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Abstract: In the present work, study of geometric nonlinear vibration analysis 
of thin piezolaminated functionally graded cylindrical shell is presented. 
Material properties are graded in the thickness direction of the shell according 
to power law distribution in terms of volume fraction of the constituents. The 
shell is modelled using degenerated shell element to predict the deformation 
under electric voltage and thermal gradient across the thickness of the shell. 
Modelling is based on the first order shear deformation theory. Second-Piola 
stress and Green-Lagrange strain tensor are used to perform the large 
deformation analysis. The accuracy of the developed finite element modelling 
is validated by comparing numerical results with the published results in the 
literature. The influence of electric voltage, thermal gradient and gradient index 
on the vibrational behaviour of cylindrical shell is studied. 
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1 Introduction 

Today’s industries, such as automotive, aerospace, electronics and telecommunication 
and defence, demand best of the properties in a material, like the toughness, electrical 
conductivity, machinability, low density, high strength, high stiffness, and high 
temperature resistance. In search of materials with these properties, composite materials 
and fibre reinforced composite materials were developed. However, due to sudden 
change in the material properties at the interface of two different materials the problem of 
debounding takes place at high temperatures. Also, due to difference in the thermal 
expansion of materials residual stresses occurs which may leads to cracks and hence 
weaker material section. This leads to generation of materials which overcome these 
problems and are referred as functionally graded materials (FGMs). The concept of FGM 
was first proposed in Japan in year 1984. FGM’s are isotropic and non-homogeneous and 
are characterised by the smooth and continuous change of mechanical properties from 
one surface to the other. FGMs are mostly a mixture of ceramic and metals which are 
used in thermal environment. Where ceramic constituent provides the resistance to high 
temperature and the metal (ductile) constituent prevents fracture due to high temperature 
gradient. The gradation in properties of the material reduces thermal stresses, residual 
stresses, and stress concentration factors and were exceedingly used as thermal barrier for 
applications in space planes, space structures, nuclear reactors, turbine rotors, flywheels, 
gears, and so on (Reddy et al., 2011). Number of researchers has presented analytical and 
numerical analysis of FGM’s over the decade. Reddy (2000) presented both theoretical 
and finite element analysis of functionally graded (FG) plates based on third order  
shear deformation theory which accounts for the thermo-mechanical coupling, time 
dependency and the von Karman-type geometric nonlinearity. Liew et al. (2001) 
presented the active control of FGM structures using piezoelectric materials. An efficient 
finite element formulation based on first-order shear deformation theory for static and 
dynamic piezo-thermo-elastic linear analysis has been used. He et al. (2002) investigated 
FGMs integrated with piezoelectric sensors and actuators using finite element method for 
a doubly-curved FGM shell. Both static and dynamic control of FGM shell was 
performed showing self-controlling and self-monitoring using piezoelectric material. The 
effectiveness of displacement-cum-velocity feedback control scheme was presented using 
finite element methods using piezoelectric. An analytical solution was presented by  
Vel and Batra (2003) for three-dimensional thermo-mechanical deformations of a simply 
supported FG rectangular plate subjected to time-dependent thermal loads on its top 
and/or bottom surfaces. Material properties were taken to be analytical functions of the 
thickness coordinate. The effective elastic moduli at a point are determined by either the 
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Mori-Tanaka or the self-consistent scheme. Chakraborty et al. (2003) developed a beam 
element to study thermo-elastic behaviour of FG beam structures which is based on first 
order shear deformation theory and takes into account the varying elastic and thermal 
properties along its thickness employing both exponential and power law variation. Qian 
et al. (2004) used meshless local Petrov-Galerkin method to study free and forced 
vibrations of FG rectangular plate using higher order shear and normal deformable plate 
theory. Mori-Tanaka homogenisation technique is used to compute effective material 
properties. The effect of material properties, boundary conditions and thermal loading on 
the nonlinear dynamic behaviour of FG plate is studied by Woo et al. (2006). The 
nonlinear partial deferential equations are solved directly with semi analytical method 
giving solution in terms of mixed Fourier series. A combination of exact and Galerkin 
method is used for vibration analysis of FG cylindrical shell by Haddadpour et al. (2007). 
The material properties are graded using simple power law in thickness direction and are 
also dependent on the temperature. The equations of motion are obtained from Love’e 
shell theory and von Karman-Donnell-type nonlinearity. Kordkheili and Naghdabadi 
(2007) derived a finite element formulation for geometrically nonlinear thermoelastic 
analysis of FG plates and shells based on a modified linearistion approach which has 
resulted from decomposition of the second Piola-Kirchhoff stress and Green-Lagrange 
strain tensors. An explicit through-the-thickness integral scheme is used to evaluate the 
force vector and stiffness matrices. A large deformation analysis of FG shells is presented 
by Arciniega and Reddy (2007) which is based on the first-order shear deformation 
theory with seven independent parameters where no plane stress assumption is required. 
To eliminate the effect of membrane shear locking, finite element model is developed 
using high-order Lagrange elements. A geometrically nonlinear analysis of FGM shells 
using the element-free kp-Ritz method is presented by Zhao and Liew (2009). The 
formulation is based on a modified version of Sander’s nonlinear shell theory.  
The nonlinear system equations are solved using arc-length approach along with  
the Newton-Raphson method. Zhao et al. (2009) studied the static response and free 
vibration of FGM shells subjected to mechanical or thermo-mechanical loading using the 
element-free kp-Ritz method. The material properties vary in the thickness direction 
according to a power-law assumption. The geometric nonlinear static response and free 
vibration analysis of FG piezoelectric plates under mechanical and electrical loading 
were also done by Behjat and Khoshravan (2012) using higher order finite elements. 
Uymaz and Aydogdu (2013) studied the effects of different material composition and the 
plate geometry on the critical buckling loads and mode shapes based on small strain 
elasticity theory with different boundary conditions. The buckling solution is obtained 
using the Ritz method with Chevyshev polynomials as assumed displacement functions. 
The vibration behaviour of FG plate is studied by Reddy et al. (2014) analytically using 
higher order shear deformation theory. Principle of virtual work is used to derive 
equation of motion and solution is obtained in closed form using Navier’s technique. 

