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Abstract: In this study, a new definition of a relevant variable in a DEA model 
is proposed for variable selection. The selection procedure is the conventional 
iterative backward elimination procedure with multiple statistical comparisons. 
The multiple tests of null hypothesis are reduced to a simple hypothesis test 
using either the binomial probability or the McNemar test with Bonferroni 
correction of significant level. From the results based on two simulation 
populations of moderately and lowly correlated input variables, the proposed 
procedure using either one of the suggested statistical tests can identify the 
relevant variables with high accuracy and eliminate the irrelevant variables 
effectively. In the dataset from a large scale experiment in the US public school 
education, the reduced model selected by the proposed procedure is shown to 
be the better approximation of the full model than the ones selected by the 
Pastor et al. method. 
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1 Introduction 

Data envelopment analysis (DEA) is a non-parametric method for measuring a decision 
making unit’s (DMU) relative efficiency in both multiple input and multiple output 
production settings. It has been applied to evaluate the performance of entities in various 
fields, such as, schools (Charnes et al., 1981), farms (Heidari et al., 2012; Zangeneh et al., 
2010), financial institutions (Azadeh et al., 2010; Mostafa, 2009; Luo et al., 2012; Titko 
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et al., 2014), hotels (Pulina et al., 2010; Cheng et al., 2010; Manasakis et al., 2013; 
Shirouyehzad et al., 2014), etc. But DEA itself does not provide any guidelines for 
variable selection (Nataraja and Johnson, 2011; Madhanagopal and Chandrasekaran, 
2014). The selection of input and output variables in a DEA model has been widely and 
extensively addressed in the DEA literature (Titko et al., 2014). At a given number of 
DMUs, the greater the number of variables a DEA model has, the more efficient DMUs 
will be (Jenkins and Anderson, 2003; Xie et al., 2014). DEA loses its power to 
discriminate between efficient and inefficient DMUs when excessive input and output 
variables are included in a DEA model (Xie et al., 2014; Nataraja and Johnson, 2011). 
Omission of relevant variables significantly affects the DEA efficiency scores (Nataraja 
and Johnson, 2011; Smith, 1997). Selection of an appropriate set of variables is, 
therefore, one of the most crucial tasks in DEA. 

Conceptually, there are at least three approaches to variable selection in a DEA 
model. The first one is to select the input and output variables based on the 
recommendations of subject matter experts in the fields related to the problem under 
study (Golany and Roll, 1989; Katharakis et al., 2014). Instead of the experts’ subjective 
recommendations, a theoretical framework which is available in the domain of 
application can be used to select an appropriate set of input and output variables for a 
DEA model (Joo et al., 2011). The second approach is statistical in nature (Banker, 1993, 
1996; Lewin et al., 1982; Roll et al., 1989; Chilingerian, 1995; Lovell and Pastor, 1997; 
Pastor et al., 2002; Jenkins and Anderson, 2003). The third approach is a deterministic 
approach which iteratively eliminates the variables in a backward manner until the 
average of differences in efficiency scores of the same DMU between the reference 
model and reduced model is greater than a predetermined threshold (Wagner and 
Shimshak, 2007). In this paper, we focus only on the second approach. 

In the earlier studies of the statistical approach, the correlation analysis between 
variables and efficiency scores has been used as a criterion for selecting the variables 
included in a DEA model (Lewin et al., 1982; Roll et al., 1989; Chilingerian, 1995). 
However, the variable selection process based on correlation coefficients may be 
insufficient and may also have to consider the causal relationship between the variable 
and the efficiency scores (Norman and Stoker, 1991; Sigala et al., 2004). Jenkins and 
Anderson (2003) improve the input variable selection for the nested model by using a 
partial covariance analysis. The first few principal components can be used to replace the 
original variables with minimum loss of information (Adler and Yazhemsky, 2010). 
Adler and Yazhemsky (2010) show via Monte Carlo simulations that the PCA-DEA 
methodology provides a more powerful discrimination tool than the variable reduction 
methodology using the partial covariance analysis with consistently more accurate results 
when the curse of dimensionality exists. Furthermore, the PCA-DEA methodology 
performs well with highly correlated inputs and even for small dataset (Nataraja and 
Johnson, 2011). The independent components which are generated from independent 
component analysis (ICA) are proposed to use as new input variables in a DEA model 
(Kao et al., 2011; Lin and Chiu, 2013). From the results using a simulated dataset and a 
real life hospital dataset, Kao et al. (2011) conclude that the ICA-DEA methodology 
provides a more discriminatory power than the PCA-DEA methodology. Bian (2012)  
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uses a subset of selected Schmidt variables via Gram-Schmidt process as new input 
variables in a DEA model to evaluate DMUs’ efficiencies effectively when there are 
multiple correlations among original input variables. However, the variable 
transformation method generally does not reduce the number of variables but does reduce 
the dimensionality of the dataset. The disadvantage of the variable transformation method 
is the difficulty of interpreting the results in the subsequent analysis such as the 
measurement of the efficient level for each original variable, etc. Several statistical tests 
on the efficiency scores in the independent DEA models are proposed by Banker (1993, 
1996). Other statistical methodologies are proposed to select the input and output 
variables for a DEA model, such as, the discriminant analysis using the external 
evaluation by three-level fractional factorial design (Morita and Avkiran, 2009), the 
genetic algorithm to select the ‘best’ subset of variables for a DEA model (Madhanagopal 
and Chandrasekaran, 2014). 

