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Abstract: We analyse the temporal variations which can be observed within 
time series of variogram parameters (nugget, sill and range) of daily air quality 
data (PM10) over a ten years time frame. Datasets have been obtained from 
previous geostatistical analysis of country wide datasets from the AirBase 
ambient air quality database. Applying the Kolmogorov-Zurbenko filtering 
method, the time series are first decomposed into their short-, mid-, and long-
term components. Based on this, we then evaluate the magnitude of the 
individual spectral signal contributions. Furthermore, the significance of a long 
term trend component is investigated by a block-bootstrap-based approach 
combined with linear regression. It is discussed if within these datasets  
the times series of nugget variance can provide information about the  
evolution of the measurement uncertainty of the related air pollutant, whereas 
the sill and the range parameters could contain information about the spatial 
representativeness of the monitoring stations. 
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1 Introduction 

A common step in the evaluation of model performance and in model validation is to 
compare the modelled results to observations obtained from air quality monitoring. In 
this context, statistical indicators which aim to determine whether model results have 
reached a sufficient level of agreement with the observations, require an estimate or an 
assumption to be made for both the measurement uncertainties and the spatial 
representativeness of the air quality parameters being used. Quantitative values for the 
measurement uncertainty are usually derived from experimental work specifically 
addressing the individual measurement techniques. Quantification of spatial 
representativeness in conventional practice is frequently based on the evaluation of 
specific site characteristics and assumptions being made about similarities of those 
characteristics within the surrounding domains. However, in order to facilitate the 
thorough exploitation of comprehensive observation datasets, the use of geostatistical 
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techniques can serve as an interesting alternative which can immediately be applied to the 
monitoring data without need to refer to secondary information. The underlying idea is 
that within such datasets the nugget variance can provide information about the 
measurement uncertainty and the micro-scale variability of the related air quality 
measurements, whereas the sill and the range parameter contain information about their 
spatial representativeness [for a more detailed introduction to this conceptualisation 
please refer to Gerboles and Reuter (2010)]. However, this information is assumed to be 
obfuscated by several atmospheric processes which are superimposing the signal of 
interest on a range of different time scales. 

2 Geostatistical techniques 

Geostatistics is a branch of applied statistics that quantifies the spatial dependence and 
the spatial structure of a measured property. It is based on the regionalised variable 
theory by which spatial correlation of measured properties can be treated (Matheron, 
1963). Commonly, geostatistical analysis expresses the spatial correlation structure of the 
observations of an environmental variable x (e.g., a pollutant concentration) in terms of 
the variogram (sometimes also called the semivariogram). For this purpose the 
experimental semivariance γ(l) is calculated to 
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where n(l) is the number of sample pairs at each lag distance l, and z(xi) and z(xi+l) are the 
values of x at the locations i and i + l. It is usual to fit the experimental semivariance 
values with a simple continuous model function in which the semi-variance γ is described 
as a function of lag distance l (the theoretical variogram). In this context the Gaussian, 
the exponential or the spherical variogram models are the most commonly used. The 
spherical model [equation (2)] is often considered the best choice when spatial 
autocorrelation decreases to a point after which it becomes zero. 

( )3
0 1

0 1

( ) 1.5 0.5 if 0
( ) if

l l
a aγ l C C l a

γ l C C l a

⎡ ⎤= + − ≤ ≤⎣ ⎦
= + >

 (2) 

The parameters of the spherical model consist of the nugget C0, the partial sill C1, and the 
range a. The nugget variance C0 represents the variability of the observations at small 
distances (tending towards 0). The empirical nugget variance is unknown since it is the 
value of the theoretical variogram at the origin. The nugget parameter C0 is thus 
estimated by extrapolating the variogram towards l = 0. From this point, the semivariance 
increases until the full sill variance C0 + C1 is reached at a lag distance called the range 
(a). The range provides the distance beyond which semivariances remain constant. Up to 
this distance, observations of the regionalised variable in the sampling locations are 
correlated, afterwards they must be considered to be spatially independent. Note 
specifically that the term partial sill (shorthand pSill) is used to denote C1, whereas the 
term sill denotes C0 + C1. 
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3 Material and methods 

