

In the context of business process management, risk has mainly been addressed as an 
overall factor to be considered during process-related evaluations (Rikhardsson et al., 
2006). Our method proposes the use of decomposition of business processes into relevant 
assets and resources. Decomposition is used to identify business related assets inside the 
information system. This method can express business processes as a dependency tree of 
individual IT assets and services based on process characteristics. Traditional asset-based 
RA tools do not consider cross-functional asset dependencies that may support multiple 
business processes. 

Essentially, the methodology realises five (5) steps while modelling asset 
dependencies per business process: 

1 Identify business processes and relevant functional steps. 

2 Identify which assets are utilised in each business process step. 

3 Create asset dependency chains for prime asset of each process step. Each 
dependency gets an impact and likelihood value that depicts the overall risk of an 
asset failure for the depended asset. Values are calculated using traditional  
asset-based RA techniques. 

4 Combine asset chains of all business process steps to create an asset dependency 
graph for the given business process. 

5 Calculate dependency risk chains from the dependency graph and propose high-risk 
assets for targeted risk mitigation. 

3.3.1 Example: train routing times business process modelled as asset 
dependencies 

A railway operator has a specific business process for scheduling train routes. The 
organisation’s business process steps could be the following: 

a a user inputs train times to the railway scheduling (RS) software through an interface 
at his local workstation and requests scheduling information 

b RS software returns the train’s overall route along with stop duration 
recommendations and speed recommendation from the railway routing system 

c the user edits/updates information provided from the railway routing system 
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d the RS software system sends the routing information to central server 

e the RS software saves and shares the information with the employee and notifies the 
railway routing system; the system’s software is the RoutingAPP 

f if needed the user creates or provides routing timing adjustments though the RS 
software. 

Figure 1 Example of a decomposition of a train scheduling process into asset uses (see online 
version for colours) 

 

STEPS 1–2 Figure 1 shows an example of the above train scheduling process 
decomposition, able to depict business process dependencies on assets; CR1 
and CR2 stand for computer room 1 and computer room 2. 

STEP 3 Asset dependencies are modelled into chains based on each process step. 
The above decomposition gives us the following asset chains. Values in 
each dependency are indicative of the impact that a failure on the 
originating asset would have on the depended one. These values are 
calculated using traditional asset-based RA techniques. 

An example of the asset dependency chains generated from the above 
business process threads are the following: 
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• CR1  Application server  Railway scheduling (RS) softw.  Train station work/tion 
 Train routing. manag. 

• CR1  Database server  Railway scheduling (RS) softw.  Train station work/tion  
 Train routing manag. 

• CR1  Application server  Railway scheduling (RS) softw.  Routers  RoutingAPP 

• CR1  Database server  Railway scheduling (RS) softw.  Train station work/tion  
 CR2  Backup 

• CR1  Application server  Railway scheduling (RS) softw.  Train station work/tion 
 CR2  Backup 

STEPS 4–5 Our methodology now combines the above asset dependency chains to form 
a dependency risk graph from which it will calculate all paths and detect the 
most serious risk chains based on the methodology and equations (2) and 
(3). It then proposes ways to lower the risk in these chains using potential 
countermeasures for risk mitigation. 

4 Implementing the methodology 

The tool utilises the Neo4jgraph database (Neo Technology, 2014) to model asset 
dependencies per business flow. Neo4J is widely considered highly adaptable, scalable 
and efficient (Jouili and Vansteenberghe, 2013; Shao et al., 2012) for these types of tools 
since it builds on the property graph model. Nodes have various labels that can serve as 
informational entities and are connected via directed relationships. Both nodes and 
relationships hold arbitrary properties (key-value pairs). Using the Neo4J technology, the 
proof-of-concept (P.O.C.) tool can represent complex graphs of even thousands of 
dependent assets through a weighted, directed graph. The proof-of-concept tool was 
developed using the Java language. 