In nested DEA models, forward selection and backward elimination of variables are 
the procedures suggested in the literature (Lovell and Pastor, 1997; Kittlelson, 1993). 
Lovell and Pastor (1997) use a backward elimination procedure to determine the 
appropriate variables in a DEA model by deleting a group of variables because of their 
‘unreasonable’ range of variation and further deleting another smaller subset of variables 
based on the same criterion until there is no possibility of deleting more variables without 
significantly affecting the efficiency scores. A statistical test of nested radial DEA 
models is proposed based on the efficiency contribution measure (Pastor et al. 2002) in 
which a candidate variable is considered to be relevant if more than p0% of DMUs have 
an associated efficiency score change greater than a threshold .ρ  A Bernoulli variable Ti 
is defined as follows. 

1, if for 1, 2, , ,
0, otherwise

i
i

ρ ρ i n
T

> =⎧
= ⎨
⎩

…
 

where ρi is the ratio of the efficiency score of DMU i in the input-oriented full model of 
constant returns to scale to the efficiency score of DMU i in the reduced model, n is the 

number of DMUs and 1.ρ >  The test statistic 
1

n
ii

T T
=

=∑  is shown to be distributed as 

B(t; n – 1, p0) (Pastor et al., 2002). The omitted variable in the reduced model is relevant 
and should be incorporated in the model if the null hypothesis H0: p ≤ p0, is rejected at the 
significance level α where p is the ratio T / n. Pastor et al. (2002) subjectively suggest 
using p0 = 15% and 1.10ρ =  but do not provide any guidelines for the specification of p0 
and .ρ  Another statistical tool used in variable selection is the regression analysis which 
Ruggiero (2005) uses to identify relevant variables if the associated coefficients are 
statistically significant and have the proper signs. 

All of the above-mentioned tests are based to some degree on the efficiency scores of 
all DMUs in a DEA model. Given a DEA model, the DMU efficiency scores are 
dependent on the input and output variables. Misspecification of the model significantly 
affects the DEA efficiency scores (Nataraja and Johnson, 2011; Smith, 1997). It should 
be noted that when a variable is excluded from the current model, the new set of efficient  
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DMUs becomes a subset of the original set of efficient DMUs (Lopez and Dula, 2008). If 
the new set of efficient DMUs after omitting a variable from the reference model remains 
unchanged and if the identification of efficient DMUs is the objective of the study, then 
that variable can be definitely discarded from the model. This conclusion suggests 
redefining a relevant variable based on the number of efficient DMUs in a DEA model. 

The objectives of the paper are three folds: to propose a new definition of a relevant 
variable in a DEA model, to introduce two hypothesis tests for using in the proposed 
iterative procedure of backward variable elimination in nested DEA models and to 
sequentially select an appropriate DEA model for a particular application. The remainder 
of the paper is organised as follows. In the next section, a new definition of a relevant 
variable is proposed, and the backward variable elimination procedure is described. Two 
statistical methods for multiple comparisons in the iterative procedure are developed for 
using in the proposed procedure. In Section 3, two examples are used to illustrate variable 
elimination by the proposed procedure. One example utilises two simulation datasets and 
another uses a dataset published in the literature. The DEA model selected by the 
proposed procedure in the second example is compared with the ones selected by the 
Pastor et al. method (Pastor et al., 2002), which is widely used in DEA literature (Sirvent 
et al., 2005; Jones, 2006; Chen and Johnson, 2010). In Section 4, the model selections are 
evaluated by the Komolgorov-Smirnov test and Kullback-Leibler divergence. The final 
section presents the conclusions. 

2 Proposed procedure 

The first part of the section covers the role of theories and empirical studies in the domain 
of the application or the management preference in variable selection in a DEA model 
and also a new definition of a relevant variable for using in the proposed procedure of 
backward variable elimination. The statistical tests used in the hypothesis testing in the 
iterative proposed procedure are presented in the last part of the section. 

2.1 Variable classification and the proposed procedure 

Normally, a set of predetermined input and output variables in a DEA model of the 
studied topic are thoroughly scrutinised from the related theories, empirical studies or 
management preference. A number of predetermined output and input variables are 
definitely to be incorporated in the model from the strong support of the theoretical or 
empirical causal relationship between the efficiency score and the variables, or from the 
management preference (Sirvent et al., 2005). In the proposed procedure, these variables 
are to be grouped in a set S1. The remaining predetermined variables, referred to as 
candidate variables, are grouped in a set S2. For example, in a DEA study of an output 
from plants in an industry, the number of labours is definitely incorporated in the model 
and, therefore, is in S1 but various supporting tools, which are known to be useful for 
increasing some levels of productivity but cannot specifically be justified, are included in 
S2. By classifying the original dataset into two subsets, S1 and S2, the dimensionality of 
the original dataset is reduced to the dimensionality of the dataset S2. 
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The DEA model described by all predetermined variables in S1 and S2 is the initial 
reference model, also referred to as the full model. When some variables in the full model 
are omitted, the model is referred to as a reduced model. Using the notations S1 and S2, 
the input-oriented CCR DEA full and reduced models can be represented as 

Full model: Reduced model: 

Min θ Min θ 

subject to subject to 
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1

0 21
1

, S ;

, S ;
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0, 1, 2, , .kλ k n≥ = …  0, 1, 2, , .kλ k n≥ = …  

where θ is the efficiency of DMU 0, S11 and S12 are respectively the set of predetermined 
input and output variable vector, xi and yi which are definitely incorporated in the model, 
S21 and S22 are the set of input and output candidate variables respectively, S1 = S11 ∪ S12 
and S2 = S21 ∪ S22. Other radial DEA models can be represented in a similar manner. 

