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Abstract: In this paper, we investigate the problem of providing scalability 
(out and in) to extraction transformation load (ETL) and querying (Q) (ETL+Q) 
process of data warehouses. In general, data loading, transformation and 
integration are heavy tasks that are performed only periodically, instead of row 
by row. Parallel architectures and mechanisms are able to optimise the ETL 
process by speeding-up each part of the pipeline process as more performance 
is needed. We propose parallelisation solutions, called AScale, for each part of 
the ETL+Q, that is, an approach that enables the automatic scalability and 
freshness of any data warehouse and ETL+Q process. Our results show that the 
proposed system algorithms can handle scalablity to provide the desired 
processing speed. 
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1 Introduction 

ETL tools are special purpose software used to populate a data warehouse with  
up-to-date, clean records from one or more sources. The majority of current ETL tools 
organise such operations as a workflow. At the logical level, the E (extraction) can be 
considered as a capture of data flow from the sources, normally more than one with  
high-rate throughput. Then, we have T representing transformation and cleansing of data. 
This corresponds to modifying data so that it will conform to an analysis schema. The L 
(load) represents loading the data into the data warehouse, where the data is stored to be 
queried and analysed. When implementing these types of systems, besides the necessity 
to create all these steps, the user is required to be aware of scalability requirements that 
the ETL+Q (ETL and queries) might raise for this specific scenario. 

When defining the ETL+Q the user must have in mind the existence of data sources, 
where and how the data is extracted to be transformed (e.g., completed, cleaned, 
validated), the loading into the data warehouse, and finally the data warehouse schema, 
each of these steps requires different processing capacities, resources and data treatment. 
However, in some applications scenarios (e.g., near-real-time monitoring of telecom, 
energy distribution or stock market) ETL can be demanding in terms of performance. 
Most of the times because the data volume is too large and one single, extraction, 
transform, loading or querying node are not sufficient. Thus, more nodes must be added 
to extract the data and extraction policies from the sources must be created [e.g.,  
round-robin (RR) OR on-demand]. The other phases, transformation and load must also 
be scaled. 

After extraction, data must be re-directed and distributed across the available 
transformation nodes, again since transformation involves heavy duty tasks (heavier than 
extraction), more than one node should be necessary to assure acceptable 
execution/transformation times. After the data is transformed and ready to be loaded, the 
load period must be scheduled (e.g., every night, every hour, every minute) and a load 
time control (e.g., maximum load time = 5 hours). This means that, between the 
transformation and load process, the data must be held somewhere. 

Regarding the data warehouse, in some application scenarios the entire data will not 
fit into a single node, and if it fits, it will not be possible to execute queries within 
acceptable time ranges. Thus, more than one data warehouse node is necessary with a 
specific schema which allows to distribute, replicate, and finally query the data within an 
acceptable time frame. In this paper, we study how to provide ETL+Q scalability with 
ingress high-data-rate in big data warehouses. We propose a set of mechanisms and 
algorithms, to parallelise and scale each part of the entire ETL+Q process, which later 
will be included in an auto-scale (in and out) ETL+Q framework. 

The presented results prove that the proposed mechanisms are able to scale-out when 
necessary. 
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2 Related work 

Our framework optimises ETL by automatically scaling each part of the processing 
pipeline. 

These are some previous works related to optimising and scaling ETL. 
To increase the efficiency of the ETL process, Simitsis et al. (2005b, 2005a) propose 

searching methods based on heuristic algorithms that minimise the ETL execution cost, 
by modelling the problem as a space search graph to decide which execution is more 
efficient. Graphs are created by the decomposition of relational algebra operators. 
Heuristics are created based on the number of times each state is visited. 

Albrecht and Naumann (2009) studies how to manage large ETL processes by 
implementing a set of basic management operators, such as ‘MATCH’, ‘MERGE’, 
‘INVERT’, ‘SEARCH’, ‘DEPLOY’. The framework is web-based. The user creates the 
ETL flow using drag-and-drop with the available filters, then the framework determines 
the best execution order for the ETL using a set of optimisation algorithms. 

Karagiannis et al. (2013) discusses the problem of scheduling the execution of ETL 
activities (a.k.a. transformations, tasks, operations), with the goal of minimising ETL 
execution time and allocated memory. The paper investigates the effects of four 
scheduling policies (RR, Minimum Cost Prediction, Minimum Memory Prediction and 
Mixed Policies) on different flow structures and configurations. It shows that the use of 
different scheduling policies may improve ETL performance in terms of memory 
consumption and execution time. 

Wang and Guo (2011) propose a distributed ETL engine architecture based on  
multi-agent systems (MAS) data partitioning technology. They also investigate methods 
of partitioning the massive data streams in both horizontal and vertical ways. The system 
partitions workflows into multiple sub-workflows for parallel execution in agents, also 
adding a splitter node to distribute work. Each sub-workflow is executed by an agent, so 
that multiple agents could work together to complete the collaborative work. At the end, 
another extra node, the merger, will merge all results. 

Liu et al. (2012) describe an extract-transform-load programming framework using 
Map-Reduce to achieve scalability. Data sources and target dimensions need to be 
configured and deployed. The framework has built-in support for star schemas and 
snowflakes. Users have to implement the parallel ETL programs using the framework 
constructors. They use pygrametl (Thomsen and Bach Pedersen, 2009), a Python-based 
framework for easy ETL programming. The flow consists of two phases, dimension 
processing and fact processing. Data is read from sources (files) on a distributed file 
system (DFS), transformed and processed into dimension values and facts by the 
framework instances, which materialise the data into the DW. The framework requires 
users to declare (code) target tables and transformation functions. Then, it uses a 
master/worker architecture (one master, many workers), each worker running jobs in 
parallel. The master distributes data, schedules tasks, and monitors the workers. 