In this study, we analysed the temporal variations observed within time series of 
variogram parameters obtained from different country wide datasets of daily average 
PM10 data from the AirBase v.4 ambient air quality database. For the scope of this 
exercise, it was decided to apply the evaluation to the sole stations of background type, 
but for all area types (urban, suburban and rural). The assessment extends over a ten 
years time frame (1997 to 2007) and considers data from six different countries (FR, DE, 
GB, AT, IT and NL). The original material comprising comprehensive variogram 
parameter sets with time series of nugget (C0), partial sill (C1), and range (a) had already 
been established from variogram model fits within earlier projects (Gerboles et al., 2016). 
In this primary work a spherical variogram model had been used. More details about 
these previously reported analyses and about the underlying geostatistical computations 
can be obtained from Gerboles and Reuter (2010) and from Kracht et al. (2014). An 
overview about the number of variogram fits available within the ten years time frame is 
given in Table 1. 
Table 1 Overview of available variography sets (individual variogram models fitted to PM10 

daily values), and summary of median values obtained for the nugget, partial sill and 
range parameter 

Country 

Available variogram fits Summary of median values 

First  
available 

[year] 

Last  
available 

[year] 

Available fits
[count] 

Accepted fits
[count] 

Nugget (2s)
[µg/m3] 

pSill (2s) 
[µg/m3] 

Range 
[deg] 

FR 2001 2007 2,051 1,221 6.45 9.17 0.50 

DE 1998 2007 3,232 1,555 6.99 9.25 0.82 

GB 1997 2007 3,932 2,415 6.13 7.01 0.34 

AT 2001 2007 2,280 1,189 8.29 11.31 0.66 

IT 2003 2007 1,737 890 12.67 19.85 0.85 

NL 2003 2007 1,258 1,235 7.97 8.29 - 

Notes: Note that nugget and partial sill values have been converted from spatial variances 
to standard deviations times two (2s) and are thus presented in units of [µg/m3]. 
Constraints applied for accepting a valid variogram model fit have been: 
(I) 1 < Nugget < 150 (µg/m3)2 
(II) 0 < pSill < 104 (µg/m3)2 
(III) 0.01 < Range < 2 deg 
(IV) 0.04 < pSill/Nugget < 5·103 

All simulation codes used in this study were developed in the R environment  
(R Development Core Team, 2014). In order to extend the necessary capacities, we 
included functionalities from the packages ‘kza’ (Close and Zurbenko, 2013), ‘boot’ 
(Canty and Ripley, 2013; Davison and Hinkley, 1997), and ‘Kendall’ (McLeod, 2011). 

In a first step, the time series of variography parameters were screened for internal 
consistency by applying a set of constraints (I, II, III, IV, see note in Table 1) for 
accepting a valid variogram model fit (Table 1). 

In a second preparatory step, the nugget and partial sill values of the accepted model 
fits were converted from spatial variances to spatial standard deviations times two 
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[equation (3)]. This transformation was preferred for the convenience of the later 
discussion (e.g. a comparison of nugget values to the uncertainty of measurements 
derived from independent laboratory studies or field exploration studies). Note that 
nugget and partial sill are thus presented in units of µg/m3 and that the shorthand ‘2s’ is 
used to indicate that parameters have been transformed in this manner. Range values 
remain untransformed and are expressed in units of spherical degrees. 

0

1

(2 ) 2

(2 ) 2

Nugget s C

pSill s C

=

=
 (3) 

Using the Kolmogorov-Zurbenko (KZ) filtering method (Rao et al., 1997; Eskridge et al., 
1997) we then aimed to separate the original time series X(t) into its different components 
[equation (4)]. 

