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Abstract: First, the fractal model of surface errors was constructed by means 
of the Monte Carlo method, and the source term and spectral amplitude of 
surface errors were calculated. The reconstruction model of surface errors was 
then established. The non-differentiable problem of the fractal model was 
solved by the fractional differential theory. To verify the accuracy of proposed 
models, a waveguide filter was manufactured. The reconstruction results 
obtained by the fractal function model were compared with the measured 
results, and a comparison of the results obtained by different reconstruction 
models proves that the fractal function is optimal in modelling. 
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1 Introduction 

The waveguide is a fundamental part of electronic devices such as a waveguide filter, a 
planar slotted-waveguide array antenna, or an active phased array antenna. However, it is 
impossible that the inner wall of a waveguide is perfectly smooth, because of current 
machining technology deficits; therefore, surface errors inevitably exist (Marton and 
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David, 2015; Marta et al., 2015; Xiu et al., 2014). These surface errors change the flow 
path of surface currents, which reduces effective surface conductivity. The overall 
transmission losses of a waveguide can reach up to 45% (Gu et al., 2010). Accordingly, 
waveguide surface errors cannot be neglected. An accurate description of surface errors is 
an indispensable precondition before investigating the influence mechanism of surface 
errors on the waveguide’s transmission performance. 

Generally, there are two methods used to describe a waveguide’s surface errors – 
modelling and reconstruction. Modelling is currently the predominant method (Guo et al., 
2010; Ding et al., 2012). In modelling, sufficient accurate surface measurement data are 
required. However, after processing, the waveguide is a closed cavity, and the inner wall 
cannot be measured accurately. Engineers often perform measurements on the waveguide 
before encapsulation (Shang et al., 2011). However, during the encapsulation, new errors 
are likely to be produced, leading to inaccuracy of the measured data. 

This may account for the low finished product ratios of these products (Nitin et al., 
2014; VillaVelázquez-Mendoza et al., 2014). 

There are two existing methods to reconstruct surface errors: the direct and indirect 
reconstruction methods (Li et al., 2015; Dong et al., 2016). In the direct method, we can 
directly reconstruct the contour information of errors based on the device’s electrical 
properties (Chakrabarti et al., 2013; Cai et al., 2006). But the indirect method provides 
parameter information rather than the overall contour information of errors (Galdi et al., 
2006; El-Shenawee et al., 2009; Xuan et al., 2013). In practical applications, the overall 
contour information of surface errors affects the transmission losses of a waveguide. It is 
not enough to have parameter information only, so the direct inversion method is the only 
selection for us. Desanto and Wombell (1991) innovatively introduced spectral analysis 
into electromagnetic scattering and inverse scattering algorithms. They substituted the 
source term and spectral amplitude in spectrum theory for the incident field and scattered 
field in electromagnetic field theory. On the basis of the reconstruction method proposed 
by Desanto and Wombell (1991) and Guo and Liang (2011) improved methods for 
solving for unknown quantities in the incident field. They adopted the mixed algorithm of 
the perturbation method and method of moment (MOM) to derive the Gaussian surface 
error on small scales; for the inversion of Gaussian surface error on large scales, they 
chosen the mixed algorithm of MOM and Kirchhoff approximation. 

Based on these studies, we proposed a novel reconstruction method for surface errors 
on a waveguide’s inner walls by combining the perturbation method and MOM. A cavity 
filter was selected for measurement and calculation, and the results calculated by the 
proposed method were compared with those calculated by classical models, and 
measured data. Our calculation results clearly fit well with the measured data and are 
superior to the results calculated by the classical models. 
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2 Modelling of the surface errors 

In 1975, Mandelbrot and Vannes (1968) proposed the concept of fractal, which states that 
similarities exist between the whole and parts. This description has gained general 
consent in modelling of machining surfaces. The characteristics of surface errors on 
waveguide’s inner wall fit well with a fractal function (Liang et al., 2012; Mandelbrot, 
1982). The function can be written as: 

( )1
(2 )

1

cos 2
( ) , (1 2)

n
nD

d n
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πγ x φ
f x G D
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−

−
=

+
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in which, D denotes the fractal dimension, γ denotes the spatial frequency, and γ > 1. n is 
the number of tones and φn is a phase term that had a uniform distribution over the 
interval [–π, π]. Figure 1 presents the one-dimensional surface error models based on the 
W-M fractal function with different amplitudes (G), when γ = 1.5 and D = 1.3. 