The inefficient DMUs in the full model are still inefficient in any reduced model but 
some efficient DMUs may become inefficient in a reduced model (Lopez and Dula, 
2008). The leads to a new definition of a relevant variable in a DEA model: 

A variable in S2 is said to be relevant if its omission from the model specification 
significantly decreases the number of efficient DMUs. 

The new definition of a relevant variable is conceptually different from the 
conventional definitions which depend on some degree of the efficiency scores of DMUs 
(Lewin et al., 1982; Roll et al., 1989; Banker, 1996; Pastor et al., 2002; Jenkins and 
Anderson, 2003). Since the variables in S1 are not the candidate variables but definitely to 
be incorporated in the model, the new definition of a relevant variable is applied only 
among the candidate variables in S2. The proposed definition is appropriate if the interest 
is focused on the identification of the efficient DMUs for benchmarking purpose. The 
statistical significance tests will be discussed in Section 2.2. 

By definition, both input and output variables in S1 are definitely incorporated in the 
DEA model. Only the variables in S2 are candidates for variable selection in this study. 
Consider the case that S11 and S12 consists of at least one input and one output variable 
respectively. In this case, the proposed procedure is of backward elimination and can be 
described as follows: 
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1 Initialise t = 1, and start with the full DEA model described by νin input variables in 
S11 ∪ S21 and νout output variables in S12 ∪ S22. Let t

ink  and t
outk  be respectively the 

numbers of members in S21 and S22 at the start of iteration t. 

2 Classify DMUs in the full model as efficient and inefficient DMUs and the number 
of efficient DMUs is denoted by mfull. 

3 If 0( 0),t t
outink k> >  create all possible ( )t t

outink k  reduced models by excluding one 
member at a time in S21(S22). Otherwise, do not create any reduced model. The total 
number of reduced models in iteration t is t t

outink k+  denoted by It. 

4 Classify DMUs in reduced models created in Step 3 as efficient and inefficient 
DMUs and let mit be the number of efficient DMUs in reduced model  
i, i = 1, 2, …, It. 

5 Perform the statistical tests to determine the discarded variable (see details in  
Section 2.2). If none of variables in S2 can be discarded, then terminate the 
algorithm; otherwise, go to step 6. 

6 Update t = t + 1. If the omitted variable in step 5 is an input variable, update 
1 1t t

in ink k −= −  and remove the omitted variable from S21. Otherwise, update 
1 1t t

out outk k −= −  and remove the omitted variable from S22. 

7 If 0t
ink =  and 0,t

outk =  terminate the algorithm; otherwise, return to step 3. 

When the algorithm is terminated either in step 5 or 7, the final model is the appropriate 
DEA model for the given dataset in a sense in accordance with the null hypothesis 
defined in step 5. 

A DEA model must consist of at least one input and one output variable. Therefore, 
in the case that S11(S12) is an empty set, the condition ( ) 0t t

outink k >  in step 3 and the 
termination condition ( ) 0t t

outink k =  in step 7 must be changed to ( ) 1t t
outink k >  and 

( ) 1t t
outink k =  accordingly. 

The proposed procedure with a new definition of a relevant variable can be used in 
variable elimination in a variety of DEA models: either CCR or BCC model with either 
input or output orientation. The proposed procedure also provides valuable information to 
the decision maker for each efficient DMU as to which variable has the most influence in 
maintaining that efficiency. 

2.2 Statistical testing for multiple comparisons 

In this subsection, two different statistical methods are developed for hypothesis testing 
in order to determine the discarded variable in the proposed iterative procedure of 
backward variable elimination in Section 2.1. 
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2.2.1 The binomial probability test 

When a sample of a fixed size n is randomly selected from a DMU population with the 
proportion of efficient DMUs p0 and only two outcomes: efficient DMU and inefficient 
DMU are considered, it can be concluded that the number of efficient DMUs, X, in a 
sample is a binomial random variable (Milton and Arnold, 1990). The sample randomly 
selected from the population consists of all predetermined variables in S1 and S2, referred 
to as a full model. Generally, the proportion p0 is unknown but can be estimated by 

0ˆ /fullp m n=  where mfull is the number of efficient DMU in the full model. Let B(x; n, p) 
denote the binomial probability distribution with parameters (n, p). If X = mfull, then 

( ) ; , .full
full full

m
P X m B m n

n
⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (1) 

The null hypothesis for variable elimination in a DEA model using the binomial 
probability test is 

0 : variable is relevant, 1, 2, , ,tH i i I= …  (2) 

against the alternative hypothesis 

a : variable is irrelevant, for at least one value of ’s.H i i  (3) 

If the omitted variable is relevant, it can be interpreted from the new definition of a 
relevant variable in Section 2.1 that the difference, dit = mfull – mit, at iteration t in the 
proposed procedure is significantly different from zero. The difference dit can be 
considered as a binomial random variable taking on a value, mfull – mit, by chance 
(McNemar, 1947; Mosteller, 1952). Therefore, the conditional probability of discarding 
variable i in the full model as an irrelevant variable at iteration t, given X = mfull, is equal 
to 

( ) ( )
0

discarding variable = ; 1, 0.5 .
itd

full full
x

P i X m B x m
=

= −∑  (4) 

Let pit be the joint probability of discarding variable i in the full model as an irrelevant 
variable at iteration t when the number of efficient DMU in the full model is equal to 
mfull. 