Liu (2012) proposes a tool to build the ETL processes on top of Map-Reduce to 
parallelise the ETL operation on commodity computers. ETLMR contains a number of 
novel contributions. It supports high-level ETL-specific dimensional constructs for 
processing both star-schemas and snowflake-schemas, and data-intensive dimensions. 
Due to its use of Map-Reduce, it can automatically scale to more nodes (without 
modifications to the ETL flow) while at the same time also providing automatic data 
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synchronisation across nodes (even for complex dimension structures like snowflakes). 
Apart from scalability, Map-Reduce also give ETLMR a high degree of fault-tolerance. 
ETLMR does not have its own data storage (note that the offline dimension store is only 
for speedup purposes), but is an ETL tool suitable for processing large scale data in 
parallel. ETLMR provides a configuration file to declare dimensions, facts, user defined 
functions (UDFs), and other run-time parameters. 

Simitsis et al. (2010) consider the problem of data flow partitioning for achieving 
real-time ETL. The approach makes choices based on a variety of trade-offs, such as 
freshness, recoverability and fault-tolerance, by considering various techniques. In this 
approach partitioning can be based on RR, hash (HS), range (RG), random, modulus, 
copy, and others (Vassiliadis and Simitsis, 2009). 

Pentaho data integration (PDI) (Pentaho, 2014), is an ETL (graphical) design tool and 
provides Hadoop support. It consists of a data integration (ETL) engine, and GUI 
applications that allow the user to define data integration jobs and transformations. It 
supports deployment on single node computers as well as on a cloud, or cluster. 
Internally, it allows connection/integration with other systems using for instance sockets, 
web-services (e.g., SOAP, XML). 

2.1 Analysis 

The mentioned works focus optimisation of each individual ETL process by optimising 
data access, reordering operators execution and managing the available computational 
resources as well as possible. Some do not use parallelism, which limits capability to 
scale. Such approaches can easily be used together our proposed framework. To 
guarantee adequate ETL and query processing services in demanding environments, it is 
essential for the systems to scale automatically. A direct scalability approach would be to 
use Map-Reduce to implement the entire ETL process as same of the related works 
propose. However, the Map-Reduce model does not offer: 

• automatic real-time performance monitoring and scaling mechanisms, new nodes 
must be added manually 

• there is more network traffic in consequence of using a DFS and Map-Reduce 
paradigm 

• the entire ETL process must be coded in Map-Reduce programming model, adding 
more complexity and potential performance limitations 

• efficiency depends on implementation method of used operators, specially when data 
exchange is required. 

The proposed framework offers better usability and performance by: 

• providing an automatic scaling mechanism based on monitoring 

• allowing to scale each part of the ETL+Q process independently 

• allowing to define the ETL using any programming language as long as a connector 
for the framework is provided 

• data (dimension tables or all tables) can be replicated across the data warehouse 
nodes, avoiding high amounts of data exchanges over the network to merge results. 
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3 Architecture 

In this section, we describe the main components of the propose architecture, AScale. 
Figure 1 shows its main components: 

Figure 1 AScale pipeline architecture for automatic scalability 

 

• Components (1) to (7), except (5) are the Extract, Transform, Load and Query 
(ETL+Q) pipeline. 

• The ‘Automatic Scaler’ (13), is the component responsible for performance 
monitoring and scaling the system when necessary. 

• The ‘Configuration file’ (12) represents the location where all user configurations are 
saved. 

• The ‘Universal Data Warehouse Manager’ (11), uses the configurations provided by 
the user and the available ‘Configurations API’ (10) to set the system to perform 
according with the desired parameters and selected algorithms. The ‘Universal Data 
Warehouse Manager’ (11), also sets the configuration parameters for automatic 
scalability at (13) and the policies to be applied by the ‘Scheduler’ (14). 

• The ‘Configuration API’ (10), is an access interface which allows to configure each 
part of the proposed Universal Data Warehouse architecture, automatically by (11) 
or manually by the user. 

• The ‘Scheduler’ (14), is responsible for applying the data transfer policies between 
components. 
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• The ‘Ready nodes area’ (9) represent nodes that are not being used. These nodes can 
be added to any part (2) to (6) of the system to scale-out, improving performance 
where needed, or removed to scale-in, saving resources that can be used in other 
places. 

All these components when set to interact together provide automatic scalability to the 
ETL+Q and to the data warehouse processes without the need for the user to concern 
about its scalability or management. 

Instead of programming the entire ETL pipeline, the user can focus only in 
programming the transformations and data warehouse schema (Figure 1 highlighted in 
grey colour), leaving the other scalability details to be handled automatically by AScale. 
Additionally, he can choose any data warehouse engine to store data (e.g., Relational data 
warehouses, column oriented, no SQL, Map-Reduce architectures). 

Figure 2 AScale, ETL+Q scalability 

 

4 Scalability mechanisms 

In this section, we introduce how each part of AScale (ETL+Q auto-scale framework) 
scales individually to obtain the necessary performance. 

Figure 2 depicts each part of the ETL scaling including: 

1 The increase of Data Sources 1, and data source rates, implies the increase of data, 
leading to the need to scale other parts of the proposed framework. Each data source 
1 has an extraction frequency associated with it (e.g., every minute). 

