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Abstract: There are growing interests for studying collective behaviour 
including the dynamics of markets, the emergence of social norms and 
conventions, and collective phenomena in daily life such as traffic congestion. 
In cascade model, collective behaviour is affected in the structure of the social 
network and threshold to make decision, and the collective behaviour was 
stochastic, similar to threshold model in local interaction. In both model, 
although decisions of agents are deterministic, collective behaviour of 
population become stochastic. In previous work, we analysed origin of 
stochastic collective behaviour and we found that collective behaviour depends 
on the initial behaviour of high degree in threshold model in local interaction. 
In this paper, we analysed origin of stochastic collective behaviour in cascade 
model. We analysed why collective behaviour is stochastic in scale free 
network. Then, we show that turn of the choice effects on collective behaviour 
not the first choices. 
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1 Introduction 

There are growing interests for studying collective behaviour including the dynamics of 
markets, the emergence of social norms and conventions, and collective phenomena in 
daily life such as traffic congestion. Many researchers have pointed out that an 
equilibrium analysis does not resolve the question of how agents behave in a particular 
interdependent decision situation. Threshold model (Schelling, 1978) has been postulated 
as one explanation for the contagion. It is often argued , it is hard to see what can advance 
the discussion short of assembling a collection of agent, putting them in the situation of 
interest, and observing what they do (Huberman and Glance, 1993). 

In examining collective behaviour, we shall draw heavily on the interactions of 
agents. We also need to work on two different levels: the microscopic level, where the 
decisions of the agent agents occur, and the macroscopic level where collective behaviour 
can be observed (Sipper, 1997). The greatest promise lies in analysis of linking 
microscopic behaviour to macroscopic behaviour (Schweitzer, 2002). What makes 
collective behaviour interesting and difficult is that the entire aggregate outcome is what 
has to be evaluated, not merely, how each person does within the constraints of her own 
environment? The performance of the collective system depends crucially on the type of 
interaction as well as the heterogeneity in preference of agents (Kirman, 1997). 

Feng et al. (2012) brings together agent-based models and stochastic models of 
complex systems in financial markets and show how agent decisions give rise to 
macroscopic actions. Additionally, the heterogeneity in agents’ investment horizons gives 
rise to long-term memory in volatility. Using market data, Kenett et al. (2012) provides 
new information about the uniformity present in the world’s economies. From their 
analysis, it becomes evident that this uniformity does not only stem from an increase of 
correlation between markets, but that there has also been an ongoing simultaneous shift 
towards uniformity in each single market. 

There are many situations where interacting agents can benefit from coordinating 
their behaviour. Coordination usually implies that increased effort by some agents leads 
the remaining agents to follow suit, which gives rise to multiplier effects. Examples 
where coordination is important include trade alliance, the choice of compatible 
technologies or conventions such as the choice of a software or language. These 
situations can be modelled as coordination games in which agents are expected to select 
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the strategy the majority do (Schelling, 1978). The traditional game theory, however, is 
silent on how agents know which equilibrium should be realised if a coordination game 
has multiple equally plausible equilibria, where these can be Pareto ranked (Arthur, 
1994). This silence is more surprising in games with common interest since one expects 
that agents will coordinate on the Pareto dominant equilibrium (Hansarnyi and Selten, 
1988). The game theory has been also unsuccessful in explaining how agents should 
behave in order to improve an equilibrium situation (Fudenberg and Levine, 1998). 

Often an agent’s decision depends on the decisions of others because they have 
limited information about the problem or limited ability to process the information 
(Shelling, 1978; Rubinstein, 1998). An agent’s payoff is a function of the actions of 
others (Huberman et al., 1993; Fudenberg and Levine, 1998). In particular, in the 
diffusion of a new technology (Arthur, 1989), early adopters impose externalities on later 
ones by rationally choosing technologies to suit only themselves. Then, agent has an 
incentive to pay attention to the decisions of others. This is known as binary decisions 
with externalities (Schelling, 1978). 

