

 Int. J. Business Intelligence and Systems Engineering, Vol. 1, No. 1, 2016 49

 Copyright © 2016 Inderscience Enterprises Ltd.

Data warehouse ETL+Q auto-scale framework

Pedro Martins*, Maryam Abbasi and
Pedro Furtado
Department of Informatics,
Faculty of Sciences and Technology,
University of Coimbra, Portugal
Email: pmom@dei.uc.pt
Email: maryam@dei.uc.pt
Email: pnf@dei.uc.pt
*Corresponding author

Abstract: In this paper, we investigate the problem of providing scalability
(out and in) to extraction transformation load (ETL) and querying (Q) (ETL+Q)
process of data warehouses. In general, data loading, transformation and
integration are heavy tasks that are performed only periodically, instead of row
by row. Parallel architectures and mechanisms are able to optimise the ETL
process by speeding-up each part of the pipeline process as more performance
is needed. We propose parallelisation solutions, called AScale, for each part of
the ETL+Q, that is, an approach that enables the automatic scalability and
freshness of any data warehouse and ETL+Q process. Our results show that the
proposed system algorithms can handle scalablity to provide the desired
processing speed.

Keywords: scalability; freshness; high-rate; performance; parallel processing;
distributed systems; database; load-balance; extraction transformation load;
ETL; algorithm.

Reference to this paper should be made as follows: Martins, P., Abbasi, M. and
Furtado, P. (2016) ‘Data warehouse ETL+Q auto-scale framework’,
Int. J. Business Intelligence and Systems Engineering, Vol. 1, No. 1, pp.49–76.

Biographical notes: Pedro Martins is a full time researcher at the University of
Coimbra Portugal. His PhD degree main research topics are in the fields of
distributed computation, big data warehouses, data freshness and continuous
results processing.

Maryam Abbasi is a researcher at Evolutionary and Complex Systems group
(ECOS) in CISUC, Coimbra, Portugal. She is currently completing her PhD
studies in the Department of Informatics Engineering from University of
Coimbra. Her research projects focus on utilising the multiobjective
optimisation in bioinformatics problems such as sequence alignment.

Pedro Furtado is a Professor at the University of Coimbra UC, Portugal, where
he teaches courses in both Computer and Biomedical Engineering. His main
research interests are on performance and scalability qualities of systems. He
applied these qualities in data warehousing, bigdata, analytics, data mining,
cloud, and IoT.

 50 P. Martins et al.

1 Introduction

ETL tools are special purpose software used to populate a data warehouse with
up-to-date, clean records from one or more sources. The majority of current ETL tools
organise such operations as a workflow. At the logical level, the E (extraction) can be
considered as a capture of data flow from the sources, normally more than one with
high-rate throughput. Then, we have T representing transformation and cleansing of data.
This corresponds to modifying data so that it will conform to an analysis schema. The L
(load) represents loading the data into the data warehouse, where the data is stored to be
queried and analysed. When implementing these types of systems, besides the necessity
to create all these steps, the user is required to be aware of scalability requirements that
the ETL+Q (ETL and queries) might raise for this specific scenario.

When defining the ETL+Q the user must have in mind the existence of data sources,
where and how the data is extracted to be transformed (e.g., completed, cleaned,
validated), the loading into the data warehouse, and finally the data warehouse schema,
each of these steps requires different processing capacities, resources and data treatment.
However, in some applications scenarios (e.g., near-real-time monitoring of telecom,
energy distribution or stock market) ETL can be demanding in terms of performance.
Most of the times because the data volume is too large and one single, extraction,
transform, loading or querying node are not sufficient. Thus, more nodes must be added
to extract the data and extraction policies from the sources must be created [e.g.,
round-robin (RR) OR on-demand]. The other phases, transformation and load must also
be scaled.

After extraction, data must be re-directed and distributed across the available
transformation nodes, again since transformation involves heavy duty tasks (heavier than
extraction), more than one node should be necessary to assure acceptable
execution/transformation times. After the data is transformed and ready to be loaded, the
load period must be scheduled (e.g., every night, every hour, every minute) and a load
time control (e.g., maximum load time = 5 hours). This means that, between the
transformation and load process, the data must be held somewhere.

Regarding the data warehouse, in some application scenarios the entire data will not
fit into a single node, and if it fits, it will not be possible to execute queries within
acceptable time ranges. Thus, more than one data warehouse node is necessary with a
specific schema which allows to distribute, replicate, and finally query the data within an
acceptable time frame. In this paper, we study how to provide ETL+Q scalability with
ingress high-data-rate in big data warehouses. We propose a set of mechanisms and
algorithms, to parallelise and scale each part of the entire ETL+Q process, which later
will be included in an auto-scale (in and out) ETL+Q framework.

The presented results prove that the proposed mechanisms are able to scale-out when
necessary.

 Data warehouse ETL+Q auto-scale framework 51

2 Related work

Our framework optimises ETL by automatically scaling each part of the processing
pipeline.

These are some previous works related to optimising and scaling ETL.
To increase the efficiency of the ETL process, Simitsis et al. (2005b, 2005a) propose

searching methods based on heuristic algorithms that minimise the ETL execution cost,
by modelling the problem as a space search graph to decide which execution is more
efficient. Graphs are created by the decomposition of relational algebra operators.
Heuristics are created based on the number of times each state is visited.

Albrecht and Naumann (2009) studies how to manage large ETL processes by
implementing a set of basic management operators, such as ‘MATCH’, ‘MERGE’,
‘INVERT’, ‘SEARCH’, ‘DEPLOY’. The framework is web-based. The user creates the
ETL flow using drag-and-drop with the available filters, then the framework determines
the best execution order for the ETL using a set of optimisation algorithms.