In this paper, geometrically nonlinear vibration analysis of piezolaminated FG 
cylindrical shell is presented. A finite element formulation governing the geometrically 
non-linear electro-thermo-elastic behaviour of piezo-laminated FG materials has been 
derived using the updated Lagrangian approach. The effects of the temperature, actuator 
voltage and material composition on the natural frequency of FG cylindrical shell are 
depicted. The vibration control of cylindrical shell under mechanical and thermal loading 
is also presented, which shows that the vibration in the FG cylindrical shell can be 
effectively attenuated by applying appropriate electric voltage using various controllers. 
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2 FG shell 

A FG shell consists of local coordinate system (r, s, t) established on the mid surface of 
the shell. Thickness ‘h’ of the shell is represented in ‘t’ direction, where t = –h/2 
represents the metal rich surface and t = h/2 represents the ceramic rich surface of the FG 
shell. In order to obtain the effective properties of the FGMs, the properties are assumed 
to vary uniformly from bottom surface to top surface through the thickness according to 
simple power law distribution which can be given as (He et al., 2002) 

1
2

nzV
h

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (1) 

where n is non-negative volume fraction index varies from 0 to ∞, h is thickness of FGM 
layer. 

The effective properties of complete FGM along the thickness can be expressed as 

( )eff T T B BP z P V P V= +  (2) 

1T BV V+ =  (3) 

where PT and PB are properties of top and bottom layers of FGM respectively, Peff is 
effective property of FGM, VT and VB are volume fractions of material at top and bottom 
layers respectively. From equations (2) and (3), the variation of properties can be 
represented as 

( ) 1( )
2

n

T B B
zY z Y Y Y
h

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (4) 

( ) 1( )
2

n

T B B
zρ z ρ ρ ρ
h

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (5) 

( ) 1( )
2

n

T B B
zz
h

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

α α α α  (6) 

( )31 31 31 31
1( )
2T B B

nzd z d d d
h

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (7) 

( ) 1( )
2

n

T B B
zb z b b b
h

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (8) 

where Y is Young’s modulus, ρ is density, α is coefficient of thermal expansion, d31 is 
piezoelectric constant, b is dielectric constant of material. The subscripts T and B 
represent the property of top and bottom layers respectively. n is volume fraction index, h 
is thickness of material. 

2.1 Constitutive equations for FGM 

The constitutive equations representing direct and converse effect of a piezoelectric 
material can be written as 
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{ } { } { }[ ] [ ] { }m m mS Q ε e E λ θ= − −  (9) 

{ } { } { }[ ] [ ] { }m T m mD e ε b E P θ= + +  (10) 

where {Dm}, {Sm}, {εm}, {Em} are electric displacement, stress, strain and electric field 
respectively. ‘m’ represents the material coordinate system. [Q], [e] and [b] are the  
plane-stress reduced elastic stiffness coefficients, the piezoelectric constant matrices 
respectively. {λ} and {P} are the thermal expansion coefficients and piroelectric 
coefficient respectively. θ is the temperature rise from the stress free reference 
temperature. Equation (9) and equation (10) in matrix form is written in Appendix. 

