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Abstract: For noisy multi-objective optimisation problems involving multiple 
noisy objective functions with different noise levels, this work proposes a 
multiobjective evolutionary algorithm for multi-level robust solution search 
(MOEAMRS). MOEA-MRS simultaneously finds multi-level robust solutions 
with different noise levels for each search direction in the objective space. 
Furthermore, as an extension of MOEA-MRS, we also propose a MOEA for 
preference-based multi-level robust solution search (MOEA-pMRS) which 
focuses the solutions search on a specific noise level to consider the case that 
the decision maker has a preference for the noise level. The experimental 
results using noisy DTLZ2 and multi-objective knapsack problems shows that 
the proposed MOEA-MRS is able to obtain multi-level robust solutions with 
different noise levels for each search direction in a single run of the algorithm, 
and the proposed MOEA-pMRS can emphasise the solution search for specific 
noise levels. 
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1 Introduction 

Evolutionary algorithms are particularly suited to solve multi-objective optimisation 
problems (MOPs) involving multiple objective functions since Pareto optimal solutions 
(POS) approximating the optimal trade-off among objectives can be obtained from the 
population in a single run (Deb, 2001; Coello, 2007). So far, multi-objective evolutionary 
algorithms (MOEAs) have been intensively studied for solving noise-free MOPs that 
objective values of each solution are uniquely determined by one-time evaluation. 
However, in some MOPs such as real-world engineering optimisation problems, 
objective values of each solution are not uniquely determined, and they are varied in 
every evaluation due to the influence of noise (Hughes, 2001a; Goh and Tan, 2009).  
This is because, several unknown factors not considered as decision variables  
affect the objective values. For these noisy multi-objective optimisation problems 
(NMOPs), several algorithms optimising solutions based on the estimation of the true 
objective function values by considering the influence of noise have been studied  
so far (Babbar et al., 2003; Teich, 2001; Basseur and Zitzler, 2006; Bui et al., 2005; 
Buche et al., 2002; Goh and Tan, 2009). However, in conventional approaches, the noise 
level of each solution cannot be considered in the decision-making process when a 
decision maker tries to select the final solution from the obtained solutions. If the noise 
level of each solution can be considered in the decision-making process, the number of 
valuable choices is increased for the decision maker. Meanwhile, the decision maker will 
be able to select a solution by considering not only objective values but also the  
noise level. 

Figure 1 Two-stage MCDM considering the balance among objectives and the noise  
levels of solutions, (a) 1st stage: make a decision on the balance among objectives  
(b) 2nd stage: make a decision on the robustness of solution (see online version  
for colours) 
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For NMOPs, we aim to develop a multi-criteria decision-making (MCDM) system 
considering not only the objective values but also the noise level of solutions. Figure 1 
shows an overview of the MCDM system. In this system, the decision-making process is 
divided into two stages. In the first stage, the decision maker selects a solution with a 
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preferred balance of objective values from the obtained POS without considering the 
noise level in the objective space. In the second stage, the decision maker selects a 
solution based on the noise levels of solutions. For the preferred balance of objective 
values, this system shows solutions with different levels of the noise and guides the 
decision-making considering the noise level of solutions. In Figure 1, the size of circle 
around each solution indicates the noise level. Thus, the two-stage MCDM system allows 
the decision maker to select the final solution by considering not only the objective 
values but also the noise levels. 

For the two-stage MCDM system considering the noise, in this work we propose a 
MOEA for multi-level robust solution search (MOEA-MRS) which simultaneously 
searches multi-level robust solutions with different noise levels for each search direction 
in the multidimensional objective space. The proposed MOEA-MRS is designed as a 
variant of the conventional MOEA/D (Zhang and Li, 2007) which is a representative 
MOEA for solving MOPs without the noise. The proposed MOEA-MRS tries to find 
multi-level robust solutions for a number of search directions in a single run of the 
algorithm. Furthermore, as an extension of MOEA-MRS, we also propose a MOEA for 
preference-based multi-level robust solution search (MOEA-pMRS) which focuses the 
solutions search on a specific noise level to consider the case that the decision maker has 
a preference for the noise level. In this work we extend the conventional DTLZ2 problem 
(Deb et al., 2002) and multi-objective knapsack problem (Zitzler and Thiele, 1999) to 
noisy problems with different noise levels, and use them to verify the effectiveness of the 
proposed MOEA-MRS and MOEA-pMRS. This paper is the extended version of our 
paper (Hashimoto and Sato, 2015) presented at IES2015 conference for the special issue, 
and additionally includes MOEA-pMRS employing the preference-based robust solution 
search and its effectiveness verification in the noisy DTLZ2 problem. 