To demonstrate the applicability of our method, we utilised the tool to perform a full 
RA of a real-world infrastructure. All data are sanitised due to confidentiality 
agreements; therefore, labels and assets are renamed using generic terms and IDs. Still, 
impact, likelihood and time-related inputs assigned to each dependency are based on real 
RA results. 

In this scenario, the infrastructure under test is comprised of two buildings and two 
computer rooms (CRs). The infrastructure was selected due to its size (relatively small 
and easy to model with about 200 workstations) and its well-documented cross-sectoral 
asset dependencies. Table 2 depicts the input data for interconnected assets that comprise 
the train routes scheduling business process of the infrastructure under test. The tool 
computes the complete set of asset dependency risk paths in a time frame for each 
dependency chain of order no greater than five using equation (3). 

Besides printing all sorted dependency paths for each business process in excel files, 
the tool outputs a graphical representation of the examined dependency risk graph (an 
example can be shown in Figure 1). Darker colours in chains depict the maximum 
cumulative dependency risk path. 
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4.1 Real-world scenario – train routes scheduling business process 

Let us consider the following business process used as a pilot for testing our RA 
methodology, which is based at a real-world infrastructure: At the aforementioned 
railway organisation, train routes, stop reschedules and timing information are all 
managed through the use of a relevant RS train routes and timing software. The program 
is responsible for storing data concerning train route times, query and provide timing 
information and inform employees about reschedules and route changes for delayed 
trains. The scheduling business process flow is comprised of the following steps: 
1 a user inputs employee information to RS software through an interface at his local 

train workstation and requests routing information 
2 RS returns the trains’ and on time or delayed routing times from the central routing 

system. 
3 the user creates/updates timing information and routing adjustments for his local 

station provided by the central routing system 
4 if needed the user provides updated routing times and/or adjustments though RS 
5 the RS system sends routing time notifications 
6 RS saves and shares the information with the employee and stores it in secondary 

software, named RoutingAPP. 
After analysing the organisation IT infrastructure, asset dependencies for this business 
process were modelled, as seen in Table 1. 
Table 1 Asset dependencies for train routes scheduling business process 

Initiating asset Dependency Depended asset 

Server 1 Introduction of damaging  
or disruptive software (6) 

Train routing RoutingAPP, 
railway scheduling (RS) software 

Server 2 Introduction of damaging  
or disruptive software (6) 

Railway scheduling (RS) 
software 

Train routing 
RoutingAPP 

Application software failure (4) Train and routing data 

Railway scheduling 
(RS) software  

Application software failure (5) Train and routing data 

Routing building Α Introduction of damaging  
or disruptive software (6) 

Server 1 

Routing building Α Introduction of damaging  
or disruptive software (6) 

Server 2 

UPS power protection Power failure (4) Server 1 
AC/DC generator Power failure (4) Server 2 
Railway scheduling 
(RS) software  

Application software failure (5) Local train station data 

Railway scheduling 
(RS) software  

Application software failure (5) Rail line data 

Railway scheduling 
(RS) software  

Introduction of damaging  
or disruptive software(6) 

Train routing RoutingAPP 
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The asset dependency chains generated from the asset dependencies for the above 
business process are the following: 

• CR1  Routing building A  Server 1  Railway scheduling (RS) software  
 Train and routing data 

• CR1  UPS power protection  Server 1  Railway scheduling (RS) software  
 Train and routing data 

• CR1  Routing building A  Server 2  Railway scheduling (RS) software  
 Train and routing data 

• CR1  AC/DC generator  Server 2  Railway scheduling (RS) software  
 Train and routing data 

• CR1  Routing building A  Server 1  Railway scheduling (RS) software  
 Local Train Station Data 

• CR1  UPS power protection  Server 1  Railway scheduling (RS) software  
 Local train station data 

• CR1  Routing building A  Server 2  Railway scheduling (RS) software  
 Local train station data 