The two curves in Figure 1 show that when the fractal dimension D and γ remain 
unchanged and the value of amplitude G varies, the two models exhibit similar height 
fluctuations frequencies and local fine structures. However, the heights of the fluctuations 
of these two models are slightly different, suggesting that the value of G is mainly used 
for controlling the amplitude of surface errors. 

Figure 1 One-dimensional surface error models with different amplitudes (see online version  
for colours) 
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Figures 2(a) and 2(b) show that when the values of G and γ are identical, these two 
models exhibit differences not only in terms of amplitude, but also in local fine 
structures. Moreover, the larger the value of fractal dimension D, the local fine structures 
are more complicated. Therefore, we can conclude that fractal dimension D reflects the 
degree of complexity, irregularity, fineness, and filling of surface errors in the space. 
Specifically, a larger value of fractal dimension D is indicative of higher complexity. 

Figure 2 One-dimensional roughness models with different fractal dimensions 

 
(a) 

 
(b) 

By comparing the two curves in Figures 3(a) and 3(b), we can conclude that when the 
values of G and D are same, the parameter of γ mainly affects the overall smoothness of 
the error models. The closer the value of γ approaches 1, the smoother the model is. In 
some extreme cases when γ = 1, as described in equation (1), the fractal error function 
can be written as the summation of a series of periodic functions, and the model can be 
transformed into a smooth curve. Therefore, for a fractal model, the value of γ must be 
larger than 1. 
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Figure 3 One-dimensional roughness models with different fractal frequencies (see online 
version for colours) 

 
(a) 

 
(b) 

3 Reconstruction of the surface errors 

3.1 Source term and spectral amplitude of surface errors 

The sampling length of surface errors was set as L, and then a series of discrete points 

were selected within the range from 
2
L−  to ,

2
L  i.e., .

2 2
L Lx− ≤ ≤  When ,

2
Lx >  the 

surface current of errors is zero, and the edge current on the surface of errors suddenly 
becomes zero from non-zero values, giving rise to an artificial reflection. To avoid this 
problem, the pyramidal wave was selected as the illumination source. From the central 
point of error surface to both ends, the exposure intensity of the pyramidal wave was 
gradually attenuated to be zero in the form of Gaussian function. The pyramidal wave 
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function can be written as (Tsang et al., 2001): 

( )
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in which k0 is the wave number, g refers to the pyramidal factor and represents the beam 
length of the pyramidal wave, θi denotes the incident angle, and W is the additional phase 
term. This can be written as: 
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In 1985, US researcher Desanto proposed a method to solve the electromagnetic 
scattering problem for rough surfaces. This method is called the spectral representation 
method, whose basic ideas are described below. When the Dirichlet boundary condition is 
satisfied, the integral equations, which include the morphology function of the rough 
surface, f(x), can be expressed in frequency domain. These two integral equations are 
referred to as the source term and spectral amplitude. Their mathematical forms can be 
written as (Liang et al., 2011): 
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iR q p ε x p e e dx
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−
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in which Ri(q, p) denotes source term, Rs(q, p) denotes the spectral amplitude of the 
scattered field, p and q are the incident and scatter wave vectors, respectively, and  

p = k0 sin θi, 0
2 ,πk
λ

=  0 sin ,sq k θ=  2
0 0( ) 1 cos ,sq k q k θ= − =α  θi denotes the incident 

angle, and θs denotes the scattering angel. ε(x, p) is a scalar with no units and exhibits the 
following relationship with the total field of error surface: 

( ) ( ) [ ]1
0 ( )

( , ) ( ) ( , )z n z f x
ε x p ik f x φ x z−

=
′= ∂ − ∂ ×  (5) 

in which ∂z denotes the partial derivative operator along the z direction, and ∂n denotes a 
partial derivative operator along the normal direction. 

At any distance above the surface, where z = h, the relationship between the source 
term and the incident field can be expressed as (Liang et al., 2011): 
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in which 2
0 0( ) 1 cos ip k p k θ= − =α  and M = (ik0)–1 ∂zφi. 