2 Noisy multi-objective optimisation using evolutionary algorithms 

2.1 Noisy multi-objective optimisation problem 

A NMOP is defined by 

{ }1 2Minimise (or maximise)  ( ) ( ), ( ), , ( ) ,z z z z
mf f f= …f x x x x  (1) 

where x is the design variable vector, the solution, consists of n kinds of variables  
(x = {x1, x2,…,xn}), and ( 1, 2, , )z

jf j m= …  are m kinds of noisy objective functions. The 

objective values ( )( 1, 2, , )z
jf j m= …x  including noise are varied in every evaluation of 

the solution x due to the influence of the probabilistic noise. 
For the noisy objective ( 1, 2, , ),z

jf j m= …  there are several formulations. 

2.2 Three types of noisy objective functions 

In the noisy multi-objective optimisation using evolutionary algorithms, two types of 
noisy objective functions have been studied so far (Hughes, 2001a; Goh and Tan, 2009). 
According to the categorisation of noisy objective functions in the article  
(Hughes, 2001a), in this paper they are described as Type A and B, respectively. 
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Additionally, in this work we define another Type C noisy objective function  
and focus on it. In the following, the three types of noisy objective functions are 
introduced. 

• Type A: is the noisy objective function that probabilistic noise values  
z = {z1, z2,…,zn} vary each solution vector x = {x1, x2,…,xn} before the original 
objective functions fj (j = 1, 2,…,m) are calculated (Hughes, 2001a, 2001b;  
Basseur and Zitzler, 2006). This type of noisy objective function is formulated by 

( ) ( )  ( 1, 2, , ).z
jjf f z j m= + = …x x  (2) 

Note that the input for each original objective function fj is x + z (= {x1 + z1,  
x2 + z2,…,xn + zn}) which is varied due to the influence of noise z. That is, in NMOPs 
with this type of noisy objective functions, the aim is to find robust solutions 
showing good objective function values even if their variables are slightly varied in 
the decision variable space due to the probabilistic noise z. Recently, evolutionary  
multi-objective optimisation is increasingly applied to engineering optimisation 
problems (Coello and Lamont, 2004). Even though we can obtain an ideal design 
plan as the result of an engineering optimisation, some errors usually occur in its 
production. To achieve good product performance on the assumption that some 
production errors occur, this type of function formulation is available. 

• Type B: is the noisy objective function that probabilistic noise values  
z = {z1, z2,…,zm} vary the original objective function values f(x) = {f1(x), 
f2(x),…,fm(x)} after the calculation of the original objective functions f (Hughes, 
2001a, 2001b; Buche et al., 2002; Babbar et al., 2003; Basseur and Zitzler, 2006;  
Bui et al., 2005; Park and Ryu, 2011). This type of noisy objective function is 
formulated by 

( ) ( )  ( 1, 2, , ).z
j jjf f z j m= + = …x x  (3) 

Note that the input for each original objective function fj is fixed x, and the varying 
noise zj is added to the original function value fj(x) (j = 1, 2,…,m). In NMOPs with 
this type of noisy objective functions, the aim is to find solutions showing good 
original objective function values fj (j = 1, 2,…,m) while considering the influence of 
noise z. As an example in engineering optimisation, this type of function is the case 
that product performance values are varied in every evaluation due to the influence 
of unknown noise factors even the same product design is used for every evaluation. 