2 The ‘Extraction and Data Distributor’ nodes forward and/or replicate the extracted 
(raw data) into the transformer nodes. Scaling needs in 2 are detected by monitoring 
the extraction time. If the extraction time is larger than a maximum configured limit, 
or if data extraction is not complete until the next extraction instant (e.g., every 
minute), more data distributor nodes 2 are required. 
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3 Transformation nodes process the data transformations programmed by the user. 
These nodes include a buffer queue to monitor data ingress. If the queue increases its 
size above a certain limit, the transformation node is scaled by replicating the 
transformation code into another node. 

4 The data buffer holds transformed data, it can be in-memory or/and disk. These 
nodes are scaled based on memory monitoring parameters. If at any time the memory 
use reaches the maximum configured usable memory, a new node must be added. 

5 Data switches are responsible for data distribution (pop/extract) from the ‘Data 
Buffers’ and placing it in the correct nodes for loading into the data warehouse. Each 
data switch is configured to support a maximum data-rate (e.g., 100 MB/sec). If that 
limit is passed or reached during a defined time window, more data switch nodes are 
needed. 

6 The data warehouse can be in a single node, or parallelised by many nodes. 
Scalability of the data warehouse is based in two parameters: the loading time and 
query response time. If the data warehouse nodes take more time to load data than 
the maximum configured time, more nodes are added and data is re-distributed. If 
queries average execution time is more than the desired response time, data 
warehouse nodes must also be added. 

Finally, the last scalability mechanism introduced in AScale is the global desired ETL 
processing time. A global time for the entire ETL process can be defined. If that global 
time is exceeded, then the AScale pipeline component that is nearest to its scaling limit is 
scaled-out. 

5 Configuration parameters 

Based on configuration parameters provided by the user, the system scales automatically. 
All the components interact together for providing automatic scalability to ETL+Q when 
more efficiency is needed in each stage of the ETL+Q pipeline. Conversely, the system 
scales down in any stage when excess resources are not needed. The main configuration 
parameters, for each part represented in Figure 2 for automatic scalability are related 
with: 

1 Configuration of sources location for data extraction; extraction frequency, 
maximum extraction duration. 

2 Distribution algorithm, RR algorithm is used to distribute data by the transformation 
nodes. 

3 Transformations to be applied. Users can program the transformations in ASclae 
framework, using (importing) a provided Java library, or program in any other 
language connecting to the provide API. 

4 Data buffers size (memory and disk). 

5 Maximum supported distribution rate. 
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6 Load frequency, maximum load duration, data warehouse schema (made by the 
user), definition of fact tables and dimension tables (i.e., replication parameters). 

7 Maximum desired queries execution time parameters. If querying takes more time 
than the configured data warehouse nodes are set to scale. 

6 Scaling 

In this section, we explain the mechanisms and configuration parameters that AScale uses 
to monitor, detect and scale each processing module. After explaining some of the most 
relevant configuration parameters, we detail how scaling decisions are made. In order to 
do that, we explain the implemented algorithms and illustrate how they work. Finally, we 
specify, for each part of AScale, the data distribution policies used to share and transfer 
data across different AScale modules. 

6.1 Configuring AScale for automatic scalability 

Each part of the ETL+Q process must scale in order to overcome performance 
limitations. We can have many Data Sources supplying data, and at each stage of the 
processing a single computing node may not be able to handle all data extraction, 
transformation or any other part of the AScale pipeline. 

Figure 3 AScale framework for scalability 
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In this section, we describe the scalability configuration parameters used by AScale to 
scale each module, independently and as necessary. 

Figure 3 shows each AScale module that may need to scale to offer desired 
performance. 
Table 1 API configuration for data extraction 

1 extractSetDataSourceLog(  
2 “source1”, //source ID 
3 {“logA”, “logB”}, //log ID 
4 {“*/10 * * * * *”, “*/10 * * * * *”}, //extraction frequency 
5 {“5s”, “5s”}); //maximum extraction time 

Extraction nodes 2 are monitored to determine scaling needs based on extraction 
frequency, Table 1 line 4, and the maximum extraction time, Table 1 line 5. 

If the maximum extraction time is exceeded, then more extraction nodes are added. If 
the maximum extraction time is not defined, then, if the extraction takes longer than the 
frequency cycle duration, more nodes 2 are added from the ready-nodes area 9. 
Table 2 API configuration to configure the transformation maximum queue size 

1 transformSetMaxSize( 
2 “16GB”, //maximum queue size 
3 “5GB”); //maximum limit size for scaling detection 

Transformation nodes 3 include a data queue with a maximum load size. Table 2 line 2 
specifies the maximum queue size, and line 3 specifies the maximum limit size for 
scaling detection. 

Ingress data goes inside the queues, then the transformation nodes, (with the 
transformation operations programmed by the data warehouse developer), extract and 
transform data. If at any point the queue starts filing up above a certain configured limit, 
it indicates that the ingress data-rate is more then the output transformation data-rate. 
Thus, more transformation nodes must be added. 

When scaling-up, a new node is added and the entire transformation process, present 
in other nodes, is replicated to the new node. 
Table 3 API configuration to specify the data buffer module storage size 

1 dataBufferSetSize( 
2 “dataBuffer1”, 
3 “5GB”, //maximum buffer memory size 
4 “10GB”, //limit buffer memory size 
5 “500GB”, //maximum buffer disk size 
6 “250GB”, //limit buffer disk size 
7 “D:”); //data buffer disk location 

The Data Buffer nodes 4 hold transformed data until the next data warehouse load 
instant. 
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Scaling decisions are made based on a number of parameters: maximum allowed  
in-memory buffer size; maximum allowed data write speed; and maximum allowed disk 
size. Table 3 illustrates these parameters. 