The spectral amplitudes for the far field and scattered fields have the following 
relationship: 
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in which, 2 2 .r x z= +  

3.2 Reconstruction model of surface errors 

Based on Euler’s formula e±ix = cos (x) ± i sin (x), the source term and spectral amplitude 
can be written as: 
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with equations (6) and (7), we can obtain: 
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For the surface errors on small scales, ( ) ( ) 1,q f xα  approximately, α(q)f(x) = 0. The 
product factors can be written as cos(α(q)f(x)) = 1 and sin(α(q)f(x)) = α(q)f(x). Given 
these two assumed conditions, the solution of the inversion model f′(x) of surface errors 
can be expressed as: 

[ ]

1

1

Ω ( , )
( )( )( )

( ) Ω ( , )

q pF
qF xf x

F x F q p

−−

−
−

+ +

⎡ ⎤
⎢ ⎥⎣ ⎦′ = =

α
 (12) 

in which F–1( · ) denotes Fourier inversion. 
The series of inversion formulas stated above allow us to conclude that, to solve the 

reconstruction problem of one-dimensional surface errors on small scales, the source term 
and spectral amplitudes should be first combined and approximated (He et al., 2014). 
Then the Fourier inversion can be conducted on these data, and the surface errors can be 
reconstructed. This method is called the mixed reconstruction algorithm of MOM and the 
perturbation method (abbreviated as the MON-SPA method). 
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3.3 Reconstruction of fractal model 

For each side of the fractal model equation (1), we take the derivative with respect to x, 

( )1
(1 )

1

sin 2
( ) 2

n
D

D n
n

πγ x
f x πG

γ

∞
−

−
=

′ = − ∑  (13) 

It can be found that, when 1 < D < 2, the derivative f′(x) approaches infinity, i.e., f(x) is 
non-differentiable, and its derivative does not exist. 

Since each point in the fractal function is continuous and non-differentiable, it 
becomes fairly difficult to solve source term and spectral amplitude. To give an accurate 
expression, we should first take the derivative of the fractal function. However, each 
point in fractal function is non-differentiable; ε(x, p) cannot be accurately expressed and 
the subsequent inversion process cannot move forward. 

Regarding the fractional calculus for the fractal function, the scholars have performed 
many studies, which have also been successfully applied in several aspects. For example, 
Mandelbort and Salvatore applied fractional calculus to processing white noises and 
images and acquired some desirable results (Enriquez et al., 2004; Salvatore and Mario, 
2014). In China, Yao and Zhou conducted in-depth studies on the characteristics of the 
fractional calculus image for the fractal function. They discussed the fractal dimension of 
the fractional calculus images in detail (Liang and Su, 2008). Based on fractal theory and 
fractional calculus theory, the derivative of fractal function can be determined as follows. 
First, the fractional calculus in fractal geometry can be defined as: 

11( ) ( ) ( )
Γ( )

x

D f x x t f t dt− −

−∞

= −∫ν ν

ν
 (14) 

in which 1Γ( ) te t dt
∞

− −

−∞

= ∫ νν  is the Gamma function. D–ν f(x), in the form of fractional 

calculus, can be referred to as the -order integral function of f(x). The parameter μ is then 
introduced, 0 < μ < 1, μ = 1 – ν, and we can obtain the following expression: 

[ ]( ) ( )μD f x D D f x= −ν  (15) 

D–ν f(x), in the form of fractional calculus, is then referred to as the μ-order differentiation 
function of f(x). 

According to these definitions, the fractional calculus expression of W-M fractal 
function, denoted as g(x), can be derived and written as: 

( )1 ( 1)
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( ) ( ) 1 , 2μ D D n n
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g x D f x G γ S μ πγ
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− −

=
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in which the function Sx(1 – μ, 2πγn) is the μ-order integral form of sin(2πγnx). It can be 
mathematically expressed as: 
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To invert the fractal model, we first solve the fractional derivative of W-M fractal 
function. The function ε(x, p) can then be solved. 

Figure 4 Source terms of fractal surface errors with different incident angles (see online version 
for colours) 

 

As shown in Figure 4, for one-dimensional fractal surface errors, the source terms reach 
the peaks at the scattered angles (0° and 30°) and then decrease toward two sides that are 
irrelevant to the errors’ height information. The results are compatible with the 
conclusions for source terms in Gaussian surface error and periodic surface error, which 
suggests that it is reasonable to use the fractional derivative model to calculate the source 
term of fractal surface errors. 

Figure 5 Spectral amplitudes of fractal surface errors with different incident angles (see online 
version for colours) 
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As shown in Figure 5, for one-dimensional fractal surface errors, the spectral amplitudes 
are larger at the middle position of x-axis and smaller on both sides. When the incident 
angles are 0° and 30°, the spectral amplitudes reach the peaks at their respective 
mirroring scattered angles and decline gradually toward the sides. These results are also 
consistent with the spectral amplitudes in Gaussian surface error and periodic surface 
error, suggesting that calculating the spectral amplitudes of fractal surface errors using 
fractional derivative model is also reasonable. 