( )

( )
0

discarding  variable , =

= ; , ; 1, 0.5 .
it

it full

d
full

full full
x

p P i X m

m
B m n B x m

n =

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠∑
 (5) 

In the proposed procedure of backward variable elimination, at iteration t, only 
hypothesis testing between the full model and all It reduced models is required to be 
performed. The multiple tests of H0 in (2) for 1 ≤ i ≤ It with significance level α are 
equivalent to a comparison between the full model and the reduced model i, 1 ≤ i ≤ It, 
with Bonferroni adjusted significance level αt = α / It (Neter et al., 1996). Let 

*
1
inf .

t
t it

i I
p p

≤ ≤
=  If *

tp  is greater than αt, the proposed procedure of variable elimination is 



   

 

   

   
 

   

   

 

   

   396 J. Jitthavech    
 

    
 
 

   

   
 

   

   

 

   

       
 

terminated at iteration t. No more variables in S2 can be discarded at the significance 
level α. Otherwise, the omitted variable i in S2 with *

it tp p=  can be discarded. 

2.2.2 The McNemar test 

Consider a general correlated 2 × 2 contingency table where the numbers of concordant 
pairs are denoted by a and d and of discordant pairs are denoted by b and c. The 
McNemar (1947) method is commonly used to test the marginal homogeneity of the two 
correlated populations widely encountered in clinical trials, biological studies, 
epidemiological studies, social anthropology, etc. (Toyota et al., 1999; Leisenring et al., 
2000; Agresti, 2002; Tang and Tang, 2002; Durkalski et al., 2003; West and Hankin, 
2008; Fagerland et al., 2013). The McNemar (1947) test statistic can be written as 

2( )ˆ .b cQ
b c
−

=
+

 (6) 

The statistic Q̂  has a χ2 distribution with one degree of freedom. 
The results of DEA analysis in the full model and in a reduced model at iteration t are 

obviously correlated and can be summarised as a correlated 2 × 2  contingency table as 
shown in Table 1 where mfull and mit are the sample number of efficient DMUs in the full 
model and reduced model i at iteration t. It should be noted that the set of efficient DMUs 
in any reduced model at iteration t is a subset of efficient DMUs in the full model, i.e., mit 
≤ mfull for 1 ≤ i ≤ It (Lopez and Dula, 2008). For a given n, any of the possible outcomes 
in Table 1 is controlled by mfull and mit. 
Table 1 The correlated 2 × 2 contingency table in a sample for testing the hypothesis 

 
Reduced model i at iteration t 

Total Number of 
inefficient DMUs 

Number of 
efficient DMUs 

Full 
model 

Number of inefficient DMUs n – mfull 0 n – mfull 
Number of efficient DMUs mfull – mit mit mfull 

Total n – mit mit n 

Because an inefficient DMU in the full model cannot become an efficient DMU in a 
reduced model, the discordant cell in the first row in Table 1 is always zero. It can be 
concluded that Table 1 is a correlated 2 × 2 contingency table with a structural zero. The 
null hypothesis for testing marginal homogeneity in this case can be written as 

0 : 0, 1, 2, ,full it
t

M M
H i I

N
−

= = …  (7) 

And the alternative hypothesis can be written as 

: 0, for at least one value of ’s .full it
a

M M
H i

N
−

>  (8) 
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where Mfull and Mit are the number of efficient DMUs in the full model and in the reduced 
model in which the variable i in S2 is omitted at iteration t and N is the number of DMUs 
in the population. The test statistic Q̂  in (6) becomes 

ˆ , 1 .it full it tQ m m i I= − ≤ ≤  (9) 

The statistic ˆ
itQ  has a χ2 distribution with one degree of freedom for a sufficiently large 

mfull > 12 (Sheskin, 2007). It is trivial that the hypotheses (7) and (8) can be rewritten as 

0 : , 1,2, ,it full tH M M i I= = …  (10) 

against the alternative hypothesis 

a : , for at least one value of ’s .it fullH M M i<  (11) 

It can be concluded that the marginal homogeneity test in Table 1 leads to the hypothesis 
developed from the proposed new definition of a relevant variable in Section 2.1. Let 

*
1
inf

t
t it

i I
Q Q

≤ ≤
=  where Qit = Mfull – Mit, 1 ≤ i ≤ It. As in the case of the binomial probability 

test, it is sufficient to test 

0 a: 0 against : 0,t tH Q H Q∗ ∗= >  (12) 

at the Bonferroni adjusted level of significance αt. If the null hypothesis (12) is not 
rejected in iteration t, the omitted variable j in the reduced model in which *

jt tQ Q=  can 
be discarded from S2. Otherwise, the iterative procedure of variable elimination is 
terminated. 

Since the null hypotheses (2) and (10), used for variable elimination by the binomial 
probability test and the McNemar test respectively, are not identical but have the same 
objective, it may be possible that the reduced models from these two statistical methods 
are different. 