• Type C: is the noisy objective function that probabilistic noise function values  
z(x) = {z1(x), z2(x),…,zm(x)} vary the original objective function values  
f(x) = {f1(x), f2(x),…,fm(x)} after the calculation of the original objective functions f. 

( ) ( ) ( )   ( 1, 2, , ).z
j jjf f z j m= + = …x x x  (4) 

Compared with Type B, note that the last noise term is a function of x. That is, Type C is 
the function that the noise level (amount) is determined by the design variable vector x. 
For example, in Type C, a design variable x showing a large z(x) has a large influence of 
noise for the objective values f z. In contrast, a design variable x showing a small z(x) has 
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a small influence of noise for the objective values f z. In this work, we focus on this type 
of noisy objective function which has a trade-off between the noise level and the 
objective function values. For example, here we consider two design variable vectors a 
and b. Although the expected objective function values of solution a are better than the 
ones of b, a has larger noise than b. In contrast, although solution b has smaller noise than 
a, the expected objective function values of b are worse than the ones of a. In this case, 
we cannot determine inferiority or superiority of these two design variable vectors. The 
decision maker might prefer a solution with a low influence of noise even its expected 
objective values are bad, or prefer a solution with good expected objective values even its 
influence of noise is high. Therefore, in NMOPs with this type of noisy objective 
functions, the aim is to find POSs for multi noise levels. After the optimisation, the 
decision maker selects one final solution from the obtained solutions by considering both 
the expected objective values and the noise levels of solutions. 

2.3 Related works and scope of this work 

To solve NMOPs with Type A and B noisy objective functions by using evolutionary 
algorithms, several noise-handlings have been proposed so far (Goh and Tan, 2009). For 
each solution x, most of algorithms use multiple samples of the objective values f z(x) 
including noise by repeating function evaluation of f z. In one approach to utilise the 
multiple samples of f z(x), the average objective vector of the multiple samples of f z(x) is 
used to determine inferiority or superiority of solutions in the population (Babbar et al., 
2003). In another approach, probabilistic rankings of solutions based on several 
extensions of Pareto dominance have been proposed (Hughes, 2001a, 2001b; Teich, 
2001; Park and Ryu, 2011). Also, to extend the idea of the indicator-based MOEA 
(Zitzler and Künzli, 2004) originally proposed for MOPs without noise, the estimation of 
the expected indicator value was proposed for solving NMOPs (Basseur and Zitzler, 
2006). To estimate the true (original) objective values in noisy multi-objective 
optimisation, the multiple samples of the objective values are needed but it is  
time-consuming. To reduce computational time while maintain the estimation quality of 
the true (original) objective values, the fitness inheritance assigning an offspring a 
weighted sum of the objective values of parents was introduced for solving NMOPs  
(Bui et al., 2005). Furthermore, although the archive of non-dominated solutions is 
generally effective for solving MOPs without noise, the existence of solutions with a 
large estimation error of objective values in the archive has a negative effect for the 
solution search in NMOPs. To avoid the negative effect, the idea of life time for solutions 
in the archive population was introduced (Buche et al., 2002). The life time value of each 
solution is gradually decreased during the solution search. When the life time value of a 
solution becomes zero, the solution is discarded from the archive and reevaluated in the 
population. 

The aforementioned conventional MOEAs are designed for solving NMOPs with 
Type A and B noisy objective functions, and their aims are to find solutions showing good 
objective function values even if their variables are slightly varied in the variable space or 
solutions showing good original objective function values while considering the influence 
of noise. As mentioned before, this work focuses on NMOPs with Type C noisy objective 
function. These conventional algorithms cannot be easily applied to NMOPs with Type C 
because these conventional algorithms cannot considers different noise levels. Also, in 
the decision-making process, the noise levels of solutions cannot be considered when the 
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decision maker tries to select the final solution from the obtained solutions. For NMOPs 
with different noise levels, if the noise level of each solution can be considered in the 
decision-making process, the number of valuable choices is increased for the decision 
maker. Meanwhile, the decision maker will be able to select the final solution by 
considering not only the objective values but also the robustness. In this work, we 
propose a MOEA to consider different noise levels in NMOPs with Type C noisy 
objective function. 