Karagiannis et al. (2013) discusses the problem of scheduling the execution of ETL
activities (a.k.a. transformations, tasks, operations), with the goal of minimising ETL
execution time and allocated memory. The paper investigates the effects of four
scheduling policies (RR, Minimum Cost Prediction, Minimum Memory Prediction and
Mixed Policies) on different flow structures and configurations. It shows that the use of
different scheduling policies may improve ETL performance in terms of memory
consumption and execution time.

Wang and Guo (2011) propose a distributed ETL engine architecture based on
multi-agent systems (MAS) data partitioning technology. They also investigate methods
of partitioning the massive data streams in both horizontal and vertical ways. The system
partitions workflows into multiple sub-workflows for parallel execution in agents, also
adding a splitter node to distribute work. Each sub-workflow is executed by an agent, so
that multiple agents could work together to complete the collaborative work. At the end,
another extra node, the merger, will merge all results.

Liu et al. (2012) describe an extract-transform-load programming framework using
Map-Reduce to achieve scalability. Data sources and target dimensions need to be
configured and deployed. The framework has built-in support for star schemas and
snowflakes. Users have to implement the parallel ETL programs using the framework
constructors. They use pygrametl (Thomsen and Bach Pedersen, 2009), a Python-based
framework for easy ETL programming. The flow consists of two phases, dimension
processing and fact processing. Data is read from sources (files) on a distributed file
system (DFS), transformed and processed into dimension values and facts by the
framework instances, which materialise the data into the DW. The framework requires
users to declare (code) target tables and transformation functions. Then, it uses a
master/worker architecture (one master, many workers), each worker running jobs in
parallel. The master distributes data, schedules tasks, and monitors the workers.

Liu (2012) proposes a tool to build the ETL processes on top of Map-Reduce to
parallelise the ETL operation on commodity computers. ETLMR contains a number of
novel contributions. It supports high-level ETL-specific dimensional constructs for
processing both star-schemas and snowflake-schemas, and data-intensive dimensions.
Due to its use of Map-Reduce, it can automatically scale to more nodes (without
modifications to the ETL flow) while at the same time also providing automatic data

 52 P. Martins et al.

synchronisation across nodes (even for complex dimension structures like snowflakes).
Apart from scalability, Map-Reduce also give ETLMR a high degree of fault-tolerance.
ETLMR does not have its own data storage (note that the offline dimension store is only
for speedup purposes), but is an ETL tool suitable for processing large scale data in
parallel. ETLMR provides a configuration file to declare dimensions, facts, user defined
functions (UDFs), and other run-time parameters.

Simitsis et al. (2010) consider the problem of data flow partitioning for achieving
real-time ETL. The approach makes choices based on a variety of trade-offs, such as
freshness, recoverability and fault-tolerance, by considering various techniques. In this
approach partitioning can be based on RR, hash (HS), range (RG), random, modulus,
copy, and others (Vassiliadis and Simitsis, 2009).

Pentaho data integration (PDI) (Pentaho, 2014), is an ETL (graphical) design tool and
provides Hadoop support. It consists of a data integration (ETL) engine, and GUI
applications that allow the user to define data integration jobs and transformations. It
supports deployment on single node computers as well as on a cloud, or cluster.
Internally, it allows connection/integration with other systems using for instance sockets,
web-services (e.g., SOAP, XML).

2.1 Analysis

The mentioned works focus optimisation of each individual ETL process by optimising
data access, reordering operators execution and managing the available computational
resources as well as possible. Some do not use parallelism, which limits capability to
scale. Such approaches can easily be used together our proposed framework. To
guarantee adequate ETL and query processing services in demanding environments, it is
essential for the systems to scale automatically. A direct scalability approach would be to
use Map-Reduce to implement the entire ETL process as same of the related works
propose. However, the Map-Reduce model does not offer:

• automatic real-time performance monitoring and scaling mechanisms, new nodes
must be added manually

• there is more network traffic in consequence of using a DFS and Map-Reduce
paradigm

• the entire ETL process must be coded in Map-Reduce programming model, adding
more complexity and potential performance limitations

• efficiency depends on implementation method of used operators, specially when data
exchange is required.

The proposed framework offers better usability and performance by:

• providing an automatic scaling mechanism based on monitoring

• allowing to scale each part of the ETL+Q process independently

• allowing to define the ETL using any programming language as long as a connector
for the framework is provided

• data (dimension tables or all tables) can be replicated across the data warehouse
nodes, avoiding high amounts of data exchanges over the network to merge results.

 Data warehouse ETL+Q auto-scale framework 53

3 Architecture

In this section, we describe the main components of the propose architecture, AScale.
Figure 1 shows its main components:

Figure 1 AScale pipeline architecture for automatic scalability

• Components (1) to (7), except (5) are the Extract, Transform, Load and Query
(ETL+Q) pipeline.

• The ‘Automatic Scaler’ (13), is the component responsible for performance
monitoring and scaling the system when necessary.

• The ‘Configuration file’ (12) represents the location where all user configurations are
saved.

• The ‘Universal Data Warehouse Manager’ (11), uses the configurations provided by
the user and the available ‘Configurations API’ (10) to set the system to perform
according with the desired parameters and selected algorithms. The ‘Universal Data
Warehouse Manager’ (11), also sets the configuration parameters for automatic
scalability at (13) and the policies to be applied by the ‘Scheduler’ (14).

• The ‘Configuration API’ (10), is an access interface which allows to configure each
part of the proposed Universal Data Warehouse architecture, automatically by (11)
or manually by the user.

• The ‘Scheduler’ (14), is responsible for applying the data transfer policies between
components.