Threshold model (Schelling, 1978) has been postulated as one explanation for the 
contagion. Schelling shows by example of attendance the optional Saturday morning 
review session. For people, attendance depends on the percentage of attendance. The 
critical point which the benefit exceeds the cost of attendance is threshold. Schelling 
assumes that all people know the others’ decision and deals with stability of equilibrium 
of several threshold distributions. And in threshold model, we (Iwanaga and Namatame, 
2012) showed that collective behaviour is affected in the structure of the social network, 
the initial collective behaviour and diversity of threshold. Moreover, we show the effect 
of number of interaction on collective behaviour. Then, in threshold model, we found that 
collective behaviour depends on the initial behaviour of high degree agents in several 
social networks, such as random network, small world network or scale free network 
(Iwanaga and Namatame, 2013). 

Contagion is said to occur if one behaviour can spread from a finite set of agents to 
the whole population. When can behaviour that is initially adopted by only an infinite set 
of agents spread to the whole population? Morris (2000) shows that maximal contagion 
occurs when local interaction is sufficiently uniform and there is low neighbour growth, 
i.e., the number of agents who can be reached in k steps does not grow exponentially in k. 
López-Pintado (2006) showed that there exists a threshold for the degree of risk 
dominance of an action such that below the threshold, contagion of the action occurs. He 
also showed that networks with intermediate variance (where the connectivity of the 
lowest connectivity nodes are not so low) are best for diffusion purposes. Meanwhile, 
Watts (2002) showed that when the network of interpersonal influences is sufficiently 
sparse, the propagation of cascades is limited by the global connectivity of the network; 
and when it is sufficiently dense, cascade propagation is limited by the stability of the 
agent nodes. Therefore, the rate at which a social innovation spread depends on three 
factors: the topology of network, the payoff gain of the innovation and the amount of 
noise in the best response processes (Young, 2011). Montanari and Saberi (2010) shows 
that innovation spreads much more slowly on well-connected network structure 
dominated by long range links than in low dimensional ones dominated and Komatsu and 
Namatame (2012) obtains the optimal network for good cascade using genetic algorithm 
and they show the network have a sufficient number of vulnerable nodes and hub node of 
medium size. We (Iwanaga and Namatame, 2013) compared threshold model with 
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cascade model and showed that collective behaviour is affected in the structure of the 
social network and threshold to make decision and the collective behaviour was 
stochastic. Moreover, collective behaviour is almost same as threshold model, though the 
decision is not interactive and simultaneously. Then, collective behaviour in threshold 
model is similar to cascade model. 

To illustrate how important spatial structure is to the emergence of cooperation in 
society, Nowak (2006) and Axelrod (1984) have investigated lattice models of agents 
confronted with a social dilemma. At the other extreme, most of human social networks 
were regarded as random networks whose nodes are connected randomly because of its 
large scale and complexity. In reality, Albert and Barabási (2000) found that many 
complex networks have a scale free structure. Moreover, another kind of network 
structure, small world, has been researched (Watts, 1999). Of course, the number of 
agents is large and the relationship is assumed complex. However, the world is much 
smaller than we think. Real-world networks have a small average shortest path length that 
defined as the average number of steps along the shortest paths for all pairs of agents. 

On the other hand, Hasan and Ukkusuri (2011) deal with a threshold model of social 
contagion originally proposed in network science literature. In addition, they show that 
faster propagation of warning is observed in community networks with greater inter 
community connections. 

We deal with collective behaviour in several social networks. Collective behaviour is 
affected in the structure of the social network and threshold to make decision, and the 
collective behaviour was stochastic in threshold model and cascade model. Although 
decisions of agents are deterministic, collective behaviour of population becomes 
stochastic. In previous work, we analysed origin of stochastic collective behaviour and 
we found that collective behaviour depends on the initial behaviour of high degree in 
threshold model and local interaction. In this paper, we analysed origin of stochastic 
collective behaviour in cascade model. We analysed why collective behaviour is 
stochastic in scale free network. We focus on the effect of network degree. Then, we 
show that turn of the choice effects on collective behaviour not the first choices. 