If the memory usage reaches the maximum configured data buffer memory size, then 
data is swapped into disk. If even so the memory becomes completely full, reaching the 
maximum memory size, more data buffer nodes must be added. Also, if the disk space 
reaches a configured limit, more data buffer nodes must be added. 
Table 4 API configuration for the data switch supported data rate 

1 dataSwitchSetDataRate( 
2 “dataSwitch1”, //data switch ID name 
3 “80000l/ s”, //maximum supported data-rate 
4 “2m”); //maximum time delay to trigger scale-out 

Data switch nodes 5 distribute and replicate data across the data warehouse nodes. These 
nodes extract data from the data buffers 4 using a scheduler-based extraction policy and 
load it into the data warehouse nodes 6. However, there are limitations regarding the 
amount of data each data switch node can handle. The command line in Table 4 line 3, is 
used to specify the maximum supported data-rate in lines per second. Line 4 represents 
the maximum time delay before trigger scale-out mechanisms. If, for the configured time 
duration, the data switch is always working at the maximum configured data-rate that 
means that these nodes are working at their maximum capacity (according to 
configuration) and must be scaled. 
Table 5 API configuration for the data warehouse extraction frequency 

1 dataWarehouseSetLoad( 
2 “* 30 1 * * *”, //load frequency 
3 “5h”, //maximum load time 
4 “100MB”); //maximum batch file 

The Data Warehouse nodes 6 load data during fixed instants for a certain time window. 
Table 5 line 2 represents the load frequency using the Unix cronjob time format, and  
line 3 represents the maximum allowed load time. If the maximum allowed load time is 
exceeded, then more data warehouse nodes need to be added. Another data warehouse 
scale scenario regards queries execution time. If queries take more time than a maximum 
configured limit to output the results, data warehouse nodes 6 must scale to offer more 
performance. 
Table 6 Maximum query execution time API configuration 

1 querySetMaxDWQueryExecutionTime( 
2 value); //max execution time for DW queries 
3  
4 querySetMaxD-DWQueryExecutionTime( 
5 value); //max execution time for D-DW queries 
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Table 6 shows the API to configure the maximum query execution time. The input 
parameters include the maximum desired execution time in seconds (s) or minutes (m). 

Figure 4 Extraction algorithm – scale-out 

 

7 Decision algorithms for scalability 

This section defines scalability decision methods as well as algorithms which allow 
AScale to automatically scale-out and scale-in each part of the proposed pipeline. 

7.1 Extraction and data distributors 

Figure 4 describes the algorithm used to scale-out. Depending on the number of existing 
sources and increasing data generation rate, eventually extraction nodes have to scale. 
The addition of more ‘extraction and data distributors’ nodes 2 depends on whether the 
current number of nodes is able to extract and process data with the correct frequency, 
within the configured maximum extraction time bound. For instance, if the extraction 
frequency is specified as every 5 minutes and extraction duration 10 seconds, then every 
5 minutes, the ‘Extraction and Data Distributor’ nodes cannot spend more than 10 
seconds extracting all data. Otherwise a scale-out is needed. If the maximum extraction 
duration is not configured, then the extraction process must finish before the next 
extraction instant, as specified by the extraction frequency parameter. 

Figure 5 describes the algorithm used to scale-in. To save resources and reuse them, 
data extraction nodes can scale-in. The decision is made based on last execution times. If 
previous execution times of at least two or more nodes are less than half of the maximum 
extraction time, minus a configured variation parameter (X), one of the nodes is set on 
standby (as ready-node) or removed and the other ones takes over. 
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Figure 5 Extraction algorithm – scale-in 

 

7.2 Transform 

The transformation process is critical. If the transformation is running slow, data 
extraction at the current data-rate may not be possible, therefore information will not be 
available for loading and querying when necessary. 

Transformation nodes have an input queue as shown in Figure 6. In Figure 6, we 
show the transform queue, used to determine when to scale the transformation phase. If 
this queue reaches a limit size (configured by the developer) because the actual 
transformer node(s) is not being able to process all data that is arriving (i.e., current 
ingress data-rate is larger than transformation output data-rate), then it is necessary to 
scale-out. Figure 6 describes the algorithm used to scale-out. 
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Figure 6 Transformation – scale-out 

 

Figure 7 Transformation – scale-in 

 

Figure 7 describes the algorithm used to scale-in. If queues size at a specific moment is 
less than half of the limit size for at least two nodes, then one of those nodes is set on 
standby (as ready node) or removed. 

7.3 Data buffer 

The data buffer nodes scale-out based on the memory size, the data swap speed from 
memory into disk and the available storage space to hold data. When the available 
memory queue size becomes above a certain limit, data starts being swapped into disk to 
reduce memory use under the limit size. If even so the data buffer memory reaches the 
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maximum memory limit size, then the data buffer scales-out. This means that the 
incoming data-rate (going into memory storage) is not being swapped to the disk storage 
fast enough, therefore more nodes are necessary. 

If the disk space becomes full above a certain configured size, the data buffers are 
also set to scale-out. 

Figure 8 describes the algorithm used to scale-out the data buffer nodes. Data buffers 
can also scale-in. In this case, the system will do so if the data from any data buffer can 
fit inside the data buffer of any other node. 

Figure 8 Data buffers – scale-out 

 

Figure 9 Data switch – scale 
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7.4 Data switch 

The data switch nodes scale based on a configured maximum supported data-rate. That 
data-rate cannot be reached or passed for more then a configured time window. If the 
datarate rises above the configured limit for a certain time window, data switch nodes are 
set to scale-out. Figure 9 describes the algorithm used to scale the data switch nodes. The 
data switches can also scale-in. In this case, the system will allow it if the data-rate for at 
least two nodes is half of the configured maximum, minus a (Z) configured variation 
parameter. 