 54 P. Martins et al.

• The ‘Ready nodes area’ (9) represent nodes that are not being used. These nodes can
be added to any part (2) to (6) of the system to scale-out, improving performance
where needed, or removed to scale-in, saving resources that can be used in other
places.

All these components when set to interact together provide automatic scalability to the
ETL+Q and to the data warehouse processes without the need for the user to concern
about its scalability or management.

Instead of programming the entire ETL pipeline, the user can focus only in
programming the transformations and data warehouse schema (Figure 1 highlighted in
grey colour), leaving the other scalability details to be handled automatically by AScale.
Additionally, he can choose any data warehouse engine to store data (e.g., Relational data
warehouses, column oriented, no SQL, Map-Reduce architectures).

Figure 2 AScale, ETL+Q scalability

4 Scalability mechanisms

In this section, we introduce how each part of AScale (ETL+Q auto-scale framework)
scales individually to obtain the necessary performance.

Figure 2 depicts each part of the ETL scaling including:

1 The increase of Data Sources 1, and data source rates, implies the increase of data,
leading to the need to scale other parts of the proposed framework. Each data source
1 has an extraction frequency associated with it (e.g., every minute).

2 The ‘Extraction and Data Distributor’ nodes forward and/or replicate the extracted
(raw data) into the transformer nodes. Scaling needs in 2 are detected by monitoring
the extraction time. If the extraction time is larger than a maximum configured limit,
or if data extraction is not complete until the next extraction instant (e.g., every
minute), more data distributor nodes 2 are required.

 Data warehouse ETL+Q auto-scale framework 55

3 Transformation nodes process the data transformations programmed by the user.
These nodes include a buffer queue to monitor data ingress. If the queue increases its
size above a certain limit, the transformation node is scaled by replicating the
transformation code into another node.

4 The data buffer holds transformed data, it can be in-memory or/and disk. These
nodes are scaled based on memory monitoring parameters. If at any time the memory
use reaches the maximum configured usable memory, a new node must be added.

5 Data switches are responsible for data distribution (pop/extract) from the ‘Data
Buffers’ and placing it in the correct nodes for loading into the data warehouse. Each
data switch is configured to support a maximum data-rate (e.g., 100 MB/sec). If that
limit is passed or reached during a defined time window, more data switch nodes are
needed.

6 The data warehouse can be in a single node, or parallelised by many nodes.
Scalability of the data warehouse is based in two parameters: the loading time and
query response time. If the data warehouse nodes take more time to load data than
the maximum configured time, more nodes are added and data is re-distributed. If
queries average execution time is more than the desired response time, data
warehouse nodes must also be added.

Finally, the last scalability mechanism introduced in AScale is the global desired ETL
processing time. A global time for the entire ETL process can be defined. If that global
time is exceeded, then the AScale pipeline component that is nearest to its scaling limit is
scaled-out.

5 Configuration parameters

Based on configuration parameters provided by the user, the system scales automatically.
All the components interact together for providing automatic scalability to ETL+Q when
more efficiency is needed in each stage of the ETL+Q pipeline. Conversely, the system
scales down in any stage when excess resources are not needed. The main configuration
parameters, for each part represented in Figure 2 for automatic scalability are related
with:

1 Configuration of sources location for data extraction; extraction frequency,
maximum extraction duration.

2 Distribution algorithm, RR algorithm is used to distribute data by the transformation
nodes.

3 Transformations to be applied. Users can program the transformations in ASclae
framework, using (importing) a provided Java library, or program in any other
language connecting to the provide API.

4 Data buffers size (memory and disk).

5 Maximum supported distribution rate.

 56 P. Martins et al.

6 Load frequency, maximum load duration, data warehouse schema (made by the
user), definition of fact tables and dimension tables (i.e., replication parameters).

7 Maximum desired queries execution time parameters. If querying takes more time
than the configured data warehouse nodes are set to scale.

6 Scaling

In this section, we explain the mechanisms and configuration parameters that AScale uses
to monitor, detect and scale each processing module. After explaining some of the most
relevant configuration parameters, we detail how scaling decisions are made. In order to
do that, we explain the implemented algorithms and illustrate how they work. Finally, we
specify, for each part of AScale, the data distribution policies used to share and transfer
data across different AScale modules.

6.1 Configuring AScale for automatic scalability

Each part of the ETL+Q process must scale in order to overcome performance
limitations. We can have many Data Sources supplying data, and at each stage of the
processing a single computing node may not be able to handle all data extraction,
transformation or any other part of the AScale pipeline.

Figure 3 AScale framework for scalability

 Data warehouse ETL+Q auto-scale framework 57

In this section, we describe the scalability configuration parameters used by AScale to
scale each module, independently and as necessary.

Figure 3 shows each AScale module that may need to scale to offer desired
performance.
Table 1 API configuration for data extraction

1 extractSetDataSourceLog(
2 “source1”, //source ID
3 {“logA”, “logB”}, //log ID
4 {“*/10 * * * * *”, “*/10 * * * * *”}, //extraction frequency
5 {“5s”, “5s”}); //maximum extraction time

Extraction nodes 2 are monitored to determine scaling needs based on extraction
frequency, Table 1 line 4, and the maximum extraction time, Table 1 line 5.

If the maximum extraction time is exceeded, then more extraction nodes are added. If
the maximum extraction time is not defined, then, if the extraction takes longer than the
frequency cycle duration, more nodes 2 are added from the ready-nodes area 9.
Table 2 API configuration to configure the transformation maximum queue size

1 transformSetMaxSize(
2 “16GB”, //maximum queue size
3 “5GB”); //maximum limit size for scaling detection

Transformation nodes 3 include a data queue with a maximum load size. Table 2 line 2
specifies the maximum queue size, and line 3 specifies the maximum limit size for
scaling detection.