The proposed procedure of backward variable elimination is similar to the stepwise 
procedure using the backward approach (Wagner and Shimshak, 2007). The variable 
elimination criterion in Wagner and Shimshak’s iterative procedure is the simple 
comparison between the selected index and the given threshold and the reference model 
is changed iteratively. The suggested criteria include the minimum of the average 
differences in efficiency scores exceeds some maximum level, the change in any one 
efficiency score exceeds some maximum level, or the number of efficient DMUs falls 
below some minimum number. But, the variable elimination criterion in an iteration of 
the proposed procedure is invariably based on the number of efficient DMUs in the full 
model which is the reference model only in the first iteration in Wagner and Shimshak’s 
procedure. Furthermore, the hypothesis significance test instead of simple comparison is 
also suggested in the proposed procedure. 
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3 Numerical results 

In this section, two examples are used for numerical illustration of variable elimination in 
a nested DEA model by the proposed procedure using two statistical tests in Section 2. 
The data in the first example are generated by simulation. The second example uses the 
data from program follow through (PFT), a large-scale social experiment in US public 
school education (Charnes et al., 1981). In the second example, the variables in the DEA 
models selected by the proposed procedure using two statistical tests are compared with 
the variables in the DEA model selected by the Pastor et al. method. 

Without any loss of generality, the model in the simulation is assumed to have only 
one output. The output y of a DMU is generated from the following Cobb-Douglas 
convex production function of constant returns to scale 

0.3 0.2 0.4 0.1
1 2 3 4  ,y x x x x=  (13) 

where x1, x2, x3 and x4 are the relevant inputs with the corresponding elasticity 0.3, 0.2, 
0.4 and 0.1, respectively. The values of x1, x2, x3 and x4 are generated from the 
multivariate normal distribution N(μ, Σ) where the expectations and variances of x1, x2, x3 
and x4 are given by μ′ = [4 5 6 3] and 16.0, 25.0, 36.0 and 9.0, respectively. Two 
simulation populations, one with moderate and another one with low correlation, are 
generated with the correlation coefficients among the input variables as shown in Table 2. 
Table 2 Correlation coefficients among the input variables, x1, x2, x3 and x4 

Correlation ρ12 ρ13 ρ14 ρ23 ρ24 Ρ34 

Moderate 0.60 0.70 0.65 0.70 0.55 0.65 
Low 0.20 0.30 0.25 0.30 0.12 0.20 

The output variable in the simulation is given by the translog production function of (13) 
multiplying by an efficient score random function f(w) 

( )1 2 3 4ln f( ) 0.3 ln 0.2 ln 0.4 ln 0.1ln ,y w x x x x= + + +  (14) 

where f(w) is given by 

1 if 0
f( )  =

1 otherwise,
w

w
w

≤⎧
⎨ −⎩

 (15) 

and w is the uniform random variable in the range. Equation (15) can be interpreted that 
the expected proportion of efficient DMUs in the simulation population is 0.2 and the 
efficiency score of the remaining inefficient DMUs is uniformly distributed in the range 
[0.6, 1). The simulation design of 20% efficient DMUs follows the school of thought in 
which 5%–30% of DMUs in the entire population are efficient (Banker et al., 1993; 
Smith, 1997; Bardhan et al., 1998; Andor and Hesse, 2011). Another two arbitrary 
irrelevant and independent input variables x5 and x6 generated from the uniform U(30, 90) 
and U(50, 90) distributions respectively are included to form the simulation population. 
In summary, the full model for DEA analysis in the simulation is described by one output 
variable, lny, four relevant variables, lnxi, 1 ≤ i ≤ 4 and two irrelevant variables, lnx5 and 
lnx6. 
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Two independent populations of size 50,000 DMUs are generated by (13) with 
moderate correlation among input relevant variables referred to as case 1 and low 
correlation among input relevant variables referred to as case 2. The populations in these 
two cases are transformed by (14) and then added another two irrelevant variables, lnx5 
and lnx6, to form the new simulation populations. Suppose that x1 and x2 are two input 
variables strongly supported by theoretical studies but x3 and x4 do not have such strong 
supports. Under the notations in the proposed procedure, νin = 6, νout = 1, 1 4,ink =  

1 0,outk =  S11 = {lnx1, lnx2}, S12 = {lny}, S21 = {lnx3, lnx4, lnx5, lnx6} and S22 = Ø. One 
hundred datasets of size 100 DMUs are randomly selected without replacement from the 
population in each case for testing the performance of the proposed procedure. The  
input-oriented CCR DEA model is used to evaluate the radial DMU efficiency scores in 
the simulation. In iteration 1, the number of candidate variables in S2 is equal to four or  
I1 = 4. For a given dataset in the simulation, the maximum possible number of iterations 
in the proposed procedure is equal to four when all four candidates in S21 can be omitted. 
If the null hypothesis H0 in (2) is rejected for at least one value of i’s, 1 ≤ i ≤ It, by the 
binomial probability test or the null hypothesis H0 in (12) is rejected by the McNemar test 
in iteration t, the number of candidate variables in iteration t + 1 decreases to It – 1. The 
Bonferroni adjusted levels of significance in the test are correspondingly equivalent to  
α = .01 and .05. 