( ) ( ) ( ) ( )X t e t S t W t= + +  (4) 

In this conceptualisation, the short-term component W(t) is attributable to variations of 
weather and to short-term fluctuations in precursor emissions. The mid-term (seasonal) 
component S(t) can be interpreted as a result of changes in the solar angle (induced 
variations of emissions and temperature dependencies). The long-term signal e(t) can be 
interpreted to result from long-term changes in overall emissions, pollutant transport, 
climate, economics, and environmental policies (Wise and Comrie, 2005). e(t) is as  
well supposed to be influenced by evolutions in the operational principles of the 
monitoring network. In addition, Baseline(t) is defined as the sum of the long-term and 
seasonal component. For the decomposition of the raw data time series, a KZ filter with  
k = 5 iterations of a moving average window of m = 15 days (KZ[15,5]) was used for 
extracting the baseline. A KZ[365,3] filter was used to obtain the long-term signal e(t). 
Note that KZ[15,5] has a low pass periodicity of 34 days, while KZ[365,3] has a low pass 
periodicity of 632 days. 

Finally, the significances of long term trend components of the nugget and the sill and 
range effect were investigated from the slope of linear regression lines fitted to each set 
of the unfiltered time series X(t). This required specific care to be taken because of the 
serial autocorrelation inherent in these data, which became evident from systematic 
patterns observed in S(t). A simple linear regression would have all observations within 
an individual time series of variogram parameter values assumed to be independent. This 
is likely to give reasonable estimates of the regression coefficients, but to overstate their 
significance. To obtain more accurate confidence intervals, we chose to combine linear 
regression with a block-bootstrap-based approach (Künsch, 1989). In this way, the slope 
parameter was estimated by ordinary linear regression applied to bootstrap replicates 
chosen randomly from the original time series. We used a variable block length following 
a geometric distribution with a mean value of 30 days (CF-Interval 1) and 365 days  
(CF-Interval 2), respectively. Confidence intervals on the 95% level were then estimated 
by applying a coverage factor of 1.96 to the empirical standard deviation of the 
bootstrapped slope estimates. After some initial tests, it was considered suitable to 
perform 10,000 resamplings per time series to obtain good stability in the significance 
level estimates. 
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4 Results and discussion 

Figures 1, 2 and 3 are illustrating the decomposition and trend analysis being applied to 
the nugget, partial sill and range time series of background stations from six different 
countries (FR, DE, GB, AT, IT and NL). In addition, an overview of the medians 
calculated for the raw parameter values of nugget, partial sill and range is given in  
Table 1. Note that for convenience of discussion nugget and partial sill values have been 
converted from variances to standard deviations times two and are thus presented in units 
of µg/m3. 

As a first observation from the aggregated absolute values of spatial variation  
(Table 1), both the nugget and the partial sill are highest for Austria and Italy. This 
general characteristic is indicating limitations in the spatial continuity of the data. It 
appears obvious that this effect could be due to the stronger topographic roughness and 
dissection of these two countries. However, other possible causes could be considered, 
like the impact of different sub-networks which might work independently and 
potentially according to non-synchronised procedures, or the impact of the variety of 
monitoring equipments and/or calibration techniques being used. 

In contrast to these observations made for the nugget and partial sill, considering the 
aggregated values from the whole time series, a similarly generalisable observation 
cannot be made for the range parameter. This is actually because for some of the 
countries a clear interpretation of the range parameter is complicated by a superimposed 
trend component, as will be discussed later. 

A closer look at the time series (Figures 1, 2 and 3) reveals that several data series  
are showing a pronounced cyclic behaviour in their seasonal component S(t), and a  
non-stationarity (change of variance over time) in their short-term component W(t). These 
effects clearly indicate the presence of temporal variations in the macroscale spatial 
correlation structures (partial sill and range). Furthermore, for the examples of Austria, 
Italy, Germany and France, a distinct phase relationship of the S(t) component consisting 
in a winter increase of the sill effect is observed. It is likely that spatial variability 
increases in winter time because of local emission caused by heating, sanding and 
particulate matter re-suspension, as well as by limited air mixing increasing the 
discontinuity of PM10 concentration levels. However, for Austria and Italy this phase 
relationship is also observed in the nugget effect time series, which might indicate the 
influence of increasing small scale variability in winter time, too. Notably, in contrary to 
the abovementioned observations made for the nugget and partial sill, a clear phase 
relationship cannot be identified in the S(t) component of the range time series. 