3 Finite element formulation 

In the present work, the four noded iso-parametric piezolaminated FG degenerated shell 
element is used as shown in Figure 1. Figure 1 presents various coordinate systems which 
are used in the finite element formulation. The main feature of this element is that it is 
independent of any shell theory and is formulated using three dimensional stress and 
strain conditions. Element description and basic assumptions used are given in Kumar 
(2007). 

Figure 1 Piezolaminated functionally graded shell element (see online version for colours) 

 

Coordinates of any point within the element can be approximated as 
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4 4

1 1 1

( , , )
2 22

k

n n n
k k kl l k i n l k

i k ki nik
k k i

m

l lax r s t h x l t h V
= = =

⎡ ⎤⎛ ⎞
= + − + − +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥⎣ ⎦

∑ ∑ ∑  (11) 

where hk represents the two dimensional interpolation functions corresponding to node k, 
given as 

• 1 (1 )(1 )
2kh r s= ± ±  

• l
ix  = global Cartesian coordinates of any point in the element 

• l k
ix  = global Cartesian coordinates of nodal point k 

• ak = thickness of shell in t direction at nodal point k, measured along the vector l k
niV  

• i
kl  = thickness of layer i at node k 

• tn = natural coordinate of nth layer through the thickness 

• mk = the distance at node k between the element neutral surface and the mid plane of 
layer n. 

Left superscript l has value equal to zero for initial geometry of the element and equal to 
one for the deformed element geometry. 

The displacement of any point within the shell element in the global Cartesian 
coordinate system is given as 

( )
4 4

0 0
2 1

1 1 1

( , , )
2 22

n n n n
k k kk i k k

i k k ki i ik
k k i

l t lau r s t h u l V V
= = =

⎛ ⎞⎛ ⎞
= + − + − + − +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ∑ ∑ α β  (12) 

where k
iu  are the nodal mid-point displacements in the Cartesian coordinate directions 

and the αk and βk are the rotations of the director vector 0 k
nV  about 0

1
kV  and 0

2
kV  axes 

respectively. 
In compact form the displacement can be written as 

[ ]{ } { }e u ee

e

u
u v N q

w

⎧ ⎫
⎪ ⎪ ′= =⎨ ⎬
⎪ ⎪
⎩ ⎭

 (13) 

where e represents the element and details of matrices are given in Appendix. 
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3.1 Strain-displacement relationship 

In this study for nonlinear problem it is considered that the displacement is large but the 
strain is infinitesimal. Also, the conjugate pair of Green-Lagrangian strains and second 
Piola-Kirchhoff stress tensor is used because the initial configuration is considered as 
reference configuration. However, if current configuration is considered as reference 
configuration then the conjugate pairs of Almansi strains and Cauchy stresses should be 
used. Green-Lagrangian strain is given in Appendix. Strain-displacement relationship can 
be written in compact form as 

{ } { } { }
{ } [ ] { } [ ] { }

0 0 0

0 0 0 0 0

e e e

L NLe e ee e

ε e η

ε B q B q

= +

′ ′= +
 (14) 

where 0e and 0η are the linear and nonlinear strains respectively, 0 0 0[ ] [ ]L e L eB B=  

0 1[ ]L eB+  description of these matrices given in Appendix. 0{ }eq′  has translation and 
rotational degree of freedom βk and αk, rotational degrees of freedom has been defined in 
local coordinate system. 0{ }eq′  can be replaced in equation (14) by the following 
equation (15) in order to convert rotation degree of freedoms from local coordinate 
system to global coordinate system. Where [Tθ] is rotation transformation matrix which is 
given in Appendix. 

{ } [ ] { }0 0θ ee eq T q′ =  where { }

{ }
{ }
{ }
{ }

0 1

0 2
0

0 3

0 4

e

q
q

q
q
q

⎧ ⎫
⎪ ⎪
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 (15) 

In the analysis of thin structures, the pure displacement-based plate and shell elements 
without higher order terms exhibits very stiff behaviour, which is generally referred to as 
element locking. This stiffness in thin structures is due to the fact that with pure 
displacement based interpolations the transverse shear strains cannot vanish at all points 
in the element, when it is subjected to constant bending moment. In order to arrive at 
efficient non-locking element various procedures has been proposed such as selective and 
reduced integration, mixed interpolation of displacements and transverse shear strains. 
Here in this work later procedure is used as given by Dvorkin and Bathe (1984). 