7.5 Data warehouse 

Data warehouse scalability needs are detected after each load process or after any query 
execution. The data warehouse load process has a configured limit time duration to be 
executed every time it starts. If that time is exceeded, then the data warehouse must  
scale-out. Likewise, queries also have a maximum execution time. If query execution 
time is exceeded, the data warehouse must scale-out. The number of nodes to scale-out is 
determined assuming linear scalabilty based on previous number of nodes and execution 

time .loadTime n
targetTime

⎛ ⎞×⎜ ⎟
⎝ ⎠

 In this equation, the ‘loadTime’ represents the last recorded load 

time, ‘targetTime’ represents the desired target load time and ‘n’ represents the current 
number of nodes. Figure 10 describes the algorithm used to scale the data warehouse 
when the maximum load time is exceeded. 

Figure 10 Data warehouse – scale 

 



   

 

   

   
 

   

   

 

   

   64 P. Martins et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Data warehouse scalability is not only based on the load and integration speed 
requirements, but also on the maximum execution queries time. After a query is executed, 
if the query time is more than the configured maximum, then the data warehouse is set to 
scale-out. Figure 11 describes the algorithm used to scale-out the data warehouse based 
on the query execution time. 

Figure 11 Data warehouse – scale based on query time 

 

Data warehouse nodes scale-in is performed iff the average query execution time and the 
average load time respects the conditions (1) and (2) (where n represents the number of 
nodes): 

( 1)n avgQueryTime desireQueryTime
n

− ×
≤  (1) 

and 

( 1) maxn avgLoadTime LoadTime
n

− ×
≤  (2) 

Every time the data warehouse scales-out or scales-in, the data inside the nodes needs to 
be re-balanced. The default re-balance process to scale-out is based on the phases: extract 
and replicate data from data warehouse nodes; load the extracted information into the 
new nodes (data is extracted and loaded across the available nodes as if it is new data). 

Both data warehouse scale-out and scale-in require the administrator approval, since 
this process can lead to extended offline periods. 
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7.6 Global ETL scalability 

Besides defining partial limits for each part of the ETL+Q pipeline, it is also useful to 
configure only a desired global ETL processing time. In this case, AScale will choose to 
scale-out the part of the pipeline that is performing slower. 

Figure 12 explains based on an example the scaling of the ET and L. Assume that the 
current execution time of ET and L are respectively 2 and 10 hours, and the desired 
execution time is 5 hours. Based on these times, the target time for the ET is 0.83 hours 
and for the L is 4,17 hours. Then by applying following formula the necessary number of 

nodes is estimated linearly, ,currentTime n
targetTime

×  where ‘currentTime’ is the current 

execution time, ‘targetTime’ is the desired execution time and ‘n’ represent the current 
number of nodes. For the given example this results in: for the ET we would need 

2 1 2,
0.83

× =  4 nodes which correspond to 3 nodes, and for the L, 10 1 2,
4.17

× =  39 nodes, 

which corresponds to 3 nodes. Note that, in the ET the extra nodes are added to the E 
process only, then the T process scales based on ingress data queues monitoring to keep 
up with the extraction rate. 

Figure 12 Example, estimating the scaling proportion of the ET and L 

 

Another option is to configure both types of time bound limits: a global time bound for 
the entire ETL process and at the same time local bounds for the parts. In this case, 
AScale can use the local bounds to decide where to scale. 
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8 Experimental setup 

In this section, we describe the testbed, hardware, software and ETL operations used in 
the setup. An experimental setup was built to simulate not only the data warehouse, but 
also, all ETL processes. The decision of using TPC-H data as source data logs, and SSB 
as the data warehouse schema and queries, was taken to reuse related work from the 
research group, for instance, Ferreira and Furtado (2013) and Martins et al. (2011), which 
had already some parts of the framework pipeline developed. This option also allowed us 
to better control data transformations and corresponding staging area volume and data 
synchronisation, allowing us to build it with less complexity, thus easier to test the 
proposed AScale concepts. 

Data sources logs for extraction: the structure of the simulated logs is the same as the 
TPC-H generated data logs structure, consisting of logs representing each of the tables: 
part, supplier, nation, region, partsupp. Regarding the tables ‘lineitem’ and ‘orders’, they 
were merged into a single log with the following structure: the log is a set of ‘order’ rows 
and for each order the log contains the respective related lineitem rows as subsequent 
rows of the order. 

Data extraction is made considering the start and end of each order (including the 
respective items), in order to keep data together and consistent. 

Data transformation: after data is extracted from TPC-H log files, it is set to be 
transformed. The TPC-H tables, part, supplier, nation, region, partsupp are also keep in 
the transformation nodes (staging area) using a Postgre SQL database. The stored data is 
transformed in order to recreate the SSB schema. 

Additional transformations were applied: names were split and concatenated into last 
name and given names. The first letter of each name was set to upper-case and remaining 
letters were set to lower case; Addresses were cleaned and transformed by converting 
keywords (e.g., street) into abbreviated words, using a translation lookup table in 
memory. Moreover, the first letter of each name was set to upper-case and remaining 
letters to lower case. The postal code was added (concatenated), using a translation table 
in memory to correlate each city with a postal code; The phone numbers were converted 
into groups of three numbers, adding the country and city code, depending on the postal 
address code; Categories were converted/written into full text (no abbreviations); Dollar 
coin numbers were converted into Euros; sizes and weights were converted into the 
normalised international system. The data output from these transformation operations is 
then stored and ready to load. 