• CR1  AC/DC generator  Server 2  Railway scheduling (RS) software  
 Local train station data 

• CR1  Switches building A  Server 1  Railway scheduling (RS) software  
 Rail line data 

• CR1  UPS power protection  Server 1  Railway scheduling (RS) software  
 Rail line data 

• CR1  Routing building A  Server 2  Railway scheduling (RS) software  
 Rail line data 

• CR1  AC/DC generator  Server 2  Railway scheduling (RS) software  
 Rail line data 

• CR1  Routing building A  Server 1  Train routing RoutingAPP  
 Train and routing data 

• CR1  UPS power protection  Server 1  Train routing RoutingAPP  
 Train and routing data 

• CR1  Routing building A  Server 1  Railway scheduling (RS) software  
Train routing RoutingAPP  Train and routing data 

• CR1  UPS power protection  Server 1  Railway scheduling (RS) software  
 Train routing RoutingAPP  Train and routing data 

• CR1  Routing building A  Server 2  Railway scheduling (RS) software  
 Train routing RoutingAPP  Train and routing data 

• CR1  AC/DC generator  Server 2  Railway scheduling (RS) software  
 Train routing RoutingAPP  Train and routing data 

4.1.1 Results and detection of highest risk business process chains 

Table 2 depicts the input data for interconnected assets that comprise the train routes 
scheduling business process of the infrastructure under test. 
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Table 2 Input data for interconnected assets 

Source Asset Depended Asset Impact Likelihood Conn. type 
Time – 

worst case 
scenario 

Impact 
growth 

rate 
UPS power 
protection 

Server 1 9 0.4 Physical 48 h Slow 

AC/DC 
generator 

Server 2 9 0.4 Physical 24 h Linear 

Routing 
building A 

Server 2 8 0.7 Physical 12 h Fast 

Routing 
building A 

Server 1 8 0.7 Physical 12 h Fast 

Server 1 Train routing 
RoutingAPP 

9 0.6 Informational 3 h Fast 

Server 2 Railway 
scheduling (RS) 

software 

9 0.6 Informational 3 h Fast 

Server 1 Railway 
scheduling (RS) 

software 

9 0.6 Informational 3 h Fast 

Train routing 
RoutingAPP 

Train and routing 
data 

9 0.4 Informational 24 h Fast 

Railway 
scheduling 
(RS) software  

Rail line data 9 0.5 Informational 12 h Fast 

Railway 
scheduling 
(RS) software  

Local train 
station data 

9 0.5 Informational 12 h Fast 

Railway 
scheduling 
(RS) software  

Train and  
routing data 

9 0.5 Informational 12 h Fast 

Railway 
scheduling 
(RS) software  

Train routing 
RoutingAPP 

9 0.6 Informational 24 h Fast 

The tool combines the above asset dependency chains to form a dependency risk graph 
from which it will compute the complete set of asset dependency risk paths in a time 
frame for each dependency chain of order no greater than five using equation (3) and will 
detect the most serious risk chains, as seen in Table 3. Furthermore, the tool outputs a 
graphical representation of the examined dependency risk graph, as seen in Figure 2. In 
this case, this graph models asset dependencies that correspond to the flow of the train 
routes scheduling business process. 

Table 3 and Figure 2 depict the output graph model of asset dependencies that 
correspond to the flow of the train routes scheduling business process. Ten asset nodes 
produced more than 40 dependency chains with orders ranging from two to five and with 
potential risk values between 6.1 and 11.36. 
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Table 3 Most serious dependency risk chains for the train routes scheduling business process 

ID Time 
slot Most serious risk chain 

Cumulative 
risk chain for 

scheduling 
process 

#1 15 min CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  Rail line data 

6.1 

#2 1 hour CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  Rail line data 

9.09 

#3 3 hours CR1  Routing building A  Server 1  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

11.78 

#4 12 hours CR1  Routing building A  Server 1  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