Equation (14) can be written after including mixed interpolation of displacement and 
transverse shear strains as 

{ } [ ] [ ]( ){ }0 0 0 0L NLe eε B B q′= +  (16) 

substituting equation (15) in equation (16) and equation (13) we get 

{ } [ ] [ ]( )[ ] { }0 0 0 0L NL θe e eε B B T q= +  (17) 

{ } [ ][ ] { } [ ][ ] { }0 0 0 0 0 0 0L θ NL θe e ee eε B T q B T q e η= + = +  (18) 

{ } [ ] [ ] { }0 0u θe e e eu N T q=  (19) 
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3.2 Electric field 

The electric field is assumed to be constant within the element. Also, it is assumed that 
the electric field acts in the thickness direction of the piezoelectric layers. Such 
formulation gives one electric degree of freedom per layer per element for the electric 
field. Electric field inside the ith layer within the element can be given mathematically as: 

{ } { } { }0 0 0 nφ pn e
E B φ= −  (20) 

where 

{ }
31

0 32

33

1

n

φ e
p

V
B V

t
V

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (21) 

V31, V32 and V33 are the direction cosines of normal unit vector V3 at node k and npt  and 
0 npφ  are the thickness and electric potential of nth piezoelectric layer. 

3.3 Temperature field 

The temperature distribution is assumed to be linear within the element. Using the shape 
functions, the temperature of any point in the element can be uniquely given in terms of 
nodal temperature ‘Θ’ and the temperature gradient ‘φ’ of the mid plane as: 

{ } [ ] { } [ ] { }0 Θ 0 0Θ φe e ee e
N θ N θ= +  (22) 

where 

[ ] [ ]
[ ] [ ]

Θ 0

0

Θ
{ }

k

φ k

N h

N h H

θ
φ

=

=

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 (23) 

To obtain the electric displacement {D} and stress {σ} using the constitutive  
equations (9) and (10), the strain, temperature and electric field given by equations (18), 
(20) and (22) can be used. The constitutive equations defined are in material coordinate 
system, whereas the strain, temperature and electric field are defined in the global 
coordinate system. Thus, the constitutive equations must be first transferred into local 
coordinate system and then to global coordinate system. This can be achieved with the 
help of transformation matrices which are given in the Appendix. 

Therefore, the constitutive equations after transformation into global coordinates can 
be written as 

{ } [ ] [ ] [ ][ ]{ } [ ] [ ] [ ]{ }

[ ] [ ] [ ]{ }
0 0 0

0

[ ] [ ]

 [ ]

T T T T T
ε o o ε ε o v

T T
ε o o

σ T T Q T T ε T T e T E

T T λ T θ

= −

−
 (24) 
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{ } [ ] [ ][ ]{ } [ ] [ ]{ } [ ] { }0 0 0 0[ ] [ ] [ ]T T T
v o ε v v vD T e T T ε T b T E T p θ= + +  (25) 

In condensed form it can be written as 

{ } { } { } { }0 0 0 0[ ] [ ] { } ΘTσ Q ε e E λ= − −  (26) 

{ } { } { } { }0 0 0 0[ ] [ ] { } ΘTD e ε b E p= + +  (27) 

3.4 Potential energy 

In a piezolaminated FG shell element the potential energy consists of strain energy and 
electric energy is given as (Tanveer and Singh, 2010) 

0

Δ Δ Δ Δ 0
0 0 0 0

1 1
2 2

t t T t t t t T t t

V

U ε S E D d V+ + + +⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (28) 

where the left subscript represents the configuration w.r.t. which the different variables 
are defined and the left superscript represent the configuration at which the different 
variables are to be calculated. 

The converse and direct constitutive equations w.r.t. configuration at time t + Δt can 
be written as 

Δ Δ Δ Δ
0 0 0 0Θt t t t T t t t tS Q ε e E λ+ + + += − −  (29) 

Δ Δ Δ Δ
0 0 0 0Θt t t t t t t tD e ε b E p+ + + += + +  (30) 

Substituting equations (29) and (30) in equation (28) we get 

( )

( )
0

Δ Δ Δ Δ
0 0 0 0

Δ Δ Δ Δ 0
0 0 0 0

1 Θ
2

1             Θ
2

t t T t t T t t t t

V

t t T t t t t t t

U ε Q ε e E λ

E e ε b E p d V

+ + + +

+ + + +

⎛= − −⎜
⎝

⎞− + + ⎟
⎠

∫
 (31) 

The strain, temperature and electric field can be divided into two parts, known part and 
incremental part, i.e. 

Δ Δ Δ
0 0 00 0 0 0 0 0, and Θ Θ Θt t t t t t t t tε ε ε E E E+ + += + = + = +  (32) 

Also, 

Δ Δ Δ
0 0 00 0 0, and Θ Θt t t t t tδ ε δ ε δ E δ E δ δ+ + += = =  (33) 

Further, the strain tensor can be split into linear and nonlinear part as 

0 0 0ε e η= +  (34) 

Taking variation of equation (31) and using equations (32), (33) and (34) we get 
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0 0 0

0 0 0

0 0

0 0 0

0 0 0
0 0 0 00 0

0 0 0
0 0 0 00 0

0 0
0 0 0 0

0 0 0
0 0 0 00 0

 

 

1 Θ Θ Θ
2

        