After analysing the simulation results from 100 datasets in each case of correlation, 
we found that the proposed procedure for variable elimination using the statistical tests as 
described in Section 2.2 with Bonferroni adjusted levels of significance can effectively 
withhold the relevant variables and eliminate the irrelevant variables. Based on the 
binomial probability test, only all relevant variables are incorporated, at both α = .01 and 
.05, in DEA models from 100 datasets in both cases of correlation. The McNemar test 
selects the variables in the DEA model correctly 94% and 95 % for moderate and low 
correlation respectively at α = .01 and 98% and 100% for moderate and low correlation 
respectively at α = .05. The rest are misspecified. It may be concluded via Monte Carlo 
simulations as shown in Table 3 that the binomial probability test performs slightly better 
than the McNemar test. 

In the second example, the CCR DEA model for evaluating program and managerial 
efficiency uses three output variables and five input variables and is referred to as a full 
model. Using their expert subjectivity, Charnes et al. (1981) selected these three output 
variables from a set of 11 output variables, 

y1 total reading score as measured by the metropolitan achievement test 

y2 total mathematical score as measured by the metropolitan achievement test 

y3 Cooper-Smith self-esteem inventory, intended as a measure of self-esteem. 

And another five input variables from a set of 25 input variables, 

x1 Education level of mother as measured in terms of percentage of high school 
graduates among female parents. 

x2 highest occupation of a family member according to a pre-arranged rating scale 

x3 parental visit index representing the number of visits to the school site 
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x4 Parent counselling index calculated from data on time spent with child on  
school-related topics. 

x5 number of teachers in a given site. 
Table 3 Numbers of correctly, over-specified and misspecified models in case 1 and case 2 in 

the simulation 

Statistical 
test 

Family wise 
significance 

level 

Case 1: moderate correlation: number of 
models, % 

 
Case 2: low correlation number of 

models, % 

Correctly 
specified 

Over-specified Misspecified  
Correctly 
specified 

Over-specified Misspecified 

Binomial 
probability 

.01 100 0 0  100 0 0 

.05 100 0 0  100 0 0 

McNemar 
.01 94 0 6  95 0 5 

.05 98 0 2  100 0 0 

The output and input data including details can be found in Charnes et al. (1981). In the 
following analysis, all input and output variables are considered to be candidates for 
variable selection. In other words, the set S1 is empty and all eight variables are in S2. The 
Bonferroni adjusted levels of significance and the corresponding critical values at α = .01 
and .05 for hypothesis testing are shown in Table 4. 
Table 4 Bonferroni adjusted levels significance used in the PFT dataset. 

Iteration Number of 
comparisons 

Bonferroni adjusted levels of significance 

α = .01 α = .05 

1 8 .0013 .0063 
2 7 .0014 .0071 
3 6 .0017 .0083 
4 5 .0020 .0100 
5 4 .0025 .0125 
6 3 .0033 .0167 
7 2 .0050 .0250 

The p-values of the test statistics are tabulated in Tables 5 and 6 respectively. It is found 
that the proposed procedure is terminated at iteration 4 where all null hypotheses cannot 
be rejected when using either the test statistic pit or the test statistic ˆ .itQ  The DEA 
reduced model selected by the proposed procedure using either the binomial probability 
test or the McNemar test in the PFT dataset is the same model, referred as M1, described 
by the remaining variables in S2 at iteration 3: two output variables, y2 and y3, and three 
input variables, x2, x4 and x5. 

The Pastor et al. method is used to select the appropriate variables in a DEA model 
for the same PFT dataset in order to compare the results with the model M1 selected by 
the proposed procedure. The following four sets of parameters are utilised in the method: 

   ρ  1.10 1.10 1.05 1.05    

   p0 .15 .10 .15 .10    
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Table 5 The joint probabilities pit’s in the reduced models in the second example 

 Omitted variable(s) 
Iteration 1: x1 x2 x3 x4 x5 y1 y2 y3 
pi1 .0002 .0002 .0002 .0002 .0046 .0000 .0000 .0712 
Iteration 2: y1x1 y1x2 y1x3 y1x4 y1x5 y1y2 y1y3  
pi2 .0013 .0046 .0013 .0046 .0125 .0046 .1065  
Iteration 3: y1x1x2 y1x1x3 y1x1x4 y1x1x5 y1x1y2 y1x1y3   
pi3 .0478 .0013 .0712 .0478 .0271 .1178   
Iteration 4: y1x1x3x2 y1x1x3x4 y1x1x3x5 y1x1x3y2 y1x1x3y3    
pi4 0.0920 0.1065 0.1065 0.1145 0.1178    

Note: The reduced model associated with the ital pit is the selected model. 

Table 6 The p-values of the test statistic ˆ
itQ ’s in the reduced models in the second example 

 Omitted variable(s) 

Iteration 1: x1 x2 x3 x4 x5 y1 y2 y3 
pi1 .1573 .1573 .1573 .1573 .0455 1.0000 .3173 .0047 
Iteration 2: y1x1 y1x2 y1x3 y1x4 y1x5 y1y2 y1y3  
pi2 .0833 .0455 .0833 .0455 .0253 .0455 .0016  
Iteration 3: y1x1x2 y1x1x3 y1x1x4 y1x1x5 y1x1y2 y1x1y3   
pi3 .0082 .0253 .0047 .0082 .0143 .0005   
Iteration 4: y1x1x3x2 y1x1x3x4 y1x1x3x5 y1x1x3y2 y1x1x3y3    
pi4 .0009 .0016 .0016 .0016 .0002    

Note: The reduced model associated with the ital p-value is the selected model. 