Ingress data goes inside the queues, then the transformation nodes, (with the
transformation operations programmed by the data warehouse developer), extract and
transform data. If at any point the queue starts filing up above a certain configured limit,
it indicates that the ingress data-rate is more then the output transformation data-rate.
Thus, more transformation nodes must be added.

When scaling-up, a new node is added and the entire transformation process, present
in other nodes, is replicated to the new node.
Table 3 API configuration to specify the data buffer module storage size

1 dataBufferSetSize(
2 “dataBuffer1”,
3 “5GB”, //maximum buffer memory size
4 “10GB”, //limit buffer memory size
5 “500GB”, //maximum buffer disk size
6 “250GB”, //limit buffer disk size
7 “D:”); //data buffer disk location

The Data Buffer nodes 4 hold transformed data until the next data warehouse load
instant.

 58 P. Martins et al.

Scaling decisions are made based on a number of parameters: maximum allowed
in-memory buffer size; maximum allowed data write speed; and maximum allowed disk
size. Table 3 illustrates these parameters.

If the memory usage reaches the maximum configured data buffer memory size, then
data is swapped into disk. If even so the memory becomes completely full, reaching the
maximum memory size, more data buffer nodes must be added. Also, if the disk space
reaches a configured limit, more data buffer nodes must be added.
Table 4 API configuration for the data switch supported data rate

1 dataSwitchSetDataRate(
2 “dataSwitch1”, //data switch ID name
3 “80000l/ s”, //maximum supported data-rate
4 “2m”); //maximum time delay to trigger scale-out

Data switch nodes 5 distribute and replicate data across the data warehouse nodes. These
nodes extract data from the data buffers 4 using a scheduler-based extraction policy and
load it into the data warehouse nodes 6. However, there are limitations regarding the
amount of data each data switch node can handle. The command line in Table 4 line 3, is
used to specify the maximum supported data-rate in lines per second. Line 4 represents
the maximum time delay before trigger scale-out mechanisms. If, for the configured time
duration, the data switch is always working at the maximum configured data-rate that
means that these nodes are working at their maximum capacity (according to
configuration) and must be scaled.
Table 5 API configuration for the data warehouse extraction frequency

1 dataWarehouseSetLoad(
2 “* 30 1 * * *”, //load frequency
3 “5h”, //maximum load time
4 “100MB”); //maximum batch file

The Data Warehouse nodes 6 load data during fixed instants for a certain time window.
Table 5 line 2 represents the load frequency using the Unix cronjob time format, and
line 3 represents the maximum allowed load time. If the maximum allowed load time is
exceeded, then more data warehouse nodes need to be added. Another data warehouse
scale scenario regards queries execution time. If queries take more time than a maximum
configured limit to output the results, data warehouse nodes 6 must scale to offer more
performance.
Table 6 Maximum query execution time API configuration

1 querySetMaxDWQueryExecutionTime(
2 value); //max execution time for DW queries
3
4 querySetMaxD-DWQueryExecutionTime(
5 value); //max execution time for D-DW queries

 Data warehouse ETL+Q auto-scale framework 59

Table 6 shows the API to configure the maximum query execution time. The input
parameters include the maximum desired execution time in seconds (s) or minutes (m).

Figure 4 Extraction algorithm – scale-out

7 Decision algorithms for scalability

This section defines scalability decision methods as well as algorithms which allow
AScale to automatically scale-out and scale-in each part of the proposed pipeline.

7.1 Extraction and data distributors

Figure 4 describes the algorithm used to scale-out. Depending on the number of existing
sources and increasing data generation rate, eventually extraction nodes have to scale.
The addition of more ‘extraction and data distributors’ nodes 2 depends on whether the
current number of nodes is able to extract and process data with the correct frequency,
within the configured maximum extraction time bound. For instance, if the extraction
frequency is specified as every 5 minutes and extraction duration 10 seconds, then every
5 minutes, the ‘Extraction and Data Distributor’ nodes cannot spend more than 10
seconds extracting all data. Otherwise a scale-out is needed. If the maximum extraction
duration is not configured, then the extraction process must finish before the next
extraction instant, as specified by the extraction frequency parameter.

Figure 5 describes the algorithm used to scale-in. To save resources and reuse them,
data extraction nodes can scale-in. The decision is made based on last execution times. If
previous execution times of at least two or more nodes are less than half of the maximum
extraction time, minus a configured variation parameter (X), one of the nodes is set on
standby (as ready-node) or removed and the other ones takes over.

 60 P. Martins et al.

Figure 5 Extraction algorithm – scale-in

7.2 Transform

The transformation process is critical. If the transformation is running slow, data
extraction at the current data-rate may not be possible, therefore information will not be
available for loading and querying when necessary.

Transformation nodes have an input queue as shown in Figure 6. In Figure 6, we
show the transform queue, used to determine when to scale the transformation phase. If
this queue reaches a limit size (configured by the developer) because the actual
transformer node(s) is not being able to process all data that is arriving (i.e., current
ingress data-rate is larger than transformation output data-rate), then it is necessary to
scale-out. Figure 6 describes the algorithm used to scale-out.

 Data warehouse ETL+Q auto-scale framework 61

Figure 6 Transformation – scale-out

Figure 7 Transformation – scale-in

Figure 7 describes the algorithm used to scale-in. If queues size at a specific moment is
less than half of the limit size for at least two nodes, then one of those nodes is set on
standby (as ready node) or removed.

7.3 Data buffer

The data buffer nodes scale-out based on the memory size, the data swap speed from
memory into disk and the available storage space to hold data. When the available
memory queue size becomes above a certain limit, data starts being swapped into disk to
reduce memory use under the limit size. If even so the data buffer memory reaches the

 62 P. Martins et al.

maximum memory limit size, then the data buffer scales-out. This means that the
incoming data-rate (going into memory storage) is not being swapped to the disk storage
fast enough, therefore more nodes are necessary.