2 Model 

We consider the following dynamics to describe the evolution of agents’ choices through 
time step. At time step t, each agent plays a 2 × 2 game with a neighbour and chooses an 
action from the space S = {S1, S2} (López-Pintado, 2006; Watts, 2002). The assumption 
that an agent cannot make his action contingent on his neighbour’s action is natural in 
this context. Otherwise, the behaviour of an agent would be independent of social 
network. Payoffs from each interaction in each period are given by a function (s, s′), 
where s, s′ ∈ S and they are summarised in the following symmetric matrix as shown in 
Table 1, where 0 ≤ θi ≤ 1. In this matrix, if agent Ai chooses same strategy as the other 
agent, he can get the positive payoff 1 – θi or θi, otherwise he receives nothing. This 
means coordination game. This is also called as conformity model. This payoff matrix 
can be translated from Stag Hunt game. Nash equilibria of the payoff matrix are (S1, S1) 
and (S2, S2). Agent Ai’s payoff from playing si ∈ {S1, S2} when the strategy profile of 
the remaining agents s′ is given by ( , ) ( , ).

i
i i i jj N

s s π s s−
∈

=∑∏  Thus, an agent’s payoff 

is simply the sum of the payoffs obtained across all the bilateral games in which he is 
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involved. Agents select the action that maximises his benefits given the action of others 
in the previous time step (a myopic best response). 

Here we define pi(t) as the proportion of agent Ai’s neighbours who choose S1 at time 
step t. Figure 1 explain the social network and the proportion of agent’s neighbours who 
choose S1 at time step t. A node means an agent and links mean neighbouring social 
network. Each agent has theta θi and can decide the choice S1 or S2 at given time step 
according to the proportion of neighbours who choose S1, which is pi(t). Because each 
agent has idiosyncratic theta θi and the proportion of neighbours who choose S1, which is 
pi(t), is different each other, the decision at next time step is deferent each other. 
Table 1 Payoff matrix of agent Ai (0 ≤ θi ≤ 1) 

Choice of agent Ai 
Choice of other agents 

S1 S2 

S1 1 – θi 0 
S2 0 θi 

Figure 1 Social network and the proportion of agent’s neighbours who choose S1 at time step t 

 

Note: Agent, links: neighbouring social network, choice: S1 or S2. 

If the proportion of neighbours pi(t) is higher than or equal to theta θi, then agent Ai’s 
best response is to choose S1. Otherwise, Ai chooses S2. The value of theta θi, namely 
the degree of risk dominance of action S1, specifies a lower bound for the fraction of 
agents that must be choosing S1 in order to make action S1 preferred to action S2. If  
θi < 1/2, action S1 is risk dominant. In addition, the more risk dominant action S1 is the 
lower the value of θi. This rule is given by these functions. 

( ) : Agent Ai chooses S1i ip t θ≥  (1) 

( ) : Agent Ai chooses S2i ip t θ<  (2) 

For example, if θi of all agents are 0.1, agent An and Aj in Figure 1 choose S1 at next 
time step. Other agents choose S2 at next time step. 

The model differs from cascade models that Watts or López-Pintado deals with in 
some respects. All these features; simultaneity, interactive interaction and network 
heterogeneity are essential to collective behaviour. 
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1 Interactive interaction: Each agent can revise his behaviour both of two alternatives, 
that is the decision is two ways. In original threshold model, an agent can change 
fromS1 to S2 or from S2 to S1. However, in cascade model, once an agent has 
switched on one alternative S1, it remains on S1 for the duration of the dynamics. 

2 Simultaneity: In cascade model, a certain probability agents are chosen each period 
to revise their strategy. While, each agent decides his behaviour depend on the 
neighbours’ behaviour in previous time step for each time step, which is 
simultaneously. 