T T t T t

V V V

T t T T t

V V V

T T T T

V V

T t T t

V V V

δU δ e Q ed V δ e Sd V δ η Sd V

δ E e εd V δ E e ed V δ E b Ed V

δ e e Ed V δ η e Ed V

Tδ λ εd V δ λ ed V δ e λ d V

δ

= + +

− − +

− −

⎧+ + +⎨
⎩

+

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

0 0 0

0 0

0 0 0
0 0 0 0 00

0 0
0 0 00

Θ Θ Θ

        Θ Θ

t

V V V

t

V V

T T Te λ d V δ p Ed V δ p Ed V

T Tδ E p d V δ E p d V

− −

⎫− − ⎬
⎭

∫ ∫ ∫

∫ ∫

 (35) 

Now substituting from equations (18), (19), (20) and (22) into (35) 

[ ] [ ] [ ] [ ] { }

[ ] [ ] { }

[ ] [ ] { }[ ] [ ]

{ } { } { } { } { } [ ] [ ]

{ } { } { }

0

0

0

0 0

0

0
0

0
0

0 0
0

0
0

{ } [ ]

        { }

        { } { }

        [ ] [ ] { }

        [ ]

n n

n

T TT
e θ L L θe ee e e

V
T TT t

e θ L ee
V

T TT t
e θ NL L θ eee e e

V
T TT Tt

p p L θ ee eee ee e
V V

T T t
p eee

δU δq T B Q B T q d V

δq T B S d V

δq T B S B T q d V

δ B e ε d V δ B e B T q d V

δ B b E d V

=

+

+

− −

−

∫

∫

∫

∫ ∫φ φ

φ

φ φ

φ { } { } { } { }

[ ] [ ] { } { }

[ ] [ ] { }[ ] [ ]

[ ] { } [ ] [ ] [ ]

[ ] [ ]

0 0

0

0

0 0

0

0

0
0

0 0
0

[ ]

        { } [ ]

        { } { }

1 1        { } [ ] { } [ ] { }
2 2

1        { }
2

n n

n

T T
p pe ee

V V
T TT T

e θ L pee e
V

T TT T t
e θ NL L θ eee e e

V

T TT t T
e θ θ L θ ee e

V V

T TT
e θ L ee

δ B e B d V

δq T B e B d V

δq T B e E B T q d V

δθ N λ ε d V δθ N λ B T a d V

δq T B

−

−

−

+ +

+

∫ ∫

∫

∫

∫ ∫

φ φ

φ

φ φ

φ

{ }

[ ] [ ] [ ]

[ ] { } [ ] { } { }

{ } { } { } { } { } [ ]

0

0

0 0

0 0

0
0

0

0 0
0

0 0
0

[ ]

1        { } [ ] { }
2

1 1        { } [ ] { } [ ]
2 2

1 1        [ ] [ ] { }
2 2

n

n n

t

V

T TT
e θ L θ eee

V

T TT t T
e θ e θ pe e

V V

T TT Tt
p p θ ee ee e

V V

λ θ d V

δq T B λ N θ d V

δθ N p E d V δθ N p B d V

δ B p θ d V δ B p N θ d V

+

− −

− −

∫

∫

∫ ∫

∫ ∫

φ

φ φ

φ

φ φ

 (36) 
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3.5 Kinetic energy 

{ } { }
0

01
2

T

V

T ρ u u d V= ∫  (38) 

where ρ is the density. Now by using equation (28) we get 

[ ] [ ] [ ] [ ]
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T ρ q T N N T q d V= ∫  (39) 

[ ]
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01 { } { }
2

T
e uu e

V

T q M q d V= ∫  (40) 

[ ]{ } { }T
e uu eδT q M q=  (41) 

3.6 Work potential by the external forces and electrical charge 
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V S S

W u F d V u F d S u F E F d S= + + −∫ ∫ ∫  (42) 

where {Fb}, {FS}, {Fp} and {Fq} are body force, surface force, point force and surface 
electrical charge density respectively. Now using equations (19) and (20) in (42) we get 
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 (43) 
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ext e m e qe eW q F F= + φ  (44) 
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ext e m e qe eδW δq F δ F= + φ  (45) 
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3.7 Equation of motion 

Using the Hamilton’s principle the equation of motion for the piezolaminated shell 
element can be written as 

( )
2

1

0
t

ext

t

δT δU δW dt− + =∫  (46) 

where T, U and Wext represents the kinetic energy, potential energy and work done by 
external forces respectively. δ is the variational operator, t1 and t2 are arbitrary time 
values. 