If the disk space becomes full above a certain configured size, the data buffers are
also set to scale-out.

Figure 8 describes the algorithm used to scale-out the data buffer nodes. Data buffers
can also scale-in. In this case, the system will do so if the data from any data buffer can
fit inside the data buffer of any other node.

Figure 8 Data buffers – scale-out

Figure 9 Data switch – scale

 Data warehouse ETL+Q auto-scale framework 63

7.4 Data switch

The data switch nodes scale based on a configured maximum supported data-rate. That
data-rate cannot be reached or passed for more then a configured time window. If the
datarate rises above the configured limit for a certain time window, data switch nodes are
set to scale-out. Figure 9 describes the algorithm used to scale the data switch nodes. The
data switches can also scale-in. In this case, the system will allow it if the data-rate for at
least two nodes is half of the configured maximum, minus a (Z) configured variation
parameter.

7.5 Data warehouse

Data warehouse scalability needs are detected after each load process or after any query
execution. The data warehouse load process has a configured limit time duration to be
executed every time it starts. If that time is exceeded, then the data warehouse must
scale-out. Likewise, queries also have a maximum execution time. If query execution
time is exceeded, the data warehouse must scale-out. The number of nodes to scale-out is
determined assuming linear scalabilty based on previous number of nodes and execution

time .loadTime n
targetTime

⎛ ⎞×⎜ ⎟
⎝ ⎠

 In this equation, the ‘loadTime’ represents the last recorded load

time, ‘targetTime’ represents the desired target load time and ‘n’ represents the current
number of nodes. Figure 10 describes the algorithm used to scale the data warehouse
when the maximum load time is exceeded.

Figure 10 Data warehouse – scale

 64 P. Martins et al.

Data warehouse scalability is not only based on the load and integration speed
requirements, but also on the maximum execution queries time. After a query is executed,
if the query time is more than the configured maximum, then the data warehouse is set to
scale-out. Figure 11 describes the algorithm used to scale-out the data warehouse based
on the query execution time.

Figure 11 Data warehouse – scale based on query time

Data warehouse nodes scale-in is performed iff the average query execution time and the
average load time respects the conditions (1) and (2) (where n represents the number of
nodes):

(1)n avgQueryTime desireQueryTime
n

− ×
≤ (1)

and

(1) maxn avgLoadTime LoadTime
n

− ×
≤ (2)

Every time the data warehouse scales-out or scales-in, the data inside the nodes needs to
be re-balanced. The default re-balance process to scale-out is based on the phases: extract
and replicate data from data warehouse nodes; load the extracted information into the
new nodes (data is extracted and loaded across the available nodes as if it is new data).

Both data warehouse scale-out and scale-in require the administrator approval, since
this process can lead to extended offline periods.

 Data warehouse ETL+Q auto-scale framework 65

7.6 Global ETL scalability

Besides defining partial limits for each part of the ETL+Q pipeline, it is also useful to
configure only a desired global ETL processing time. In this case, AScale will choose to
scale-out the part of the pipeline that is performing slower.

Figure 12 explains based on an example the scaling of the ET and L. Assume that the
current execution time of ET and L are respectively 2 and 10 hours, and the desired
execution time is 5 hours. Based on these times, the target time for the ET is 0.83 hours
and for the L is 4,17 hours. Then by applying following formula the necessary number of

nodes is estimated linearly, ,currentTime n
targetTime

× where ‘currentTime’ is the current

execution time, ‘targetTime’ is the desired execution time and ‘n’ represent the current
number of nodes. For the given example this results in: for the ET we would need

2 1 2,
0.83

× = 4 nodes which correspond to 3 nodes, and for the L, 10 1 2,
4.17

× = 39 nodes,

which corresponds to 3 nodes. Note that, in the ET the extra nodes are added to the E
process only, then the T process scales based on ingress data queues monitoring to keep
up with the extraction rate.

Figure 12 Example, estimating the scaling proportion of the ET and L

Another option is to configure both types of time bound limits: a global time bound for
the entire ETL process and at the same time local bounds for the parts. In this case,
AScale can use the local bounds to decide where to scale.

 66 P. Martins et al.

8 Experimental setup

In this section, we describe the testbed, hardware, software and ETL operations used in
the setup. An experimental setup was built to simulate not only the data warehouse, but
also, all ETL processes. The decision of using TPC-H data as source data logs, and SSB
as the data warehouse schema and queries, was taken to reuse related work from the
research group, for instance, Ferreira and Furtado (2013) and Martins et al. (2011), which
had already some parts of the framework pipeline developed. This option also allowed us
to better control data transformations and corresponding staging area volume and data
synchronisation, allowing us to build it with less complexity, thus easier to test the
proposed AScale concepts.

Data sources logs for extraction: the structure of the simulated logs is the same as the
TPC-H generated data logs structure, consisting of logs representing each of the tables:
part, supplier, nation, region, partsupp. Regarding the tables ‘lineitem’ and ‘orders’, they
were merged into a single log with the following structure: the log is a set of ‘order’ rows
and for each order the log contains the respective related lineitem rows as subsequent
rows of the order.

Data extraction is made considering the start and end of each order (including the
respective items), in order to keep data together and consistent.

Data transformation: after data is extracted from TPC-H log files, it is set to be
transformed. The TPC-H tables, part, supplier, nation, region, partsupp are also keep in
the transformation nodes (staging area) using a Postgre SQL database. The stored data is
transformed in order to recreate the SSB schema.