3 Heterogeneous networks: typically modelled on regular lattices, here we are 
concerned with heterogeneous networks, networks in which agents have different 
numbers of neighbours. 

3 Cascade model 

3.1 Settings 

At first, we defused the interactive interaction and focus on the effect of two-way 
interaction. That is, agent can only change the behaviour for S1 and the decision rule is 
given by this function, which is same as function (1). 

( ) : Agent Ai chooses S1i ip t θ≥  

For example, if θ of all agents are 0.1, agent An and Aj in Figure 1 choose S1 at next 
time step. Agent Ai continue to choose S1at next time step, because agent cannot change 
to S2. Other agents choose S2 at next time step. 

Next, we defused the simultaneity and focus on the effect of simultaneity. That is, 
randomly chosen an agent can only decide at the same time step. 

At last, we set four models of social network for each population, regular network, 
small world network, random network and scale free network, which Kawachi algorism 
from regular networks, other three types of networks emerged (Kawachi et al., 2004). At 
first, we made regular in which there are network 1,000 agents with ten links, and arrange 
the network for small world network, random network and scale free network using 
Kawachi algorism Then, their average degrees are 10. Kawachi et al. proposed generation 
algorithm from regular network to four networks by each agent’s with a link of the same 
number changing a link. That is, a node whose number of links is large must be much 
larger and a node whose number of links is small must be much smaller. When all links 
of each node have been considered once, the procedure is repeated several time steps. For 
scale free network, we set probability α and times γ as shown in Table 2. With set 
probability α, link between agent Ai and Agent j is deleted. Then, if degree of agent Ai is 
greater than degree of agent Aj, agent Ai rewired to another agent. Otherwise, agent Aj 
rewired to another agent. When all links of each node have been considered once, the 
procedure is repeated and times γ. 

We show the social networks by two parameter, clustering coefficient and 
characteristic path length. Clustering coefficient C is the extent to which nodes adjacent 
to any node are linked to each other. Characteristic path length L is the median of the 
means of the shortest path lengths connecting each node to all other nodes. 
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The clustering coefficient Ci of Γi characterises the extent to which nodes adjacent to 
nodes Ai are linked to each other. Where the neighbourhood Γi of a node Ai is the 
subgraph that consists of the nodes linked to Ai (not including Ai itself). More precisely, 

| (Γ ) |
2
i

i i
k

C E ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 where |E(Γi)| is number of edges in the neighbourhood of Ai and 

2
ik⎛ ⎞

⎜ ⎟
⎝ ⎠

 

is the total number of possible edges in Γi. Then, the clustering coefficient C of G is 
averaged C = Ci over all Ai ∈ V(G). 

The characteristic path length L of a graph G is the median of the means of the 
shortest path lengths connecting each node Ai ∈ V(G) to all other nodes, where V(G) is 
the set of nodes of the graph G. In other words, first, we calculate d(i, j) ∨ Ai ∈ V(G), and 
then we find id  for each Ai. Finally, we define L as the median of .id  

We calculate the standardised clustering coefficient and the standardised 
characteristic path length. We also show the standard clustering coefficient and 
standardised characteristic path length in Table 2. C0 means the clustering coefficient of 
regular network and the value is 0.67. L0 means the characteristic path length of regular 
network and the value is 50.45. The characteristic path length of scale free network is 
infinite, because there are closed subnetwork that do not connect the other nodes at all. 
Therefore, the standardised characteristic path length of scale free network is infinite. 
Table 2 Probability, times, clustering coefficient and characteristic path length 

 Regular Small 
world Random Scale  

free 
Probability 0 0.01 0.5 1.0 
Times γ 0 3 6 20 
Standardised clustering coefficient C/C0 1.00 0.99 0.15 0.11 
Standardised characteristic path length L/L0 1.00 0.21 0.065 ∞ 

The scale free network is organised as shown in Figure 2, which is shown by log-log 
graph. 