Now substituting (37), (41) and (45) in equation (46) we get 
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 (47) 

The set of finite element equations for the piezoelectric continuum on the elemental level 
can be obtained. 
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[ ] [ ] { } [ ] { } { } { } { }{ } { }nu e p θ e q u θe e e e e ee eK q K K θ F F F F+ + = − − −φ φφ φ φ φφ φφ  (49) 

Thereafter, following the classical nonlinear procedure of finite element method of 
summing over all the elements, the equations obtained in the compact form can be 
written as 
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Details of the matrices used are given in Appendix. 
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4 Geometric nonlinear analysis 

In the nonlinear case, deformation is large, so the effects of configurational change have 
to be taken into consideration. The state of equilibrium is obtained if following equation 
is fulfilled. 

int 0t tR F− =  (51) 

where tR is the externally applied nodal point force and tFint is the nodal point force that 
corresponds to the elemental stress in the configuration at time ‘t’. The equilibrium 
equation must be satisfied throughout the complete history of load application. This can 
be effectively carried out using a step-by-step incremental approach as depicted by Bathe 
(1996). It is assumed that solution for the time ‘t’ is known and solution for discrete time 
‘t + Δt’ is required. Hence, at time ‘t + Δt’ the equilibrium equation is t+ΔtR – t+ΔtFint = 0 
when applied to a piezoelectric continuum. 

5 Validation and numerical results 

5.1 Dynamic validation of simply supported FG plate 

A piezolaminated FG plate is considered to validate the natural frequency as a function of 
the volume fraction for simply supported boundary condition. The results are shown in 
Table 1. The geometric and material properties used are same as Huang and Shen (2001). 
The slight difference in the natural frequencies (highest being 9.8%) may be due to 
different shell theories used for finite element formulation. 
Table 1 Natural frequency (Hz) for simply supported FGM plates with actuator layers bonded 

on the top and bottom surfaces 

Volume fraction  

0 0.01 0.5 1 5 15 100 
He et al. (2001) 144.25 168.74 185.45 198.92 230.46 247.30 259.35 
Present linear 151.97 153.32 195.26 216.06 258.55 274.46 276.04 
Present nonlinear 149.62 150.98 192.26 218.79 261.96 278.46 279.86 

5.2 Validation of functional graded capability under thermal load 

A square cantilever FG material plate consisting of combined zirconia and aluminium 
material constituents with continuously varying mix ratios. The bottom surface of the 
FGM plate is assumed to be metal rich and the top surface to be ceramic rich. The FGM 
plate has integrated piezoelectric sensor and actuator patches. The G-1195N piezoelectric 
patches are bonded to both the top and bottom surfaces of the square plates of length  
200 mm and thickness 30 mm. The thickness of the piezoelectric layers is 0.1 mm and the 
relevant material properties for G-1195N and the aluminium are given in Table 2. 
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Table 2 Material properties 

Properties Aluminium Zirconia G-119N Ti-6Al-4V 

Elastic modulus (N/m2) 70 × 109 151 × 109 63 × 109 105.70e9 
Poison’s ratio 0.3 0.3 0.3 0.2981 
Density (Kg/m3) 2,707 3,000 7,600 4,429 
Coefficient of thermal expansion 23 × 10–6 10 × 10–6 1.2 × 10–4 14 × 10–6 
Piezoelectric constant (m/V)   254 × 10–12  
Dielectric coefficient (F/m)   15 × 10–9  
Pyroelectric constant (C/m2k)   0.25 × 10–4  

A thermal gradient of 100°C/m is applied to the top surface of the cantilevered square 
plate and the deflection obtained is in good agreement with referred result of Liew et al. 
(2001) as shown in Figure 2. In the figure, the centreline deflections of the square plate 
are shown at various volume fractions. As can be seen from Figure 2 the deflection 
obtained zirconia is less as compared to aluminium as expected. However, for n = 5 the 
deflection is less than zirconia because the temperature distribution depends on the 
material properties which leads to smaller deflection. 

Figure 2 Centreline deflection along x-axis for FGM plate under thermal gradient of 100°C as 
presented by Liew et al. (2001) (see online version for colours) 
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5.3 FGM cylindrical shell 

After validating the discussed formulation, a numerical study of large deformation 
dynamic behaviour of FG piezolaminated cylindrical shell subjected to thermo-electro-
mechanical loading is performed. A FG cylindrical shell with 100 mm radius, 200 mm 
length and the thickness of 1 mm is considered. The angle subtended by cylindrical shell 
is 60° as shown in Figure 3. The FGM cylindrical shell is composed of zirconia and  
Ti-6Al-4V and its properties are graded in the thickness direction according to a volume 
fraction power-law distribution in such a way that bottom surface is ceramic rich and top 
surface is metal rich. The material properties are given in Table 2. 
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Figure 3 Piezolaminated functionally graded cylindrical shell presenting geometric dimensions 
(see online version for colours) 

 

First the effect of material gradient is studied on the natural frequency of the 
piezolaminated FG cylindrical shell and is shown in Figure 4. As we can see both first 
and second frequency increases nonlinearly as the material gradient increases from metal 
rich state to ceramic rich state. This is as expected because metals have low frequency 
than that of ceramics and as the material gradient and moves towards the ceramic side 
frequency increases. 