Data warehouse: the data warehouse has the same base structure as the SSB 
benchmark. 

8.1 Hardware and software 

The experimental tests were performed using 12 computers, denoted as nodes, with the 
following characteristics: Intel Core i5-5300U Processor (3M Cache, up to 3.40 GHz); 
Memory 16 GB DDR3; Disk western digital 1TB 7,500 rpm; Ethernet connection  
1 Gbit/sec; Connection switch SMC SMCOST16, 48 Ethernet ports, 1 Gbit/sec. 

Software installed/used. The 12 nodes were formatted before the experimental 
evaluation and installed with: Windows 7 enterprise edition 64 bits; Java JDK 8; 
Netbeans 8.0.2 Oracle Database 11g Release 1 for Microsoft Windows (X64); MySQL 
5.6.23 used in the dynamic data warehouses; PostgreSQL 9.4 used for lookups during the 
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transformation process; Esper 5.1.0 for Java as CEP process engine; TPC-H benchmark 
dataset; SSB benchmark, representing the data warehouse schema and queries. 

For this experimental evaluation, we assume that a node corresponds to a physical 
machine. However, due to limited available resources, some virtual nodes were created, 
and other nodes resources redirected and reused, in such way that AScale pipeline 
processing was not affected. 

9 Typical data warehouse scenario 

In this section, we evaluate AScale in a scenario where, due to log sizes and limited 
resources, data load takes too long to perform if scalability is not applied. We start with 
only two nodes (two physical machines), one for handling extraction and transformation, 
the other to hold the data warehouse. AScale is setup to monitor the system and scale 
when needed. 

Data is extracted from sources, transformed and loaded only during a predefined 
period (e.g., night), to be available for analysis the next day. The maximum extraction, 
transformation and load time, all together cannot take longer than 9 hours (e.g., from 0am 
until 9am). AScale was configured with an extraction frequency of every 24 hours and a 
maximum extraction duration of 4 hours, a transformation queue with a limit size of  
10 GB and data warehouse loads were configured for every 24 hours, with a maximum 
duration of 9 hours. 

Figure 13 AScale, 9 hours limit for ETL 
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The experimental results in Figure 13 show the total AScale ETL time using two nodes 
(two physical machines), one for extraction, transformation, data buffer and data switch 
[Figure 13(a)], the other for the data warehouse [Figure 13(b)]. Up to 10 GB of log size, 
the ETL process can be handled within the desired time windows. However, when 
increasing to 50 GB, 9 hours are no longer enough to perform the full ETL process. In 
this situation the data warehouse load process (load, update indexes, update views) using 
one node (average load time 873 minutes) and two nodes (average load time  
483 minutes) exceed the desired time window. When scaled to 3 nodes, by adding 
another data warehouse node [Figure 13(b)], the ETL process returns to the desired time 
bound. 

10 Near-real-time and minimal downtime scenarios 

In this section, we assess the scale-out and scale-in abilities of the proposed framework in 
near-real-time scenarios, as well as scenarios where downtime should be minimised. Near 
real-time scenarios require data to be always up to date and available to be queried (i.e., 
data freshness). In order to guarantee this, it is necessary to integrate new data in a 
predefined and very small time window. 

The scenario was set-up as follows: E (extraction) and L (load) were set to perform 
every 2 seconds; T (transformation) was configured with a maximum queue size of  
500 MB; the load process was made in batches of 100 MB maximum size. The ETL 
process is allowed to take 3 seconds at most. 

Figure 14 Near-real-time, full ETL system scale-out 
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Figure 15 Near-real-time, full ETL system scale-in 

 

Figures 14 and 15 show AScale scaling-out and scaling-in automatically to deliver the 
configured near-real-time ETL time bounds while the data rate increases or decreases 
respectively. The X axis represents the data-rate, from 10,000 to 500,000 rows per 
second; the Y axis is the ETL time expressed in seconds; the system objective was set to 
deliver the ETL process in 3 seconds; the charts show the scale-out and scale-in of each 
part of AScale, obtained by adding and removing nodes when necessary; A total of 7 data 
sources were used/removed gradually, each one delivering a maximum average of  
70,000 rows/sec; AScale used a total of 12 nodes to deliver the configured time bounds. 

Scale-out results in Figure 14 show that, as the data-rate increases and parts of the 
ETL pipeline become overloaded, by using all proposed monitoring mechanisms in each 
part of the AScale framework, each individual module scales to offer more performance 
where and when necessary. 

Scale-in results in Figure 15 show the instants when the current number of nodes is 
no longer necessary to ensure the desired performance, leading to removal of some nodes 
(i.e., set as ready nodes in stand-by, to be used in other parts). 

The next (sub)sections detail how each part of the ETL and queries scale-out in the 
near-real-time scenario. 

10.1 Scalability of data extraction 

Considering data-sources generating high-rate data and extraction-nodes to extract  
the generated data, when the data flow is too high, a single data node cannot  
handle all ingress data. In this section, we study how the extraction nodes scale to  
handle different data-rates, using the data setup similar to the one used in  
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the previous section. The maximum allowed extraction time was set to 1 second 
(maxextractionTime < maxdesiredExtractionTime); and extraction frequency was set to every  
3 seconds (maxextractionTime < ExtractionFrequency). 

Figure 16 shows the extraction nodes automatic sacalbility in near-real-time. The left 
Y axis represents average extraction time in seconds, the right Y axis represents the 
number of nodes used; the X axis represents data-rate; the black line represents extraction 
time; the grey line represents the number of nodes as they scale-out. Every time the 
extraction time is above the configured threshold limit of 1 second, a new node is 
automatically added (from the pool of ready-nodes). After the new node is added, more 
nodes are being used to extract data from the same number of sources, improving the 
extraction performance. 