The first set of parameters, 1.10ρ =  and p0 = .15, is suggested by Pastor et al. (2002) and 
the other three sets are the suggestion of Sirvent et al. (2005). Results of variable 
elimination are tabulated in Table 7 and can be summarised as follows. The Pastor et al. 
method is terminated in iteration 5 under the parameter set of 1.05ρ =  and p0 = .10 since 
the p-value of the minimum test statistic is equal to .0022 less than the corresponding 
Bonferroni adjusted levels of significance. The reduced model under such parameter set 
is the selected model at iteration 4 described by two output variables, y2 and y3, and two 
input variables, x2 and x3, referred as M2. Similarly, under the remaining three sets of 
parameters, the Pastor et al. method is terminated in iteration 6 and the selected reduced 
model, referred to as M3, is described by one output variable y3 and two input variables, 
x2 and x3. 

The DEA models selected by the proposed procedure using the binomial probability 
test and the McNemar test and by the Pastor et al. method are summarised in Table 8. 
The proposed procedure using the binomial probability test under the null hypothesis (2) 
or the McNemar test under the null hypothesis (10) selects the same model M1 but the 
model selected by the Pastor et al. method depends on the chosen values of ρ  and p0. 
The Pastor et al. method selects the model M2 under 1.05ρ =  and p0 = .10 and the model 
M3 under the other three sets of parameters, ρ  and p0. The variable elimination by the 
proposed procedure is more consistent than the one by the Pastor et al. method. 
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Table 7 The p-values of the test statistics Ts of the reduced models in the second example 
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Table 7 The p-values of the test statistics Ts of the reduced models in the second example 
(continued) 
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Table 8 The DEA models selected by the proposed procedure and the Pastor et al. method 

Method α Model 
Selected DEA models 

Output variables Input variables 

Proposed procedure using the 
binomial probability test 

.01 M1 y2, y3 x2, x4, x5 

.05 M1 y2, y3 x2, x4, x5 

Proposed procedure using the 
McNemar test 

.01 M1 y2, y3 x2, x4, x5 

.05 M1 y2, y3 x2, x4, x5 

Pastor et al. method with 
01.10; .10ρ p= =  

.01 M3 y3 x2, x3 

.05 M3 y3 x2, x3 
Pastor et al. method with 

01.10; .15ρ p= =  
.01 M3 y3 x2, x3 
.05 M3 y3 x2, x3 

Pastor et al. method with 
01.05; .10ρ p= =  

.01 M2 y2, y3 x2, x3 

.05 M2 y2, y3 x2, x3 
Pastor et al. method with 

01.05; .15ρ p= =  
.01 M3 y3 x2, x3 
.05 M3 y3 x2, x3 

4 Model selection 

The selected reduced models in the second example using the dataset from a large scale 
experiment in US public school education are comprehensively evaluated by the 
Komolgorov-Smirnov test and the Kullback-Leibler divergence (Kullback and Leibler, 
1951). In the Komolgorov-Smirnov test, the null hypothesis is tested that the efficiency 
scores in the full model and Mj, j = 1, 2 and 3 are drawn from the same distribution. The 
Komolgorov-Smirnov statistic is used to measure the distance between the cumulative 
relative frequency distributions of DMU efficiency scores in the full model and the 
reduced model Mj and can be written as 

0 1
sup ( ) ( )j jM F M
θ

D F θ F θ
≤ ≤

= −  (16) 

where FF(θ) and ( )jMF θ  are the cumulative relative frequency distributions of 
ungrouped DMU efficiency scores in the full model and the reduced model Mj at 
efficiency score θ. From the results, analysed by the PROC NPAR1WAY in SAS 9.3, it 
is found that 0.1429, 0.2245 and 0.2857jMD =  with the p-values of two-sample 
Komolgorov-Smirnov statistic 0.6994, 0.1692 and 0.0366jMD =  for j = 1, 2 and 3 
respectively. The null hypothesis is not rejected at α = .01 in all three cases. However, 
the null hypothesis is not rejected in the cases of M1 and M2 but is rejected in the case of 
M3 at α = .05. It can be concluded that either the reduced model selected by the proposed 
procedure, M1, or the reduced model M2 selected by the Pastor et al. method using 

1.05ρ =  and p0 = .10 may be used to approximate the full model. 
Next, all three reduced models are further evaluated by the Kullback-Leibler (1951) 

divergence. By following the interpretation of the Kullback-Leibler divergence (Burnham 
and Anderson, 2002), the Kullback-Leibler divergence, DKL(full model || Mj), is a 
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measure of the information lost when the relative frequency distribution of DMU 
efficiency scores in Mj is used to approximate the distribution of the full model and can 
be expressed as 

( ) 2
1

full model M log ,
k

iF
KL j iF

iji

pD p
p=

=∑  (17) 

where k is the number of efficiency score classes, piF and pij are the relative frequencies 
of DMU in the full model and in the reduced model Mj, respectively, with efficiency 
score in class i. It can be seen that DKL(full model || Mj) = 0 if and only if piF = pij for all 
i’s. Since the term piF log2(piF / pij) is undefined for pij = 0, the DMU efficiency scores 
must be grouped into classes to avoid the zero frequency in any efficiency class in the 
reduced model. However, the data are grouped in an interval as small as possible to 
minimise the information loss as shown in Table 9. It can be seen that the minimum 
Kullback-Leibler divergence is DKL(full model || M1) equal to 0.1185. 