Figure 4 Variation of first and second natural frequency with changing material gradients  
(see online version for colours) 
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The effect of temperature on the nonlinear frequency behaviour of FG piezolaminated 
cylindrical shell is also studied at various gradient indexes (0, 1, 5, 10). It can be seen 
from Figure 5 and Figure 6 as temperature increases the first and second frequency 
decreases as expected. 
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Figure 5 Variation of first natural frequency at various temperature gradients (see online version 
for colours) 
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Figure 6 Variation of second natural frequency at various temperature gradients (see online 
version for colours) 
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Thereafter, the effect of control voltage and thermal environment on the nonlinear 
vibration analysis of the FG piezolaminated cylindrical shell is studied. In the first case 
only the effect of temperature is studied and is shown in Table 3 and Table 4 for first two 
natural frequencies keeping voltage zero. As can be seen from Table 3 and Table 4 the 
natural frequency decreases nonlinearly as temperature increases. Whereas natural 
frequency increases with the increase in material gradient. In Table 5 and Table 6, the 
effect of control voltage can be seen, which shows significant influence on the natural 
frequency of the structure and by increasing the imposed voltage natural frequency 
increase in nonlinear manner. It can be seen that the first and second natural frequency of 
the cylindrical structure increases by increasing the imposed voltage which depicts that 
by applying appropriate voltage the nonlinear vibration in the structure can be controlled. 
Also the influence of voltage is higher in the first natural frequency as compared to 
higher order frequencies which are not that significant in determining the dynamic 
response of the structure. 
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Table 3 First natural frequency for various material index and temperature at 0V 

Temp/index 0 1 5 10 

0 1,442.77 1,703.50 1,879.25 1,932.52 
10 1,441.75 1,700.66 1,874.88 1,927.64 
20 1,440.72 1,697.83 1,870.54 1,922.79 
30 1,439.72 1,695.01 1,866.23 1,917.97 
40 1,438.69 1,692.21 1,861.95 1,913.19 

Table 4 Second natural frequency for various material index and temperature at 0V 

Temp/index 0 1 5 10 

0 1,634.63 1,786.20 1,903.38 1,939.68 
10 1,634.16 1,784.79 1,901.05 1,937.07 
20 1,633.69 1,783.38 1,898.73 1,934.47 
30 1,633.24 1,781.99 1,896.43 1,931.90 
40 1,632.77 1,780.59 1,894.15 1,929.35 

Table 5 First natural frequency for various material index and temperature at 100V 

Temp/index 0 1 5 10 

0 1,456.84 1,717.74 1,893.57 1,946.88 
10 1,558.58 1,821.89 1,999.38 2,053.26 
20 1,649.52 1,915.69 2,094.96 2,149.44 
30 1,731.89 2,001.03 2,182.11 2,237.18 
40 1,807.29 2,079.35 2,262.22 2,317.83 

Table 6 Second natural frequency for various material index and temperature at 100V 

Temp/index 0 1 5 10 

0 1,665.19 1,819.90 1,938.82 1,975.65 
10 1,892.37 2,073.35 2,208.81 2,250.90 
20 2,095.86 2,298.90 2,448.26 2,494.75 
30 2,280.00 2,502.26 2,663.66 2,713.91 
40 2,448.24 2,687.53 2,859.57 2,913.13 

Table 7 Effect of control voltage, material index and thermal environment on FGM shell 

Index 0 1 

Temp/vol 0 100 200 300 0 100 200 300 

0 1,442.79 1,456.84 1,459.86 1,462.87 1,703.52 1,717.74 1,720.55 1,723.36 
10 1,441.76 1,558.58 1,561.28 1,563.96 1,700.68 1,821.89 1,824.44 1,826.97 
20 1,440.74 1,649.52 1,651.96 1,654.39 1,697.85 1,915.69 1,918.01 1,920.33 
30 1,439.71 1,731.89 1,734.12 1,736.33 1,695.03 2,001.03 2,003.16 2,005.29 
40 1,438.68 1,807.29 1,809.35 1,811.39 1,692.23 2,079.35 2,081.34 2,083.31 
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Table 7 Effect of control voltage, material index and thermal environment on FGM shell 
(continued) 