Exploring in more detail the nugget effect time series is indeed of high practical 
interest, as it can provide information about the evolution of the average measurement 
uncertainty of the related air pollutant (in this context average measurement uncertainty 
refers to a characterisation across a country dataset, as opposed to the individual 
measurement uncertainty of a single station). From a conceptual point of view, the two 
dominant causes for the nugget effect do consist of the uncertainty of the measurements 
and of the microscale variability (i.e. variations at distances smaller than the sampling 
distance). For the generalised case it is actually difficult to distinguish the proportions 
contributed by these two components, by using information obtained from geostatistics 
and time series analysis only. However, in order to account for these difficulties and to 
minimise the influence of small scale variability the datasets used in this exercise have 
already been preselected to comprise background type stations only. 
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Figure 1 Time series of estimated nugget parameter values from spherical variogram models 
fitted to PM10 daily values of AirBase v.4 background stations (see online version  
for colours) 

 

Notes: Nugget values have been converted from spatial variances to spatial standard 
deviations times two (2s) and are in units of [µg/m3]. The KZ[15,5] filter has a low 
pass periodicity of 34 days that gives the baseline air quality. KZ[365,3] has a low 
pass periodicity of 632 days. W(t) can be used to characterise the short-term 
component, S(t) for the seasonal component, and e(t) reflects the long-term signal 
and trend. Baseline(t) is defined as the sum of the long-term and seasonal 
component. 
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Figure 2 Time series of estimated partial sill parameter values from spherical variogram models 
fitted to PM10 daily values of AirBase v.4 background stations (see online version  
for colours) 

 

Notes: Partial sill values have been converted from spatial variances to spatial standard 
deviations times two (2s) and are in units of [µg/m3]. The KZ[15,5] filter has a  
low pass periodicity of 34 days that gives the baseline air quality. KZ[365,3] has a 
low pass periodicity of 632 days. W(t) can be used to characterise the short-term 
component, S(t) for the seasonal component, and e(t) reflects the long-term signal 
and trend. Baseline(t) is defined as the sum of the long-term and seasonal 
component. 
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Figure 3 Time series of estimated range parameter values from spherical variogram models fitted 
to PM10 daily values of AirBase v.4 background stations. Range values are presented in 
units of geographical coordinates [deg] (see online version for colours) 

 

Notes: Data for the Netherland have been omitted, because of convergence problems 
observed with the variogram fitting algorithm applied to this country (singularities 
due to a correlation between the sill and range estimates in this specific dataset). 
The KZ[15,5] filter has a low pass periodicity of 34 days that gives the baseline  
air quality. KZ[365,3] has a low pass periodicity of 632 days. W(t) can be used to 
characterise the short-term component, S(t) for the seasonal component, and e(t) 
reflects the long-term signal and trend. Baseline(t) is defined as the sum of the 
long-term and seasonal component. 
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Interpretations of seasonal effects on the spatial correlation lengths and on the small scale 
variability of the actual PM10 concentrations have been discussed in the previous 
paragraph. Nevertheless, the observed short term influences (non-stationarities) and 
seasonal variations in the nugget time series are equally well compatible with the 
assumption of related short term influences and seasonal fluctuations of the measurement 
uncertainty. Indeed, as the composition and properties of particulate matter and ambient 
parameters (like temperature and relative humidity) vary in time, they do as well 
influence the uncertainty of the different PM10 mass measurements principles (Pernigotti 
et al., 2013). 

The magnitudes of the individual spectral signal contributions to the temporal 
variation of the nugget, partial sill and range parameter time series can be compared from 
the overall variance calculated for each of the filter-separated time series. Table 2 
provides an overview of the observed temporal variances. In addition, Table 3 
summarises normalised values, for which the total values of the four filter-separated 
spectral components have been adjusted by division with the total variance of the 
corresponding raw values. Example given for interpretation, the seasonal component S(t) 
is strongly pronounced within the data series of Austria and Italy (absolute values in 
Table 2). Also the short term component W(t) has its largest expression in the datasets of 
these latter two countries. In analogy to the interpretation of the median parameters of the 
total spatial variation (Table 1), we consider that this observation once more indicates a 
lack of spatial continuity of PM10 most likely due to the stronger topographic roughness 
and dissection as compared to the other countries. However, as discussed before with 
regard to the evaluation in the time domain, an influence by the effects of different PM10 
measurements principles cannot be finally ruled out. 
Table 2 Overall temporal variance of the raw variogram parameter estimates and of the 

filtered time series 

Country Parameter Raw values
[(µg/m3)2] 