3 MOEA/D 

In this work, we design a MOEA for NMOPs based on the algorithm framework of 
MOEA/D (Zhang and Li, 2007). MOEA/D is a representative MOEA for solving MOPs 
without the noise. In this section, we introduce the conventional MOEA/D. Figure 2(a) 
shows a conceptual figure of the conventional MOEA/D in an m = 2 dimensional 
minimisation problem. 

3.1 Algorithm 

MOEA/D decomposes a MOP into a number of single-objective optimisation problems. 
The single-objective optimisation problems are defined by scalarising functions s using 
uniformly distributed weight vectors 1 2{ , , , }.N= …L λ λ λ  Each weight vector λi 

determines a search direction in the m dimensional objective space. Each element 
( 1, 2, , )i

jλ j m= …  is one of {0/H, 1/H,…,H/H} based on the decomposition parameter H, 

and 1
1

m
H mN C −
+ −=  kinds of weight vectors satisfying 

1
1.0

m i
jj
λ

=
=∑  are used for the 

solution search. A similar idea was also proposed in the article (Murata et al., 2001). In 
the following, the algorithm of MOEA/D is briefly described. 

Step 1 Initialisation: 

 Step 1-1 Calculate distances between any two weight vectors and  
find the T-nearest weight vectors to each weight vector. For each  
i ∈ {1, 2,…,N}, set B(i) = {i1, i2,…,iT}, where 1 2{ , , , }.N= …L λ λ λ  are 
the T-nearest weight vectors to λi. 

 Step 1-2 Randomly generate the population {x1, x2,…,xN}. 

Step 2 Solution Search: 

 For each i ∈ {1, 2,…,N}, perform the following procedure. 

 Step 2-1 Randomly choose two indices k and l from B(i), and then generate an 
offspring y from parents xk and xl by applying genetic operators. 

 Step 2-2 For each index j ∈ B(i), if s(y|λj) is better than s(xj |λj), then the current 
solution xj is replaced by the generated offspring y (xj = y). 

Step 3 Termination: 

 If the termination criterion is satisfied, then stop and pick POS from the population 
{x1, x2,…,xN} as the output of the optimisation. Otherwise, go to Step 2. 
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3.2 Scalarising function 

In MOEA/D, there are several scalarising approaches to aggregate m kinds of objective 
function values (Miettinen, 1999; Zhang and Li, 2007; Li et al., 2013). In this work, we 
employ the weighted Tchebycheff approach. In this approach, there are two function 
formulations. They are the conventional weighted Tchebycheff (Miettinen, 1999) and the 
reciprocal weighted Tchebycheff (Li et al., 2013). Since the search points specified by the 
reciprocal weighted Tchebycheff with the weight vectors in the objective space and the 
weight vectors in the weight space are matched, in this work we employ the reciprocal 
weighted Tchebycheff scalarising function. The scalar optimisation problem of the 
reciprocal weighted Tchebycheff function s is defined by 

( ) { }
1

Minimise |   max | ( ) | / ,j j j
j m

s f I λ
≤ ≤

= −x λ x  (5) 

where I is the obtained ideal point. In this work, each element Ij (j = 1, 2,…,m) is set to 
the best objective function value fj in the population. To avoid division by zero, λj = 0 is 
exceptionally replaced by λj = 10–6 before the calculation of s. The reciprocal weighted 
Tchebycheff approach searches a solution minimising s toward I. The weighted 
Tchebycheff approach has an advantage that both convex and concave Pareto front can 
be approximated. 