Figure 16 Extraction scalability 

 

10.2 Transformation scalability 

During the ETL process, after data is extracted, it is set for transformation. Because this 
process can be computationally heavy, it is necessary to scale the transformation nodes to 
ensure that all data is processed without delays. Data ingress transformation queues are 
monitored. Once it is detected that a queue is full above a certain configured threshold 
(i.e., Rateextract ≥ Ratetransform), AScale scales the transformation process. 

The transformation nodes scale-out mechanisms were set to limit the queue memory 
size to a maximum of 5 GB before swapping data into disk, and 500 MB as the limit to 
trigger the scaling mechanism (corresponding to 100,000 rows). Figure 17 shows the 
addition of new transformation nodes, as queue sizes increase above the configured limit. 
The Y axis represents average queue size in number of rows, the X axis shows the data 
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rate expressed in rows per second. Each plotted bar represents the average transformation 
queue size (up to 4 nodes). As can be seen in Figure 17, as soon as the data rate reaches 
80,000 rows/sec, AScale detects overload in the queue (queue size above 100,000 rows) 
and triggers addition of a new node. The new node can be seen in the 120,000 rows/sec 
bar, where two queues allow the system to handle the data rate satisfactorily. After that, 
as the data rate reaches 200,000 rows/sec the maximum queue size is reached again 
triggering addition of one more node. The scale-out can be seen in the 240,000 rows/sec 
bar, where three queues are again able to handle the increased load. A fourth and fifth 
node are added again to scale at 320,000 rows/sec and 440,000 rows/sec respectively, as 
can be seen in Figure 17. 

Figure 17 Automatic transformation scalability 
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Figure 17 ‘Zoom Box A’ shows the detail of what happens when the queue sizes of 
transformation nodes increase above the configured limit. As overload is detected a new 
transformation node is added. The new node takes approximately 1 minute to be ready 
(see zoom box A), the delay corresponds to the necessary time to replicate/synchronise 
the node and respective staging area. After the node is fully working, data is distributed 
using a least renaming work (LWR) algorithm, which makes the queue of the new node 
balance the sizes of all nodes. 

10.3 Data buffer nodes 

Data buffer nodes hold the transformed data until it is loaded into the data warehouse. For 
this experiment the data buffers were configured as follows: we consider only the data 
generation/producer, there is no data ‘consumer’, so the buffer must hold all ingress data; 
the generation data-rate speed was set to 1,500,000 rows per second (i.e., transformation 
output data rate) in such way that the disk speed cannot swap all data fast enough, leading 
the memory to increase until its maximum; available memory storage was set to 10 GB; 
memory storage limit before data swap into disk was set to 5 GB; available disk storage 
was 1 TB. 

When the limit memory size is reached (5 GB), data starts being swapped into disk. 
However, because the disk speed cannot handle all ingress data-rate, the memory reaches 
the maximum limit size (10 GB). At that moment a new data buffer node is added. After 
the new node is added, data is distributed, using LWR, making the queue of the newly 
added node increase faster. After a while, the data volume in each data buffer returns to 
normal. 

Figure 18 Data buffer swap into disk and scaling 
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Figure 18 shows an extreme scenario where the data buffer write speed from memory 
into disk (swap) is not fast enough. This scenario leads to a scale-out of the data buffer 
node. Figure 18 shows the data queue size increasing until the ‘limit memory size’  
(5 GB), at that moment data starts being swap into disk in an attempt to release memory 
space. However, because the data rate is too high the memory continues increasing until 
the ‘maximum memory size’. Once the memory is at the ‘maximum memory size’ 
another node is added and data is distributed by both nodes. In Figure 18, we also show 
the data memory queue of the second node increasing and the swap process occurring 
again. Although because now there are two nodes handling the ingress data rate, the data 
swap speed can free the memory. 

Figure 19 Data warehouse load scalability 

 

10.4 Data warehouse load and query scalability 

In this section, we test the data warehouse scalability, which can be triggered either by 
the load process (because it is taking too long), or because query execution is taking more 
time than the configured response time bounds. 

To test the load scalability we create the setup: loads are from batch files, each 
approximately size 100 MB each; the maximum allowed load time is set to 60 seconds; 
each time a data warehouse node is added we show the data size that was moved into the 
new node and the required time in seconds to re-balance data; all load and re-balance 
times include the execution of pre-load tasks (i.e., drop all indexes and views) and  
pos-load tasks (i.e., build all indexes and views). 

Load scalability: the experimental results in Figure 19 show the data warehouse 
scaling when the data size to be loaded increases and as consequence the load time also 
increases above the predefined bound: the left Y axis represents average load time in 
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seconds; the right Y axis shows the number of data warehouse nodes; the X axis 
represents the data batch size in MB; the horizontal bar at Y = 60 seconds represents the 
maximum configured load time; at each scale-out moment there are notes specifying the 
data re-balanced size and time to perform it; the black plotted line represents average load 
time; the grey plotted line represents number of data warehouse nodes. 

The results in Figure 19 show how load performance degrades as the data size 
increases and how it improves when a new node is added. After a new node is added, 
performance improves to meet the maximum configured load limit. 

Query scalability: when running queries, if the maximum desired query execution 
time is exceeded, the data warehouse is set to scale-out in order to offer better query 
execution performance. The following workloads were considered to test AScale query 
scalability: 

• Workload 1 (WL 1): 

a 50 GB total size 

b execute Q1.1, Q2.1, Q3.1, Q4.1 randomly chosen 

c desired execution time per query: 1 minute (60 seconds). 