#5 24 hours CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

#6 48 hours CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

#7 1 week CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

#8 2 weeks CR1  Routing building A  Server 2  
 Railway Scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

#9 4 weeks CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

#10 More CR1  Routing building A  Server 2  
 Railway scheduling (RS) software  

 Train routing RoutingAPP  Train and routing data 

12.56 

The tool produced a list of all the dependency paths sorted according to the total 
cumulative risk of each one. Using this, potential RA auditors can identify all business 
processes with potential risk above a specified threshold value. The threshold parameter 
is subjective and defined by the decision maker and the particular characteristics of the 
infrastructure-under-assessment. 

Someone can notice that, for the first time slots (i.e., if we manage to implement the 
business continuity plan and countermeasures sooner than 1 hour after a failure on the 
business process and relevant assets), the highest risk paths surpass a typical default risk 
value threshold of five (5); meaning that the train routes scheduling process is critically 
affected even 15 minutes after a malware infection due to potentially instant breach of 
confidentiality. 

Thus, a cost-effective strategy to mitigate this business process risk would be to apply 
mitigation controls at node ‘routing controls at building A’ and at ‘server 2’ with a rapid 
response time; this would result in a substantial reduction in the overall cumulative risk 
for the train routes scheduling Business process. An interesting finding is that, for the 
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first 24 h, server 1 is more critical than server 2 which still ends up having the highest 
overall risk impact on the total of dependency chains for the train routes scheduling 
business process. 

Figure 2 Tool output: graphical representation of the examined dependency risk graph  
(see online version for colours) 

 

A second result identified by the tool is that, although the asset dependency path 

CR1  Routing building A Server 2 Railway scheduling (RS) software
Train routing RoutingAPP Train and routing data
→ → →

→ →
 

exhibits the highest risk for almost all examined time slots, still, analysis revealed that 
paths #2 and #4 are the most critical about 1 h and 12 hours respectively after the 
cascading failure. This happens due to the fact that dependencies in those paths have 
rapid growths and are thus expected to have fastest convergence to maximum impact 
sooner than the aforementioned, most critical dependency path reaching the train and 
routing data. 

4.1.2 Combined analysis of common-cause assets on the business process 

Another finding the can be identified through the tool’s output is that, for each examined 
node, all dependency paths that refer to the train routes scheduling Business process have 
been detected and calculated. In the examined case, this leads us to identify that (besides 
CR1 which is the obvious physical high-risk site), RS and SERVER 1 are by far the most 
critical assets for the business process. The tool detected that: 

1 the sum of distinct risk paths for each of these nodes is the highest (around 40) 

2 these two assets exhibit the highest inbound and outbound connections 
(dependencies) for supporting the business process. 
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Note that the complete set of dependency chain risks is already an output of the tool. 
Thus, the evaluation of possible common-cause failures is based on ‘ready-to use’ risk 
chains. 

5 Comparison with other approaches 

Ouyang (2014) categorised CIP tools and methodologies using five main types of 
modelling and simulation approaches: 

1 empirical-based 

2 system dynamics-based 

3 agent-based 

4 network-based modelling approaches. 

Recent surveys on modelling CI dependencies (Ouyang, 2014; Stergiopoulos et al., 
2016b) showed that network-based modelling is used more than any other modelling 
technique [in Stergiopoulos et al. (2016b), 22 out of 34 presented CI modelling tools are 
utilising similar models to depict systems and asset dependencies]. 

The approach presented in this paper also draws from network-based methods in that 
it combines a method for discovering dependency risk paths with an automated modelling 
and analysis tool. It enables the dependencies of the connected infrastructures to be 
depicted as a graph and critical paths to be identified. As stated in D’Agostino et al. 
(2010), each infrastructure can be initially modelled as a mathematical object, a graph, 
consisting of different elements named nodes and arcs (or links) which are functional 
elements connecting the nodes. In D’Agostino et al. (2010), authors use seven basic 
interdependency indicators for topological and functional inter-dependency assessment. 