Additional transformations were applied: names were split and concatenated into last
name and given names. The first letter of each name was set to upper-case and remaining
letters were set to lower case; Addresses were cleaned and transformed by converting
keywords (e.g., street) into abbreviated words, using a translation lookup table in
memory. Moreover, the first letter of each name was set to upper-case and remaining
letters to lower case. The postal code was added (concatenated), using a translation table
in memory to correlate each city with a postal code; The phone numbers were converted
into groups of three numbers, adding the country and city code, depending on the postal
address code; Categories were converted/written into full text (no abbreviations); Dollar
coin numbers were converted into Euros; sizes and weights were converted into the
normalised international system. The data output from these transformation operations is
then stored and ready to load.

Data warehouse: the data warehouse has the same base structure as the SSB
benchmark.

8.1 Hardware and software

The experimental tests were performed using 12 computers, denoted as nodes, with the
following characteristics: Intel Core i5-5300U Processor (3M Cache, up to 3.40 GHz);
Memory 16 GB DDR3; Disk western digital 1TB 7,500 rpm; Ethernet connection
1 Gbit/sec; Connection switch SMC SMCOST16, 48 Ethernet ports, 1 Gbit/sec.

Software installed/used. The 12 nodes were formatted before the experimental
evaluation and installed with: Windows 7 enterprise edition 64 bits; Java JDK 8;
Netbeans 8.0.2 Oracle Database 11g Release 1 for Microsoft Windows (X64); MySQL
5.6.23 used in the dynamic data warehouses; PostgreSQL 9.4 used for lookups during the

 Data warehouse ETL+Q auto-scale framework 67

transformation process; Esper 5.1.0 for Java as CEP process engine; TPC-H benchmark
dataset; SSB benchmark, representing the data warehouse schema and queries.

For this experimental evaluation, we assume that a node corresponds to a physical
machine. However, due to limited available resources, some virtual nodes were created,
and other nodes resources redirected and reused, in such way that AScale pipeline
processing was not affected.

9 Typical data warehouse scenario

In this section, we evaluate AScale in a scenario where, due to log sizes and limited
resources, data load takes too long to perform if scalability is not applied. We start with
only two nodes (two physical machines), one for handling extraction and transformation,
the other to hold the data warehouse. AScale is setup to monitor the system and scale
when needed.

Data is extracted from sources, transformed and loaded only during a predefined
period (e.g., night), to be available for analysis the next day. The maximum extraction,
transformation and load time, all together cannot take longer than 9 hours (e.g., from 0am
until 9am). AScale was configured with an extraction frequency of every 24 hours and a
maximum extraction duration of 4 hours, a transformation queue with a limit size of
10 GB and data warehouse loads were configured for every 24 hours, with a maximum
duration of 9 hours.

Figure 13 AScale, 9 hours limit for ETL

 68 P. Martins et al.

The experimental results in Figure 13 show the total AScale ETL time using two nodes
(two physical machines), one for extraction, transformation, data buffer and data switch
[Figure 13(a)], the other for the data warehouse [Figure 13(b)]. Up to 10 GB of log size,
the ETL process can be handled within the desired time windows. However, when
increasing to 50 GB, 9 hours are no longer enough to perform the full ETL process. In
this situation the data warehouse load process (load, update indexes, update views) using
one node (average load time 873 minutes) and two nodes (average load time
483 minutes) exceed the desired time window. When scaled to 3 nodes, by adding
another data warehouse node [Figure 13(b)], the ETL process returns to the desired time
bound.

10 Near-real-time and minimal downtime scenarios

In this section, we assess the scale-out and scale-in abilities of the proposed framework in
near-real-time scenarios, as well as scenarios where downtime should be minimised. Near
real-time scenarios require data to be always up to date and available to be queried (i.e.,
data freshness). In order to guarantee this, it is necessary to integrate new data in a
predefined and very small time window.

The scenario was set-up as follows: E (extraction) and L (load) were set to perform
every 2 seconds; T (transformation) was configured with a maximum queue size of
500 MB; the load process was made in batches of 100 MB maximum size. The ETL
process is allowed to take 3 seconds at most.

Figure 14 Near-real-time, full ETL system scale-out

 Data warehouse ETL+Q auto-scale framework 69

Figure 15 Near-real-time, full ETL system scale-in

Figures 14 and 15 show AScale scaling-out and scaling-in automatically to deliver the
configured near-real-time ETL time bounds while the data rate increases or decreases
respectively. The X axis represents the data-rate, from 10,000 to 500,000 rows per
second; the Y axis is the ETL time expressed in seconds; the system objective was set to
deliver the ETL process in 3 seconds; the charts show the scale-out and scale-in of each
part of AScale, obtained by adding and removing nodes when necessary; A total of 7 data
sources were used/removed gradually, each one delivering a maximum average of
70,000 rows/sec; AScale used a total of 12 nodes to deliver the configured time bounds.

Scale-out results in Figure 14 show that, as the data-rate increases and parts of the
ETL pipeline become overloaded, by using all proposed monitoring mechanisms in each
part of the AScale framework, each individual module scales to offer more performance
where and when necessary.

Scale-in results in Figure 15 show the instants when the current number of nodes is
no longer necessary to ensure the desired performance, leading to removal of some nodes
(i.e., set as ready nodes in stand-by, to be used in other parts).

The next (sub)sections detail how each part of the ETL and queries scale-out in the
near-real-time scenario.

10.1 Scalability of data extraction

Considering data-sources generating high-rate data and extraction-nodes to extract
the generated data, when the data flow is too high, a single data node cannot
handle all ingress data. In this section, we study how the extraction nodes scale to
handle different data-rates, using the data setup similar to the one used in

 70 P. Martins et al.

the previous section. The maximum allowed extraction time was set to 1 second
(maxextractionTime < maxdesiredExtractionTime); and extraction frequency was set to every
3 seconds (maxextractionTime < ExtractionFrequency).