• Workload 2 (WL 2) – as workload 1 but, 1 to 8 simultaneous sessions used. 

Workload 1 studies how the proposed mechanisms scales-out the data warehouse when 
running many queries. Workload 2 studies AScale scalability running simultaneous 
sessions (e.g., number of simultaneous users). Both workloads were set with the objective 
of guaranteeing the maximum execution time per query of 60 seconds. 

Figure 20 Data warehouse scalability, workload 1, 50 GB dataset 
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Query-based scalability, WL1: Figure 20 shows the experimental results for workload 1, 
where: the Y axis represents the average execution time in seconds; X axis represents the 
data size per node and the current number of nodes; the horizontal line over  
60 seconds represents the desired query execution time; white bars identify the total 
workload time and grey bars the re-balance time (i.e., extract data, load into nodes, 
rebuild indexes and views). The results show that every time a query is executed and the 
average query time is not inferior to the maximum configured query execution time, one 
extra node is added (scale-out). In each scale-out the re-balance time represents the 
necessary time to extract data from existing nodes, re-distribute it and rebuild indexes and 
views. Once the average query time becomes lower than the configured desired execution 
time, the framework stops scaling the data warehouse nodes. 

Simultaneous session query scalability, WL 1: Figure 21 shows how the data 
warehouse scales when simultaneous sessions are executing. Figure 21 shows the left Y 
axis represents average query execution time in seconds; X axis shows the number of 
sessions, the data size per node and the number of nodes; grey bars represent the data  
re-balance average time in seconds (i.e., extract from nodes, load into new node, rebuild 
indexes and views); white bars show average query execution time. The results in  
Figure 21 show that, the number of simultaneous session’s increases, the system scales 
the number of nodes in order to provide more performance. Thus, average query 
execution time follows the configured parameters. 

Figure 21 Data warehouse scalability, workload 2, 50 GB dataset 

 

Note that since both loads and query execution are performed against the data warehouse 
and the data warehouse is scaled, AScale query execution performance improves at the 
same time the data warehouse load performance improves and vice versa. 
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11 Conclusions and future work 

We proposes an approach and a framework, named AScale, that automatically scale the 
ETL+Q process, allowing the developer to focus only in the conceptual ETL+Q model. 
We highlight the contributions: an approach to automatically parallelise ETL and Query 
execution (ETL+Q), able to modify individual components when they need to scale out 
or in; dynamic-data-warehouse (D-DW). We propose an in-memory dynamic store and 
processing approach which, when added to the system, provides total freshness and  
real-time; experimental evaluation of the proposals, showing that AScale is able to  
scale-out when performance bottlenecks are detected, and that it is also able to scale-in 
when resources are not needed. 

There are a number of interesting directions for future work, for instance, the 
implementation of proactive and predictive scalability mechanisms, visual tools  
(drag-and-drop) to build schemas and to configure ETL processes, exploration and 
applicability to the cloud for elastic scalability. 

References 
Albrecht, A. and Naumann, F. (2009) ‘METL: managing and integrating ETL processes’, VLDB 

PhD Workshop. 
Ferreira, N. and Furtado, P. (2013) ‘Real-time data warehouse: a solution and evaluation’, 

International Journal of Business Intelligence and Data Mining, Vol. 8, No. 3, pp.244–263. 
Karagiannis, A., Vassiliadis, P. and Simitsis, A. (2013) ‘Scheduling strategies for efficient ETL 

execution’, Information Systems, Vol. 38, No. 6, pp.927–945. 
Liu, X. (2012) Data Warehousing Technologies for Large-Scale and Right-Time Data, PhD thesis, 

dissertation, Faculty of Engineering and Science at Aalborg University, Denmark. 
Liu, X., Thomsen, C. and Pedersen, T.B. (2012) ‘Map Reduce-based dimensional ETL made easy’, 

Proceedings of the VLDB Endowment, Vol. 5, No. 12, pp.1882–1885. 
Martins, P., Costa, J., Cecílio, J. and Furtado, P. (2011) ‘VarDB: high-performance warehouse 

processing with massive ordering and binary search’, Data Warehousing and Knowledge 
Discovery, pp.184–195, Springer. 

Pentaho (2014) Pentaho, 2014-10-07. 
Simitsis, A., Gupta, C., Wang, S. and Dayal, U. (2010) ‘Partitioning real-time ETL workflows’, in 

Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on,  
pp.159–162, IEEE. 

Simitsis, A., Vassiliadis, P. and Sellis, T. (2005a) ‘Optimizing ETL processes in data warehouses’, 
Data Engineering, 2005: ICDE 2005: Proceedings 21st International Conference on,  
pp.564–575, IEEE. 

Simitsis, A., Vassiliadis, P. and Sellis, T. (2005b) ‘State-space optimization of ETL workflows’, 
Knowledge and Data Engineering, IEEE Transactions on, Vol. 17, No. 10, pp.1404–1419. 

Thomsen, C. and Bach Pedersen, T. (2009) ‘pygrametl: a powerful programming framework for 
extract-transform-load programmers’, Proceedings of the ACM Twelfth International 
Workshop on Data Warehousing and OLAP, pp.49–56, ACM. 

Vassiliadis, P. and Simitsis, A. (2009) ‘Near real time ETL’, New Trends in Data Warehousing and 
Data Analysis, pp.1–31, Springer. 

Wang, G. and Guo, C. (2011) ‘Research of distributed ETL engine based on MAS and data 
partition’, Computer Supported Cooperative Work in Design (CSCWD), 2011 15th 
International Conference on, pp.342–347, IEEE. 