Index 5 10 

Temp/vol 0 100 200 300 0 100 200 300 

0 1,879.27 1,893.57 1,896.18 1,898.78 1,932.54 1,946.88 1,949.42 1,951.95 
10 1,874.90 1,999.38 2,001.74 2,004.11 1,927.66 2,053.26 2,055.57 2,057.87 
20 1,870.57 2,094.96 2,097.13 2,099.30 1,922.81 2,149.44 2,151.55 2,153.67 
30 1,866.25 2,182.11 2,184.12 2,186.12 1,917.99 2,237.18 2,239.13 2,241.08 
40 1,861.97 2,262.22 2,264.08 2,265.93 1,913.21 2,317.83 2,319.65 2,321.46 

5.4 Vibration control of simply supported cylindrical shell 

The vibration control of simply supported piezolaminated FG cylindrical shell subjected 
to mechanical and thermal loading is also performed. A FG cylindrical shell with 1 m 
radius, 0.5 m length and the thickness of 1 mm is considered. The angle subtended  
by cylindrical shell is 85°. The FGM cylindrical shell is composed of zirconia and  
Ti-6Al-4V. The material properties are given in Table 5. Top layer of piezoelectric 
material act as sensor and the lower layer as actuator both having the thickness of 0.5 mm 
each. The voltage generated by sensor is amplified by suitable value and fed back to the 
actuator which develops a counter balancing force and hence used to control unwanted 
vibration in the structure. To control the vibrations, due to uniformly distributed 
mechanical load of 10 KN/m2, various controllers such as proportional, derivative and 
proportional derivative (PD) controller, are used as shown in Figure 7. Vibration control 
due to thermal gradient of 40°C/m is also presented in this study as shown in Figure 8. 
Only first vibration mode is targeted as control mode as lower modes of vibration have 
lower energy associated and can be easily excitable. A time step of 0.0025 sec is 
considered for transient response of vibrating structure in mechanical and thermal case. 
No structural damping is considered for both cases. As can be seen from Figure 7 and 
Figure 8 vibration control is best obtained for PD controller as compared to proportional 
and derivative controller. The structural vibration is damped approximately by 20.98%, 
82.71% and 87.65% in case of mechanical loading after 0.025 sec and in case of thermal 
loading, by 26.82%, 87.80% and 97.56% after 0.025 sec for proportional, derivative and 
PD controller respectively. 

6 Conclusions 

Finite element modelling and analysis have been presented to predict the geometric 
nonlinear vibration under thermal, electrical and mechanical load. Geometric nonlinear 
vibrations are damped out using various controllers. Numerical results for various 
material graded index, temperature and voltages were obtained. Numerical results show 
that material gradient has significant effect on the natural frequency. Voltage and 
temperature also affect the natural frequency as well and suggests that voltage can be 
used to control unwanted vibrations. Mechanical and thermally induced vibrations of FG 
cylinder are controlled using different controllers. The proportional derivative controller 
is more effective than other controllers. 
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Figure 7 Vibration control of FG cylindrical shell using proportional, derivative and PD 
controller under mechanical loading (see online version for colours) 
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Figure 8 Vibration control FG cylindrical shell using proportional, derivative and PD controller 
under thermal loading (see online version for colours) 
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and so on… 
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where 

0 0 1 1
0 , , ,1 2 2 1 11 12

1 1, ,
2 2

k k k k
k i k r k sg H V g H V h J h J h− −= − = = +  

and 

( )1 1
0 , ,11 12 .k

k r k siG t J h J h− −= +  

11 0 ,1 21 0 ,1 31 0 ,1 0 011 1 21 1

12 0 ,2 22 0 ,2 32 0 ,2 0 012 2 22 2

13 0 ,3 23 0 ,3 33 0 ,3 0 013 3 23 3
10

11 0 ,2 12 0 ,1 21 0 ,2 22 0 ,1 31 0 ,2 32 0 ,1 0 012 2 11

t k k t k k
k k k

t k k t k k
k k k

t k k t k k
k k kt

L t k k t k
k k k k k k

l h l h l h L G L G
l h l h l h L G L G
l h l h l h L G L G

B
l h l h l h l h l h l h L G L G

=
+ + + + 0 01 21 2 22 1

12 0 ,3 13 0 ,1 21 0 ,3 23 0 ,1 31 0 ,3 33 0 ,1 0 0 0 011 3 13 1 21 3 23 1

12 0 ,3 13 0 ,2 22 0 ,3 23 0 ,2 32 0 ,3 33 0 ,2 0 0 0 012 3 13 2 22 2 22 2

k t k k t k k

t k k t k k t k k t k k
k k k k k k

t k k t k k t k k t k k
k k k k k k

L G L G
l h l h l h l h l h l h L G L G L G L G
l h l h l h l h l h l h L G L G L G L G

⎡

+
+ + + + +
+ + + + +

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (A5) 
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Thus, the rotational transformation matrix for the four elements may be written as 
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The stiffness matrices and force vectors can be defined as 
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