Following Ouyang’s classification (Ouyang, 2014), recent surveys on modelling CI 
dependencies (Ouyang, 2014; Stergiopoulos et al., 2016b) showed that network-based 
modelling is used more than any other modelling technique [in Stergiopoulos et al. 
(2016b), 22 out of 34 modern CI modelling tools presented are utilising graph-like 
models to depict systems and asset dependencies], mainly due to its ease to create 
abstract models of similar systems of systems present in CIs (Stergiopoulos et al., 2016a). 

Such flow-based network approaches are described in the literature. They either 
model the flow of products or services between CIs in a uniform model (Svendsen and 
Wolthusen, 2007a, 2007b) or they combine various sector-based flow models (Santos and 
Haimes, 2004). Most modelling, simulation and analysis tools in the literature are  
sector-specific. For example, OpenMI (Talsma et al., 2012) supports federated modelling 
and simulation for the water sector. Other approaches allow for integrated or federated 
simulations that combine models from multiple sectors; examples include DIESIS 
(Ouyang, 2014; D’Agostino et al., 2010), EPIC (Santos and Haimes, 2004) and I2Sim 
(Rikhardsson et al., 2006). 

Our proposed methodology also relies on empirical input from auditors and 
employees. Empirical methods for modelling CI dependencies have been criticised by 
researchers due to the lack of statistical data required to assess the likelihood of potential 
events. While probability data may be difficult to collect for many CIs, efforts have 
already been made to do so in specific C sectors. For example, Carreras et al. (2012) have 
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conducted statistical studies of blackouts that enable the identification of critical power 
lines or groups of power lines for a given network model to identify lines likely to trigger 
or propagate cascading effects due to power line vulnerabilities. 

Setola et al. (2009) approach also use FL to minimise the uncertainty and ambiguity 
associated with subjective information received from domain experts. On the other hand, 
our methodology combines FL with various time growth models. Each dependency may 
follow a different growth rate and FL is used to objectify the evolution of each 
dependency, taking into consideration the states of other nearby dependencies. This 
enables our methodology to output results for various time frames, not just economic 
dependencies. Other approaches (Santos and Haimes, 2004; Santos, 2006) use the  
input-output inoperability model to assess the dependencies between various sectors of an 
economy and to forecast the effects of a disruption in one sector on another sector. 
However, the approach presented in this paper is not a purely economic one. 

Alpcan and Bambos (2009) developed a framework for analysing security risk 
dependencies in organisations and ranking the risks. The framework captures how risk 
‘diffuses’ via complex interactions and reaches an equilibrium by introducing a risk-rank 
algorithm. To develop it, authors utilised bipartite graphs to represent the relationships 
between business units, people and security threats. Some of the differences with the 
proposed method are that the method in Alpcan and Bambos (2009) ignores intra-node 
risk-transfers and utilises a weighting system to provide risk vector calculations instead 
of FL. 

Another important difference is that our methodology allows alterative graphs to be 
created to analyse dependencies that occur in abnormal operating conditions; in contrast, 
the inputs to the approaches described in Santos (2006) and Santos and Haimes (2004) 
only incorporate dependencies in normal economic operations. Additionally, our method 
can perform a time-based analysis, which offers different risk results according to the 
time frame studied and the rate at which the impact evolves in each CI. 

Another economic-based approach is implemented in N-ABLE, a NISAC tool (Ehlen 
and Scholand, 2005). N-ABLE is a large-scale microeconomic simulation tool that 
models complex supply chains, spatial market dynamics and CI interdependencies 
between US businesses. N-ABLE is to model how US businesses adapt to and recover 
from disruptive events. CIDA, on the other hand, is not specifically engineered to model 
the economic impact at the microeconomic level. 