Figure 2 The degree distribution of scale free network 

 

We set that all agents have same payoff matrix and theta θi = θ of all agents as 0.1. Then, 
considering pair of agents, Nash equilibrium is for both of them to choose S1 or for both 
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of them to choose S2. Therefore, for population, Nash equilibrium is for all agents to 
choose S1 or to choose S2. 

3.2 Results 

We denote the collective behaviour p(t) that the proportion of agents having chosen S1 in 
whole population at time step t. Here, we set the initial collective behaviour as 0.01, 
which means only 1% of agents choose S1 at first time step. Watts (2002) sets that a 
single node chooses S1 at first time step in 10,000 nodes and simulates. If there are not 
node chooses S1 at all at first, choice of S1 does not spread according to function (1). A 
single node or small nodes need for cascade or contagion. We assume that all agents 
choose at random at first time step. Each agent gets uniform random number between 0 
and 99 at first step. If the random number is equal to zero, the agent chooses S1 at first 
time step. Otherwise, agent chooses S1 at first step. Then, each agent makes decision 
depend on rule of cascade model given by function (1) each time step, and then collective 
behaviour turns. 

Figure 3 shows the simulation results in scale free network, where theta θ is 0.1. 
When initial collective behaviour is 0.01, final collective behaviours depends on trials. 
Final collective behaviour sometime converges to 0.01 and 1% of agents choose S1 at 
last. Because agent cannot change for S2, there few agents who choose S1 at first time 
step remain at last time step. However, other time, final collective behaviour converges to 
1.0 and all agents choose S1 at last. In latter case, there occur contagion and triggered by 
small proportion of S1 spread to the whole population, which is rare case. 

Figure 3 The transition of collective behaviour in scale free network 

 

We set theta θ at intervals of 0.1 from 0.0 to 1.0. We simulate until 10,000 time step, we 
call this as a trial. Then, we simulate 100 trials per each theta θ and investigate the final 
collective behaviour. Figure 4(a) shows the simulation results in scale free network. The 
x-axis represents theta θ and the y-axis represents the final proportion of agents who 
choose S1, which we define final collective behaviour as p*. 100 trials are plotted for 
each theta θ. The collective behaviour depends on theta θ and becomes 0.01 or 1.0, 
stochastically. 

If theta is greater or than equal to 0.6, collective behaviour converges to 0.01 and 
almost agents choose S2 at last in any trials. Otherwise, theta is 0.0, collective behaviour 
converges to 1.0 and all agents choose S1 at last. However, if theta is between 0.1 and 
0.5, collective behaviours become 0.01 or 1.0 depending on the trials. We found that 
collective behaviour is stochastic. 
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Other viewpoints of results are shown in Figure 4(b). In Figure 4(b), the x-axis 
represents theta and the y-axis represents the histogram of the final collective behaviour 
p*. In addition, white bar means final collective behaviour p* become 1.0 and grey bar 
means final collective behaviour p* become 0.01.The number means trials lead to 1.0. 
We found that when theta is between 0.1 and 0.5, there are chances that all agents choose 
S1; it is rare. 

Figure 4 Collective behaviour in scale free network, (a) final collective behaviour  
(b) the histogram of final collective behaviour: white bar: p* = 1.0, grey bar: p* = 0.01, 
number: trials lead to 1.0 

  
(a) (b) 

On the other hands, we show the simulation result in other social networks in Figure 5. 
The collective behaviour becomes 0.01 or 1.0 with depending on the trials, thresholds, 
which is similar to scale free network. In regular network, the range that collective 
behaviour becomes 0.01 or 1.0 depending on the trials is narrower than scale free 
network and the range is between 0.1 and 0.2 as shown in Figure 5(a). In random 
network, the range that collective behaviour becomes 0.01 or 1.0 depending on the trials 
is border than scale free network and the range is between 0.1 and 0.9 as shown in  
Figure 5(b). In small world network, the collective behaviour are becomes always 0.01 
when theta is 0.0 and becomes always 1.0 when theta is between 0.1 and 1.0 as shown in 
Figure 5(c). Small world network shows unique properties with comparing other 
networks. I will analyse this properties in future works. 