Baseline 
[(µg/m3)2] 

e(t) 
[(µg/m3)2] 

S(t) 
[(µg/m3)2] 

W(t) 
[(µg/m3)2] 

FR Nugget (2s) 2.51 1.48 0.14 0.46 1.16 
DE Nugget (2s) 3.28 0.94 0.08 0.73 1.96 
GB Nugget (2s) 2.87 0.43 0.03 0.34 2.16 
AT Nugget (2s) 5.41 1.95 0.06 2.28 3.17 
IT Nugget (2s) 6.50 2.09 0.01 2.34 4.28 
NL Nugget (2s) 2.92 0.47 0.00 0.30 2.21 
FR pSill (2s) 5.98 1.99 0.19 1.33 2.76 
DE pSill (2s) 13.95 3.86 0.14 4.00 7.32 
GB pSill (2s) 6.50 0.73 0.05 0.57 5.04 
AT pSill (2s) 30.47 15.29 0.34 16.44 13.58 
IT pSill (2s) 53.66 26.47 0.54 29.76 26.16 
NL pSill (2s) 8.38 0.94 0.01 0.74 6.63 

Notes: The time series have not been de-trended for these calculations. Note that because 
nugget and partial sill values have been converted from spatial variances to 
standard deviations times two (2s), the unit for the temporal variance of the time 
series is (µg/m3)2. 
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Table 2 Overall temporal variance of the raw variogram parameter estimates and of the 
filtered time series (continued) 

Country Parameter Raw values
[deg2] 

Baseline 
[deg2] 

e(t) 
[deg2] 

S(t) 
[deg2] 

W(t) 
[deg2] 

FR Range 0.58 0.33 0.16 0.21 0.47 
DE Range 0.63 0.30 0.20 0.21 0.55 
GB Range 0.53 0.19 0.06 0.16 0.48 
AT Range 0.56 0.23 0.06 0.20 0.49 
IT Range 0.57 0.22 0.04 0.20 0.51 
NL Range - - - - - 

Notes: The time series have not been de-trended for these calculations. Note that because 
nugget and partial sill values have been converted from spatial variances to 
standard deviations times two (2s), the unit for the temporal variance of the time 
series is (µg/m3)2. 

Table 3 Normalised temporal variance of the raw variogram parameter estimates and of the 
filtered time series 

Country Parameter Raw values
[normalised]

Baseline 
[normalised]

e(t) 
[normalised]

S(t) 
[normalised]

W(t) 
[normalised] 

FR Nugget (2s) 1 0.59 0.06 0.18 0.46 
DE Nugget (2s) 1 0.29 0.02 0.22 0.60 
GB Nugget (2s) 1 0.15 0.01 0.12 0.75 
AT Nugget (2s) 1 0.36 0.01 0.42 0.59 
IT Nugget (2s) 1 0.32 0.00 0.36 0.66 
NL Nugget (2s) 1 0.16 0.00 0.10 0.75 
FR pSill (2s) 1 0.33 0.03 0.22 0.46 
DE pSill (2s) 1 0.28 0.01 0.29 0.52 
GB pSill (2s) 1 0.11 0.01 0.09 0.78 
AT pSill (2s) 1 0.50 0.01 0.54 0.45 
IT pSill (2s) 1 0.49 0.01 0.55 0.49 
NL pSill (2s) 1 0.11 0.00 0.09 0.79 
FR Range 1 0.57 0.28 0.36 0.81 
DE Range 1 0.48 0.32 0.33 0.87 
GB Range 1 0.36 0.11 0.30 0.91 
AT Range 1 0.41 0.11 0.36 0.88 
IT Range 1 0.39 0.07 0.35 0.89 
NL Range - - - - - 

Notes: For this table, all temporal variances have been normalised by the temporal 
variance of the raw values. Note that the time series have not been de-trended  
for these calculations. 