4 Proposal: MOEA-MRS 

4.1 Concept 

For the two-stage MCDM considering the noise level, in this work we propose a MOEA 
for multi-level robust solution search (MOEA-MRS) which simultaneously searches 
multilevel robust solutions with different noise levels for each search direction in the 
objective space. The proposed MOEA-MRS is designed as a variant of MOEA/D.  
Figure 2(b) shows a conceptual figure of the proposed MOEA-MRS. In this figure, the 
size of circle around each solution indicates the noise level. As shown in Figure 2(a), the 
conventional MOEA/D only obtain blue solutions since the noise level is not considered. 
For the two-stage MCDM considering the noise level, as shown in Figure 2(b), the 
proposed MOEA-MRS tries to simultaneously obtain multiple red solutions with 
different noise levels for each search direction. 

4.2 m + 1 fitness values considering noise 

The proposed MOEA-MRS solves a noisy m objective optimisation problem as an m + 1 
objective optimisation problem considering not only the optimisation of m objectives but 
also the minimisation of the noise. The proposed MOEA-MRS evaluates a solution based 
on m + 1 kinds of fitness values (  1, 2,  ...,  1).jf j m′ = +  The first m fitness values 

 (  1,2,  ..., )jf j m′ =  are the average objective function values calculated by repeatedly 
evaluating a solution r times. For a solution x, the fitness values ( ) (  1, 2,  ..., )jf j m′ =x  
are calculated by 



   

 

   

   
 

   

   

 

   

    Evolutionary multi-level robust solution search for NMOPs 11    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

1

1( )  ( 1, 2, , )
r

z
j j

i

f f j m
r =

′ = ⋅ =∑ …x  (6) 

The last fitness value 1mf +′  is the noise level. In this work, we use the total standard 
deviation. For a solution x, the fitness value 1( )mf +′ x  is calculated by 

{ }2
1

1 1

1( ) ( ) ( ) .
m r

z
m jj

j i

f f f
r+

= =

′ ′= ⋅ −∑ ∑x x x  (7) 

Figure 2 Conceptual figures of the conventional MOEA/D and the proposed MOEA-MRS in a 
m = 2 dimensional minimisation problem, (a) the conventional MOEA/D  
(b) the proposed MOEA-MRS (see online version for colours) 
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4.3 m + 1 dimensional weight vectors considering noise 

The proposed MOEA-MRS needs m + 1 dimensional weight vectors since a NMOP with 
m objectives is solved as a MOP with m + 1objectives. The proposed MOEA-MRS 
generates m + 1 dimensional weight vectors in a different way from the conventional 
MOEA/D (Zhang and Li, 2007). 

For a NMOP with m objectives, first we generate m dimensional basic weight vectors 
L in the same manner as the conventional MOEA/D (Zhang and Li, 2007). The number 
of elements in each of basic weight vectors λi (i = 1, 2,…,N) is equivalent to the number 
of objectives m. Next, we generate the extended weight vectors ′L  from the basic weight 
vectors L as shown in Figure 3. Each extended weight vector in ′L  is represented as λ(i,p), 
where i is the basic weight vector index, and p is the extended weight vector index. λ(i,p) 

(p = 0, 1,…,J) are weight vectors extended from the basic weight vector λi to consider the 
noise in J levels, and the number of elements in λ(i,p) becomes m + 1. We generate λ(i,p)  
(p = 0, 1,…,J) from λi by the following equation. 
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( , )
    for   1, 2, ,1.0

  ( 1, 2, , , 1)
for   1

i
j

i p
j

pλ j m
J δλ j m m

p j m
J δ

⎧ ⎛ ⎞⋅ =−⎜ ⎟⎪ +⎪ ⎝ ⎠= = +⎨
⎛ ⎞⎪ = +⎜ ⎟⎪ +⎝ ⎠⎩

…
…  (8) 

Figure 3 The basic weights L and the extended weights ′L  in the proposed MOEA-MRS  
(see online version for colours) 
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To avoid λ(1,J) = λ(2,J) = · · · = λ(N,J), we use a very small value δ in equation (8). In this 
work δ is set to 0.01. In this way, the extended weight vectors λ(i,p) (p = 0, 1,…,J) 
consider the additional dimension for the noise while maintaining the balance of m kinds 
of elements in the basic weight vector λi. The number of the basic weight vectors in L  is 

1
1

m
H mN C −
+ −=  as described in Section 3.1. The number of the extended weight vectors  

in ′L  becomes ( 1)N N J′ = × +  since each of the basic weight vectors is further 
decomposed into J + 1 kinds of the extended weight vectors. 