Morris (2000) deals with m-dimension lattice and shows that contagion of the action 
occurs below contagion threshold. In a homogeneous network, where all nodes have the 
same connectivity, the contagion threshold equals the inverse of the connectivity k. In 
this paper, k is 10, then contagion threshold suit for 0.1 in regular network. It is 
approximate for our simulation results. In our simulation results of regular network 
contagion threshold is 0.2. 

Moreover, López-Pintado by mean field approach showed that contagion threshold of 
homogeneous network is low than that of scale free network. When the degree is 10, 
contagion threshold in regular network is about 0.08 and that in scale free network is 0.2. 
They are approximate for our simulation results. In our simulation results of regular 
network contagion threshold is 0.2 and that of scale free network is 0.5 and that in 
random network is 0.9 as shown in Table 3. 
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We found that contagion threshold depend on clustering coefficient. If clustering 
coefficient is large, which means that many neighbours are linked each other, contagion 
threshold is low and contagion is difficult to occur. 
Table 3 Contagion threshold and clustering coefficient 

 Small 
world Regular Scale  

free Random 

Contagion threshold 0.0 0.2 0.5 0.9 
Standardised clustering coefficient C/C0 0.99 1.00 0.11 0.15 

Figure 5 The histogram of final collective behaviour, (a) regular network (b) random network  
(c) small world network 

  
(a) (b) 

 
(c) 

Note: White bar: p* = 1.0, grey bar: p* = 0.01, number: trials lead to 1.0. 

3.3 Threshold model 

In threshold model, we found that collective behaviour depends on the initial behaviour 
of high degree agents (Iwanaga and Namatame, 2013). With comparing both models, we  
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analyse the affection on collective behaviour in cascade model. For comparison, we show 
the simulation results of threshold model in Figure 6. Similar to cascade model, we made 
regular in which there are network 1,000 agents with ten links, and arrange the network 
for small world network, random network and scale free network using Kawachi 
algorism Then, their average degrees are 10. We set the initial collective behaviour as 
0.01, which means only 1% of agents choose S1 at first time step. We set theta θ at 
intervals of 0.1 from 0.0 to 1.0. We simulate until 100 time step, we call this as a trial. 
Then, we simulate 100 trials per each theta θ and investigate the final collective 
behaviour. 

Figure 6 The histogram of final collective behaviour, (a) scale free network (b) regular network 
(c) random network (d) small world network 

  

(a) (b) 

  

(c) (d) 

Note: White bar: p* = 1.0, grey bar: p* = 0.0, number: trials lead to 1.0. 

In threshold model, an agent can change from S1 to S2, or from S2 to S1. Moreover, each 
agent decides his behaviour depend on the neighbours’ behaviour in previous time step 
for each time step, that is simultaneously. 
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Final collective behaviour is almost same as cascade model, though the decision is 
interactive and simultaneously. And we showed that collective behaviour is affected in 
the structure of the social network and theta. Then, we found that the collective behaviour 
in threshold model is similar to cascade model. That is, our former results with 
heterogeneous rules or heterogeneous networks are possible to apply for cascade model. 
In these populations, each agent has an idiosyncratic threshold or networks in which 
agents have different numbers of neighbours. And in cascade model, it takes 10,000 times 
steps for a trial, but, in threshold model, it takes only 100 times steps. That means that 
threshold model can save the simulation resources instead of cascade model. 

Note that final collective behaviour of threshold model can be 0.0, which is shown by 
grey bar, because agent can change choice from S1 to S2. 

We found that collective behaviour is affected in the structure of the social network 
and theta and the collective behaviour was stochastic. Moreover, collective behaviour is 
almost same as threshold model, though the decision is not interactive and 
simultaneously. We found that the collective behaviour in threshold model is similar to 
cascade model. 