The critical infrastructure protection/decision support system (CIP/DSS) (Bush et al., 
2005; ISO, 2011), for example, is a complete RA methodology that can be applied to all 
sectors. Developed under the U.S. National Infrastructure Protection Plan (Department of 
Homeland Security, 2013), the methodology uses system dynamics with continuous time-
step simulation. Like CIP/DSS, the CIPDSS-DM tool is designed to help analysts and 
policy makers evaluate and select optimal risk mitigation strategies. CIP/DSS and 
CIPDSS-DM are a robust combination. As a matter of fact, the ability of CIPDSS-DM to 
facilitate the selection of the most effective mitigation strategies is helpful in restricting 
the impact of failures and reducing economic losses. Previous experiments on our multi-
risk dependency analysis methodology (Stergiopoulos et al., 2016a) reveal that our 
approach can efficiently compute the risks of all the dependency risk paths when 
reasonable limits are placed on the order of dependencies. However, the execution times 
for large-scale scenarios comprising hundreds of nodes may not be feasible for real-time 
analysis and response. 
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Other approaches state that one modelling technique is inefficient. IRRIIS (Klein, 
2011) investigated a couple of different modelling approaches; authors believe that no 
single model is able to capture the different relevant aspects. Still, this type of multi 
modelling leads to very complex models that are rarely seen active in real-world tools 
(Stergiopoulos et al., 2016b). 

6 Conclusions 

In this paper, the concepts of asset dependency within business processes have been 
extended to create a new methodology for performing RA and risk mitigation in CIs.  
The findings derived from the dependency risk chains and the assessment results have 
been compared with respect to the importance of the assets and threats of the 
infrastructure-under-test. In our method, each asset dependency chain of the system has 
been assessed in terms of the business process it corresponds to. Thus, the representative 
dependency graph and the dependency risk measures have been computed. The risk chain 
measures have been shown capable of highlighting some IT safety strengths and 
weaknesses otherwise not detectable with typical RA methodologies. For example, 
identifying key assets that need to be more resilient allows for prioritisation of mitigation 
controls and also for minimising the cost of protection for the overall system. In this 
view, the time-based analysis of asset dependencies can constitute a valuable additional 
tool for the Risk assessors and managers to gain insights on IT resilience of infrastructure 
components and processes. 

6.1 Limitations 

A limitation of the methodology presented in this paper is its reliance on prior RAs of 
CIs. This is inherent to all the empirical risk approaches – empirical risk-based 
approaches analyse dependencies based on previous incidents (historical incident or 
disaster data) coupled with expert opinion to identify alternative measures that minimise 
the dependency risk (e.g., Franchina et al., 2011; Utne et al., 2011). It is unlikely for a 
single critical infrastructure owner or operator to have access to real data about other CIs. 
Thus, the methodology can only be applied at a higher layer. For example, sector 
coordinators or regulators may collect data about a specific sector such as energy or 
information and communications technology and disperse relevant sanitised data to 
infrastructures to aid them analyse their cross-sectoral dependencies. National critical 
infrastructure protection authorities may also be able to collect such information. 

6.2 Future work 

Future work will aim to combine the presented business-process methodology with a 
novel approach for calculating the Likelihood of occurrence of security incidents and 
threats to dynamically assess the evolution of cascading failures over time between assets 
involved in the interconnected business processes of multiple CIs. The likelihood metric 
will utilise historical data to chart complex mathematical distributions, able to provide a 
more objective Threat likelihood estimation than current, static ranked scales used in 
most modern RA methodologies. 
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As a case study, future work will utilise real-world cascading failure scenarios from 
CIs to test the proposed business-process RA with the novel Likelihood metric and 
compare it with current, RA results and relevant empirical knowledge from the CI’s 
auditors to estimate potential advantages of the novel likelihood metric. 

All experiments were performed using a computer with an Intel Core i7, 2.7 GHz 
processor with four cores and 16 GB RAM. 
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