Figure 16 shows the extraction nodes automatic sacalbility in near-real-time. The left
Y axis represents average extraction time in seconds, the right Y axis represents the
number of nodes used; the X axis represents data-rate; the black line represents extraction
time; the grey line represents the number of nodes as they scale-out. Every time the
extraction time is above the configured threshold limit of 1 second, a new node is
automatically added (from the pool of ready-nodes). After the new node is added, more
nodes are being used to extract data from the same number of sources, improving the
extraction performance.

Figure 16 Extraction scalability

10.2 Transformation scalability

During the ETL process, after data is extracted, it is set for transformation. Because this
process can be computationally heavy, it is necessary to scale the transformation nodes to
ensure that all data is processed without delays. Data ingress transformation queues are
monitored. Once it is detected that a queue is full above a certain configured threshold
(i.e., Rateextract ≥ Ratetransform), AScale scales the transformation process.

The transformation nodes scale-out mechanisms were set to limit the queue memory
size to a maximum of 5 GB before swapping data into disk, and 500 MB as the limit to
trigger the scaling mechanism (corresponding to 100,000 rows). Figure 17 shows the
addition of new transformation nodes, as queue sizes increase above the configured limit.
The Y axis represents average queue size in number of rows, the X axis shows the data

 Data warehouse ETL+Q auto-scale framework 71

rate expressed in rows per second. Each plotted bar represents the average transformation
queue size (up to 4 nodes). As can be seen in Figure 17, as soon as the data rate reaches
80,000 rows/sec, AScale detects overload in the queue (queue size above 100,000 rows)
and triggers addition of a new node. The new node can be seen in the 120,000 rows/sec
bar, where two queues allow the system to handle the data rate satisfactorily. After that,
as the data rate reaches 200,000 rows/sec the maximum queue size is reached again
triggering addition of one more node. The scale-out can be seen in the 240,000 rows/sec
bar, where three queues are again able to handle the increased load. A fourth and fifth
node are added again to scale at 320,000 rows/sec and 440,000 rows/sec respectively, as
can be seen in Figure 17.

Figure 17 Automatic transformation scalability

 72 P. Martins et al.

Figure 17 ‘Zoom Box A’ shows the detail of what happens when the queue sizes of
transformation nodes increase above the configured limit. As overload is detected a new
transformation node is added. The new node takes approximately 1 minute to be ready
(see zoom box A), the delay corresponds to the necessary time to replicate/synchronise
the node and respective staging area. After the node is fully working, data is distributed
using a least renaming work (LWR) algorithm, which makes the queue of the new node
balance the sizes of all nodes.

10.3 Data buffer nodes

Data buffer nodes hold the transformed data until it is loaded into the data warehouse. For
this experiment the data buffers were configured as follows: we consider only the data
generation/producer, there is no data ‘consumer’, so the buffer must hold all ingress data;
the generation data-rate speed was set to 1,500,000 rows per second (i.e., transformation
output data rate) in such way that the disk speed cannot swap all data fast enough, leading
the memory to increase until its maximum; available memory storage was set to 10 GB;
memory storage limit before data swap into disk was set to 5 GB; available disk storage
was 1 TB.

When the limit memory size is reached (5 GB), data starts being swapped into disk.
However, because the disk speed cannot handle all ingress data-rate, the memory reaches
the maximum limit size (10 GB). At that moment a new data buffer node is added. After
the new node is added, data is distributed, using LWR, making the queue of the newly
added node increase faster. After a while, the data volume in each data buffer returns to
normal.

Figure 18 Data buffer swap into disk and scaling

 Data warehouse ETL+Q auto-scale framework 73

Figure 18 shows an extreme scenario where the data buffer write speed from memory
into disk (swap) is not fast enough. This scenario leads to a scale-out of the data buffer
node. Figure 18 shows the data queue size increasing until the ‘limit memory size’
(5 GB), at that moment data starts being swap into disk in an attempt to release memory
space. However, because the data rate is too high the memory continues increasing until
the ‘maximum memory size’. Once the memory is at the ‘maximum memory size’
another node is added and data is distributed by both nodes. In Figure 18, we also show
the data memory queue of the second node increasing and the swap process occurring
again. Although because now there are two nodes handling the ingress data rate, the data
swap speed can free the memory.

Figure 19 Data warehouse load scalability

10.4 Data warehouse load and query scalability

In this section, we test the data warehouse scalability, which can be triggered either by
the load process (because it is taking too long), or because query execution is taking more
time than the configured response time bounds.

To test the load scalability we create the setup: loads are from batch files, each
approximately size 100 MB each; the maximum allowed load time is set to 60 seconds;
each time a data warehouse node is added we show the data size that was moved into the
new node and the required time in seconds to re-balance data; all load and re-balance
times include the execution of pre-load tasks (i.e., drop all indexes and views) and
pos-load tasks (i.e., build all indexes and views).

Load scalability: the experimental results in Figure 19 show the data warehouse
scaling when the data size to be loaded increases and as consequence the load time also
increases above the predefined bound: the left Y axis represents average load time in

 74 P. Martins et al.

seconds; the right Y axis shows the number of data warehouse nodes; the X axis
represents the data batch size in MB; the horizontal bar at Y = 60 seconds represents the
maximum configured load time; at each scale-out moment there are notes specifying the
data re-balanced size and time to perform it; the black plotted line represents average load
time; the grey plotted line represents number of data warehouse nodes.

The results in Figure 19 show how load performance degrades as the data size
increases and how it improves when a new node is added. After a new node is added,
performance improves to meet the maximum configured load limit.