In contrast to these observations made for Austria and Italy, Great Britain and the 
Netherlands are characterised by the lowest absolute seasonal variation S(t) of the nugget  
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and the partial sill parameter (Table 2). On the other hand, because of this weakly 
pronounced S(t) component, the relative importance of W(t) is most prominent for these 
two countries (normalised values in Table 3). Finally, for the range parameter, results 
from Tables 2 and 3 suggest that the magnitudes of signal contributions from the seasonal 
and short term components (S(t) and W(t)) are more homogenously distributed across the 
different countries. However, the range parameters of France and Germany reveal a 
significant trend signal e(t), as will be discussed in more detail later. 

Results of the trend analysis are presented in Table 4. A significant trend component 
could only be found in the nugget time series of France (a negative slope of –0.73 ± 0.31 
µg/m3/year) and Great Britain (a slightly positive slope of 0.11 ± 0.09 µg/m3/year), and in 
the range time series of France (a positive slope of 0.13 ± 0.03 deg/year) and Germany  
(a positive slope of 0.05 ± 0.03 deg/year). For all other series the slope of the linear trend 
component was not significant in consideration of the bootstrapped confidence intervals. 
As an important note, the expressiveness of the trend analyses was somewhat limited by 
the relatively short extend of the valid variogram time series for some of the countries. 
Table 4 Summary of the bootstrap-based trend analyses performed on the nugget, partial sill 

and range parameter time series 

Country Parameter Trend slope 
[µg/m3/year] 

95% Conf-Int-1
[µg/m3/year] 

95% Conf-Int-2
[µg/m3/year] Significant? 

FR Nugget (2s) –0.73 ±0.24 ±0.31 Yes 
DE Nugget (2s) –0.02 ±0.18 ±0.28 No 
GB Nugget (2s) 0.11 ±0.07 ±0.09 Yes 
AT Nugget (2s) –0.09 ±0.41 ±0.47 No 
IT Nugget (2s) –0.09 ±0.51 ±0.56 No 
NL Nugget (2s) –0.11 ±0.30 ±0.41 No 
FR pSill (2s) –0.28 ±0.44 ±0.63 No 
DE pSill (2s) 0.13 ±0.36 ±0.45 No 
GB pSill (2s) –0.01 ±0.11 ±0.15 No 
AT pSill (2s) 0.11 ±1.04 ±1.06 No 
IT pSill (2s) 0.54 ±1.89 ±2.28 No 
NL pSill (2s) 0.00 ±0.45 ±0.35 No 
  [deg/year] [deg/year] [deg/year]  
FR Range 0.13 ±0.02 ±0.03 Yes 
DE Range 0.05 ±0.02 ±0.03 Yes 
GB Range –0.02 ±0.01 ±0.02 No 
AT Range 0.02 ±0.03 ±0.04 No 
IT Range –0.01 ±0.05 ±0.08 No 
NL Range - - - - 

Notes: The 95% confidence intervals Conf-Int-1 and Conf-Int-2 are corresponding to a 
resampling with mean block lengths of 30 days and 365 days respectively. 

A negative trend in the nugget time series can be interpreted by an improvement of the 
measurement uncertainty of the monitoring stations over the years, but also by a  
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reduction in small scale variability (change in the nature or quantity of emissions, 
transported pollution, or atmospheric reactions). Other reasons causing either negative or 
positive trends might be the increase/decrease of the number of monitoring stations or a 
change in the station classifications. A positive trend in the range time series indicates 
that measurements of stations are becoming more homogeneous. This can be caused by 
an increase of quality actions performed on the measuring stations over the years. 
However, as for the nugget time series, a trend of the range values might also be the 
result of a change in the nature or quantity of emissions, pollution transport, or 
atmospheric reactions, as well as it could result from an increase/decrease of the number 
of monitoring stations or from a change in the station classifications. 