4 Where is stochastic from 

4.1 Initial decision depend on network degree 

In former section, we found that the collective behaviour of population is stochastic, 
although decisions of agents are deterministic. We analyse this point especially focusing 
scale free network. Because the differences of degree among agents in scale free network 
is distinct and it is easy to understand the differences. In previous simulation, agents 
decide at random at initial time step and each time step. Because there are agents with 
each degree in scale free network, we deal with the effect of network degree. We set 
agents’ initial behaviour as ascending order or descending order with depending on 
degree. That is, in ascending order, agent with low degree chooses S1 preferentially at 
initial time step. In descending order, agent with high degree chooses S1 preferentially at 
initial time step. 

We show the simulation results in Figure 6. The characteristic of collective behaviour 
is similar to the former results. We found that first decision is not effect on collective 
behaviour. 

4.2 Turns depend on network degree 

We set agents’ turn of choice as ascending order or descending order with depending on 
degree. That is, in ascending order, agent with low degree decides S1 preferentially each 
time step. In descending order, agent with high degree decides S1 preferentially each 
time step. 

We show the simulation results in Figure 7. The characteristic of collective behaviour 
is different from the former results. We found that turn of decision is effect on collective 
behaviour. 
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Figure 7 Collective behaviour about initial decision in scale free network, (a) ascending order of 
network degree at initial step: white bar: p* = 1.0, grey bar: p* = 0.01, number: trials 
lead to 1.0 (b) descending order of network degree at initial step: white bar: p* = 1.0, 
grey bar: p* = 0.01, number: trials lead to 1.0 

  
(a) (b) 

Figure 8 Collective behaviour about turns of choice in scale free network, (a) ascending order of 
network degree: white bar: p* = 1.0, grey bar: p* = 0.01, number: trials lead to 1.0  
(b) descending order of network degree: white bar: p* = 1.0, grey bar: p* = 0.01, 
number: trials lead to 1.0 

  
(a) (b) 

Hasan and Ukkusuri (2011) investigate effect of the initial seed on cascade propagation 
for uniform degree distribution. And they show that the local neighbourhood will be 
relatively smaller than the affected cluster size which makes the cascade to propagate 
fast. 

We also investigated the speed of contagion and show the results in Figure 9. There 
are four case of contagion, ascending order of network degree at initial time step and 
network degree each time step, and descending order of network degree at initial time 
step and network degree each time step. In the first and the third case, that is bold line 
and bold dot line, the transitions are almost same as Figure 3. And the speed of contagion 
is not effected the initial seed in scale free network. On the other hand, in the second and 
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the fourth case, that is solid line and dot line, we found obviously effect of turn of the 
choice on contagion speed in scale free network. Then, we found that turns of the choice 
effect on the contagion speed than initial seed in scale free network. 

Here, in real world, an agent with high degree means person who has many friends to 
interact or communicate. Contrariwise, an agent with low degree means a person who has 
a few friends to. And descending order of network degree each step means that a person 
who has many friend choose each time step. Ascending order of network degree each 
step means that a person who has a few friend choose each time step. 

Figure 9 Contagion speed of four cases, (a) bold line: ascending order of network degree at 
initial step, slid line: ascending order of network degree each step (b) bold dot line: 
descending order of network degree at initial step, dot line: descending order of network 
degree each step 

  
(a) (b) 

5 Conclusions 

In cascade model, collective behaviour is affected in the structure of the social network 
and threshold to make decision, and the collective behaviour was stochastic, similar to 
threshold model in local interaction. In both models, although decisions of agents are 
deterministic, collective behaviour of population become stochastic. In this paper, we 
analysed origin of stochastic collective behaviour in cascade model. We analysed why 
collective behaviour of population is stochastic in scale free network. And we investigate 
the effect of network degree on collective behaviour. We show that turn of the choice 
effects on collective behaviour not the first choices. And we found that collective 
behaviour is affected by turns of decisions not the first choices. Moreover, contagion 
speed is also affected by turns of decisions than initial decisions. 
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