Query scalability: when running queries, if the maximum desired query execution
time is exceeded, the data warehouse is set to scale-out in order to offer better query
execution performance. The following workloads were considered to test AScale query
scalability:

• Workload 1 (WL 1):

a 50 GB total size

b execute Q1.1, Q2.1, Q3.1, Q4.1 randomly chosen

c desired execution time per query: 1 minute (60 seconds).

• Workload 2 (WL 2) – as workload 1 but, 1 to 8 simultaneous sessions used.

Workload 1 studies how the proposed mechanisms scales-out the data warehouse when
running many queries. Workload 2 studies AScale scalability running simultaneous
sessions (e.g., number of simultaneous users). Both workloads were set with the objective
of guaranteeing the maximum execution time per query of 60 seconds.

Figure 20 Data warehouse scalability, workload 1, 50 GB dataset

 Data warehouse ETL+Q auto-scale framework 75

Query-based scalability, WL1: Figure 20 shows the experimental results for workload 1,
where: the Y axis represents the average execution time in seconds; X axis represents the
data size per node and the current number of nodes; the horizontal line over
60 seconds represents the desired query execution time; white bars identify the total
workload time and grey bars the re-balance time (i.e., extract data, load into nodes,
rebuild indexes and views). The results show that every time a query is executed and the
average query time is not inferior to the maximum configured query execution time, one
extra node is added (scale-out). In each scale-out the re-balance time represents the
necessary time to extract data from existing nodes, re-distribute it and rebuild indexes and
views. Once the average query time becomes lower than the configured desired execution
time, the framework stops scaling the data warehouse nodes.

Simultaneous session query scalability, WL 1: Figure 21 shows how the data
warehouse scales when simultaneous sessions are executing. Figure 21 shows the left Y
axis represents average query execution time in seconds; X axis shows the number of
sessions, the data size per node and the number of nodes; grey bars represent the data
re-balance average time in seconds (i.e., extract from nodes, load into new node, rebuild
indexes and views); white bars show average query execution time. The results in
Figure 21 show that, the number of simultaneous session’s increases, the system scales
the number of nodes in order to provide more performance. Thus, average query
execution time follows the configured parameters.

Figure 21 Data warehouse scalability, workload 2, 50 GB dataset

Note that since both loads and query execution are performed against the data warehouse
and the data warehouse is scaled, AScale query execution performance improves at the
same time the data warehouse load performance improves and vice versa.

 76 P. Martins et al.

11 Conclusions and future work

We proposes an approach and a framework, named AScale, that automatically scale the
ETL+Q process, allowing the developer to focus only in the conceptual ETL+Q model.
We highlight the contributions: an approach to automatically parallelise ETL and Query
execution (ETL+Q), able to modify individual components when they need to scale out
or in; dynamic-data-warehouse (D-DW). We propose an in-memory dynamic store and
processing approach which, when added to the system, provides total freshness and
real-time; experimental evaluation of the proposals, showing that AScale is able to
scale-out when performance bottlenecks are detected, and that it is also able to scale-in
when resources are not needed.

There are a number of interesting directions for future work, for instance, the
implementation of proactive and predictive scalability mechanisms, visual tools
(drag-and-drop) to build schemas and to configure ETL processes, exploration and
applicability to the cloud for elastic scalability.

References
Albrecht, A. and Naumann, F. (2009) ‘METL: managing and integrating ETL processes’, VLDB

PhD Workshop.
Ferreira, N. and Furtado, P. (2013) ‘Real-time data warehouse: a solution and evaluation’,

International Journal of Business Intelligence and Data Mining, Vol. 8, No. 3, pp.244–263.
Karagiannis, A., Vassiliadis, P. and Simitsis, A. (2013) ‘Scheduling strategies for efficient ETL

execution’, Information Systems, Vol. 38, No. 6, pp.927–945.
Liu, X. (2012) Data Warehousing Technologies for Large-Scale and Right-Time Data, PhD thesis,

dissertation, Faculty of Engineering and Science at Aalborg University, Denmark.
Liu, X., Thomsen, C. and Pedersen, T.B. (2012) ‘Map Reduce-based dimensional ETL made easy’,

Proceedings of the VLDB Endowment, Vol. 5, No. 12, pp.1882–1885.
Martins, P., Costa, J., Cecílio, J. and Furtado, P. (2011) ‘VarDB: high-performance warehouse

processing with massive ordering and binary search’, Data Warehousing and Knowledge
Discovery, pp.184–195, Springer.

Pentaho (2014) Pentaho, 2014-10-07.
Simitsis, A., Gupta, C., Wang, S. and Dayal, U. (2010) ‘Partitioning real-time ETL workflows’, in

Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on,
pp.159–162, IEEE.

Simitsis, A., Vassiliadis, P. and Sellis, T. (2005a) ‘Optimizing ETL processes in data warehouses’,
Data Engineering, 2005: ICDE 2005: Proceedings 21st International Conference on,
pp.564–575, IEEE.

Simitsis, A., Vassiliadis, P. and Sellis, T. (2005b) ‘State-space optimization of ETL workflows’,
Knowledge and Data Engineering, IEEE Transactions on, Vol. 17, No. 10, pp.1404–1419.

Thomsen, C. and Bach Pedersen, T. (2009) ‘pygrametl: a powerful programming framework for
extract-transform-load programmers’, Proceedings of the ACM Twelfth International
Workshop on Data Warehousing and OLAP, pp.49–56, ACM.

Vassiliadis, P. and Simitsis, A. (2009) ‘Near real time ETL’, New Trends in Data Warehousing and
Data Analysis, pp.1–31, Springer.

Wang, G. and Guo, C. (2011) ‘Research of distributed ETL engine based on MAS and data
partition’, Computer Supported Cooperative Work in Design (CSCWD), 2011 15th
International Conference on, pp.342–347, IEEE.