Figure 4 Time series of the number of stations available for the analysis 

 

Note: Note that if less than 20 stations were available at a given time step (i.e. day), the 
semi-variogram analysis was not performed. 
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In a final analysis, we counterchecked to which extent the trend analysis could have been 
affected by factors related to temporal fluctuations in data availability. Figure 4 provides 
time series of the number of stations available for the geostatistical analysis per day. As a 
general observation, the amount of monitoring stations available increases over time. 
This has a direct influence on the feasibility of the variogram parameter estimation. In 
fact the algorithm used in Gerboles and Reuter (2010) constrained the geostatistical 
analysis to those days with a minimum number of 20 stations being available. Example 
given, it is for this reason that the variogram analysis for the Netherlands dataset was not 
feasible for time sections before ca summer 2003. On the other hand, nearly all 
Netherland data fulfilling this constrained subsequently delivered a valid variogram 
model fit, which can be explained by the prevailing spatial continuity of PM10 data for 
this country. 

Within a given network the number of monitoring stations is directly linked with the 
distribution of distances between these stations. Against this background, the nugget 
parameter C0 needs to be considered as being an extrapolated value. Consequently, the 
accuracy of its estimation depends on the semi-variance at the smallest lag distance. 
According to the evolution of network design and station density, the time series will 
present different smallest lags at different times (in a first order approximation all 
datasets share a decrease of lag distance over time). Therefore one cannot exclude a lack 
of homogeneity of the extrapolated nugget variance according to the smallest lag 
distance. However, even though these effects can influence the accuracy of the individual 
estimates, they are not supposed to result in a systematic bias towards higher of lower 
values. 

5 Summary and conclusions 

Temporal variations in the spatial autocorrelation structure of air quality data can reflect 
changes in the performance and operational conditions of a monitoring network 
(improvement or worsening of the measurement uncertainty, increase/decrease of the 
number of monitoring stations, positioning of stations, and shifting in the station 
classification). However, these phenomena are interfering with changes of the spatial 
distribution of air pollutants due to transport, emissions and reactions. 

In this exploratory study we investigated time series of variogram parameters by 
applying the Kolmogorov-Zurbenko filtering method. Furthermore, the significance of 
long term trend components was investigated by a block-bootstrap-based approach 
combined with linear regression. A significant trend component was found in the nugget 
time series of France (decrease) and Great Britain (slight increase), and in the range time 
series of France and Germany (both increasing). Furthermore, a pronounced cyclic 
behaviour of the seasonal time series component was detected. This seasonal effect is 
associated with a phase relationship (winter increase) of the nugget and of the partial sill 
series for several countries, which is particularly pronounced for Austria and Italy. Such 
effects are likely attributable to limitations in spatial continuity (stronger topographic 
roughness and dissection of these two countries). 

The results obtained so far are promising. In fact, the method can provide indicators 
of measurement uncertainty trends and changes in the homogeneity/heterogeneity of the 
spatial distribution of air pollutants. However, further investigations are needed to better 
determine if the observed trends and variations are caused by changes in the performance 
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of the monitoring activities, or by seasonal and long term variations of air pollution 
and/or meteorological factors. For future work, it should be aimed to further improve the 
robustness of the variogram fitting procedures and to thereby obtain more complete and 
gap-free time series for the trend analysis. We currently limited the assessment to the data 
available from AirBase v.4 for the ten years time frame of 1997 to 2007. Prospective 
future work could profit from the advantages of using an updated version of AirBase. We 
anticipate that such an extension of the analysis to a more comprehensive dataset with 
longer time series would immediately be beneficiary to the expressiveness of the results. 

Seen from another point of view, the method can have the potential for being 
developed into a tool for assessing the spatial representativeness of air quality monitoring 
stations. Example given, commonly used definitions of spatial representativeness are 
often based on the similarity of concentrations between monitoring stations. Hence, the 
representativeness area is defined as the area where the concentrations do not differ from 
the concentration observed at the station by more than a certain threshold. In this context 
one could aim to investigate the temporal evolution of the variogram function by 
extracting time series of lag distances intercepting with a specific semivariance threshold 
which would be chosen equal to the threshold level of the similarity-based spatial 
representativeness criterion. 
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