4 Experimental verification of proposed methods 

4.1 Introductions the sample and experiment condition 

To verify the accuracy of the proposed reconstruction method, a seven-stage waveguide 
filter as shown in Figure 6(a) was selected and the surface errors on its upper inner walls 
were measured. Errors are measured by the Taylor Hobson profile measuring  
instrument, and the concrete testing parameters are R/4 * 0.8 mm/G/300/LS and  
4.1 mm/Admin/INTRA 50 mm. Figure 6(b) presents the measured surface errors of the 
waveguide filter. The reconstruction model based on the fractal function was used for a 
direct comparison. 

Figure 6 (a) A seven-stage waveguide filter (b) Measured surface errors of the inner walls of a 
cavity filter (see online version for colours) 

 
(a) 

 
(b) 
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The local contour of these measured results was reconstructed with the fractal function. 
Figure 7 shows the measured data and the data calculated by reconstruction model for a 
direct comparison. 

Figure 7 Comparison of the measured data and reconstruction model (see online version  
for colours) 

 

Figure 7 shows that the data calculated by the reconstruction model are in good 
agreement with the measured data, with an error value of 0.0071 μm (1.578 × 10–5 λ). 
Subsequently, in order to verify the superiority of the proposed method, the 
reconstruction calculations were conducted on the same error surface using the 
exponential function, the Gaussian function, and the fractal function. Then the error 
values of the various reconstruction models were compared. The exponential function, 
the Gaussian function, and the fractal function were denoted by f1(δ1, l1), f2(δ2, l2) and 
f3(G, D), respectively, in which δ and l denotes the root-mean-square height and 
correlation length, respectively, G denotes the amplitude of fractal model, and D denotes 
the fractal dimension. In terms of the power spectral density function of the error surface, 
the power spectral density functions of the exponential function and the Gaussian 
function can be expressed as (Xu et al., 2012; Elson and Bennett, 1995): 
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1 2 2
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 (18) 

2 2
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The power spectral density function for the error surface described by W-M fractal 
function can be obtained by discrete Fourier transformation (Zhou and He, 2004): 

( )( )( ) ip ω F f x=  (20) 
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After transformation, we took the logarithm of the result and acquired the curve of  
log p(ω) ~ log (ω). Linear fitting was performed on the curve using the least square 
method. After the line of best fit was found, the slope and intercept exhibited the 
following relationship with the primary parameter of fractal function (G and D): 

5
2

kD +=  (21) 

2( 1) log log(2 ln )B D G γ= − −  (22) 

in which k and B denote the slope and intercept of the straight line after fitted. The 
amplitude G and fractal dimension D of the fractal function can also be solved. As shown 
in Figure 8, the power spectrum curve and the fitting line of the reconstruction W-M 
show a good agreement with the test data, and the error on the indexes value of test data 
(k1 and B1) and that W-M function (k2 and B2) is small. 

Figure 8 Comparison of the power spectrum curve and fitting line of the W-M to test data  
(see online version for colours) 

 

Figure 9 Reconstruction results of the error surface using different model functions (see online 
version for colours) 

 
(a) 
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Figure 9 Reconstruction results of the error surface using different model functions (continued) 
(see online version for colours) 

 
(b) 

 
(c) 

4.2 Results and discussion 

As shown in Figures 9(a)–9(c), the error values based on these three reconstruction 
models are 1.0170, 2.7040, and 0.4331, respectively. When the fractal model is being 
used, the error value is at the minimum and the reconstruction results are optimal. 

5 Conclusions 

The reconstruction problem for scattering at grazing incidence by one-dimensional 
surfaces has been reformulated as a pair of coupled integral equations, relating the 
unknown surface derivative and the value of the scattered field at two lines in the 
medium. The surface errors were modelled by a one-dimensional fractal function. Based 
on the error model, source term and spectral amplitude of surface errors were calculated. 
The reconstruction model of surface errors was then established using the mixed 
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algorithm of the perturbation method and the MOM. To validate the effectiveness of 
reconstruction equations, a waveguide filter was manufactured. The results are based on 
comparison with test data of the filter. It is clear that surface errors have the fractal 
characteristic, the fractal model of surface errors more accuracy than the exponential and 
Gaussian model. The fractal reconstruction model is well agreed with the measured data. 
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