In summary, the null hypothesis is not rejected in cases of M1 and M2 by the 
Komolgorov-Smirnov test. But, it can be concluded that M1 is the better approximation 
of the full model than M2 by the Kullback-Leibler divergence. 
Table 9 The Kullback-Leibler divergences of Mj with respect to the full model, j = 1, 2 and 3 

in the second example 

Efficiency score 
Relative frequency distribution 

Full model M1 M2 M2 

< 0.83 0.0204 0.0408 0.0204 0.0408 
0.83–0.84 0.0408 0.0408 0.0612 0.0408 
0.85–0.86 0.0408 0.1020 0.0816 0.0816 
0.87–0.88 0.0408 0.0612 0.0816 0.1020 
0.89–0.90 0.1020 0.1429 0.0816 0.1224 
0.91–0.92 0.1020 0.0612 0.1837 0.2041 
0.93–0.94 0.0816 0.1224 0.1224 0.1224 
0.95–0.96 0.1224 0.0408 0.0816 0.0612 
0.97–0.98 0.0816 0.0816 0.0816 0.0612 
0.99 0.0204 0.0204 0.0408 0.0816 
1.00 0.3469 0.2857 0.1633 0.0816 
DKL(full model || Mj) 0.1185 0.1536 0.3798 

5 Conclusions 

An iterative backward procedure for variable elimination is proposed using a new 
definition of a relevant variable based on the number of efficient DMUs and not based on 
the efficiency scores of the DMUs. Two statistical tests, the binomial probability test and 
the McNemar test are used for hypothesis testing in variable elimination in the proposed 
procedure. In the binomial test, the joint probability of discarding a variable in the model 
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when the number of efficient DMUs is mfull is derived. It is shown in the McNemar test 
that the null hypothesis for testing the marginal homogeneity is equivalent to the null 
hypothesis that the number of efficient DMUs in the full model and the reduced model 
are equal. 

From the simulation of 100 replications in two datasets with moderate and low 
correlation among input variables, it can be concluded that the proposed iterative 
procedure can identify the relevant variables in the input-oriented CCR model with high 
accuracy and eliminate the irrelevant variables effectively. The proposed procedure using 
the binomial probability test performs slightly better than using the McNemar test. 

In the dataset from a large scale experiment in US public school education, Charnes 
et al. (1981) use their expertise to carefully select three output variables from 11 variables 
and five input variables from 25 variables to form the DEA model referred to as the full 
model. The proposed procedure using the binomial test and the McNemar test selects the 
same model M1. The Pastor et al. method with 1.05ρ =  and p0 = .10 selects the model 
M2 and with other three sets of parameters of ρ  and p0 selects the same model M3. The 
Komolgorov-Smirnov test cannot reject the null hypothesis in the cases of M1 and M2 but 
can reject in the case of M3 at α = .05. However, the Kullback-Leibler divergence 
suggests that M1 is the better approximation of the full model than M2. 

5.1 Unique contributions 

The proposed procedure of backward variable elimination combines two approaches: 
theoretical or empirical studies or managerial preference and statistical. The 
predetermined variables are classified into two subsets: S1 for the variables definitely 
incorporated in the DEA model and S2 for the candidate variables to be eliminated by the 
proposed procedure. The classification reduces the dimensionality of the original dataset 
to the dimensionality of the dataset of variables in S2. The proposed procedure eliminates 
variables in S2 from the model specification using a new definition of a relevant variable 
and two statistical tests: the binomial probability test and the McNemar test. It is shown 
analytically that these two tests can be used in testing the hypothesis for eliminating a 
variable from the DEA model specification. The objective of the proposed procedure 
with the new definition of a relevant variable is to eliminate those variables in S2 that 
have the least impact on the set of efficient DMUs which define the efficiency frontier. 
Lastly, the Komolgorov-Smirnov test and the Kullback-Leibler divergence are introduced 
for sequentially selecting the appropriate DEA model for a particular application. 

5.2 Managerial implications 

This article recognises the importance of the managerial participation in developing a 
decision making model. The managerial preference of variables may be used to reduce 
the dimensionality of the DEA dataset. The proposed procedure also provides valuable 
managerial information for each efficient DMU as to which variable has the most 
influence in maintaining that efficiency. The decision maker should be aware of the 
consistency of variable elimination by various methods as illustrated in the dataset from a 
large scale experiment in US public school education in Section 3. Finally, the loss of 
information when selecting the reduced model is provided for additional guidance in 
managerial consideration. 
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5.3 Limitations of the research and future research directions 

The proposed procedure and the statistical tests developed in Section 2 can be used for 
variable elimination in any type of DEA models. But the conclusions in this article are 
based on the Monte Carlo simulations using only one input-oriented CCR model and one 
Cobb-Douglas convex production function of constant returns to scale in generating the 
dataset. For the future research, the proposed procedure should be evaluated in other 
types of DEA model under more production functions of constant returns to scale and 
variable returns to scale with different parameters. This would be able to generalise the 
conclusions. Some other advanced non-parametric tests for multiple comparisons (Garcia 
et al., 2010) and other statistical methods of model selection should be also investigated. 
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