Figure 4 Difference of the weights distribution between the conventional MOEA/D considering 
m = 3 objectives and the proposed MOEA-MRS considering m = 2 objectives plus  
one noise, (a) the conventional MOEAD with H = 9 (b) the proposed MOEA-MRS 
with H = 8 and J = 6 (see online version for colours) 
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Although m + 1 dimensional weight vectors can also be generated by the same way of the 
conventional MOEA/D, the proposed MOEA-MRS generates m + 1 dimensional weight 
vectors by using the above procedure for the two-stage MCDM system shown in Figure 
1. Figure 4 shows examples of weight vector distributions in the weight space. m + 1 = 3 
dimensional weights generated by the conventional MOEA/D are shown in Figure 4(a). 
Also, m + 1 = 3 dimensional weights generated by the proposed MOEA-MRS is shown in 
Figure 4(b). Thus, weight distributions of the conventional MOEA/D and the proposed 
MOEA-MRS are different. For the two-stage MCDM, the proposed MOEA-MRS varies 
the extended weight λ3 for the noise while maintaining the balance of the elements in the 
basic weight vector. For example, in Figure 4(b), after the balance of λ(7,⋅) is selected in 
the first stage of the decision-making process, in the second stage the decision maker can 
select a solution from solutions obtained with λ(7,0), λ(7,1),…,λ(7,J) while maintaining the 
balance of the objectives selected in the first stage of the decision-making process. 

4.4 Algorithm 

The proposed MOEA-MRS is designed as a variant of MOEA/D. The proposed 
MOEAMRS has two main differences from the conventional MOEA/D. 

The first difference is the way to determine neighbourhood weight vectors. MOEA/D 
selects parents from solutions of neighbourhood weight vectors and generates offspring. 
As shown in Figure 4(a), the weight vectors of the conventional MOEA/D are uniformly 
distributed in the weight space. Therefore, in the conventional MOEA/D, neighbourhood 
weight vectors are T-nearest neighbours to each weight vector. That is, the number of 
neighbourhood weight vectors is T for any weight vectors. On the other hand, as shown 
in Figure 4(b), the weight vectors of the proposed MOEA-MRS is not uniformly 
distributed in the weight space. Therefore, the proposed MOEA-MRS determines 
neighbourhood weight vectors based on an user-defined Euclidean distance D in the 
weight space. That is, in the proposed MOEA-MRS, the number of neighbourhood 
weight vectors depends on each weight vector. 

The second difference is the way to generate offspring. Since the weight vectors of 
the conventional MOEA/D are uniformly distributed in the weight space, the objective 
space can be uniformly searched by equally giving the chance to generate offspring to 
each weight vector. On the other hand, since the weight vectors of the proposed  
MOEA-MRS is not uniformly distributed in the weight space, the objective space cannot 
be uniformly searched by equally giving the chance to generate offspring to each weight 
vector. Therefore, the proposed MOEA-MRS introduces a counter c(i,p) for each weight 
vector and controls the number of offspring generations. 

The entire algorithm of the proposed MOEA-MRS is described in the following. 

Step 1 Initialisation: 
 Step 1-1 Calculate distances between any two weight vectors in ′L  and find the 

nearest weight vectors within the user-defined distance D to each weight 
vector. For each λ(i,p) in ,′L  set B(i, p) = {(i1, p1), (i2, p2), . . . }, where 

1 1 2 2( , ) ( , ), ,i p i p …λ λ  are the weight vectors within the user-defined distance 
D from λ(i,p). 

 Step 1-2 For each i ∈ {1, 2,…,N}, randomly generate one solution and  
initialise all x(i,p) (p = 0, 1,…,J) by the generated solution,  
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i.e., x(i,0) = x(i,1) = . . . = x(i,J). 
 Step 1-3 Initialise each counter c(i,p) of the weight vector λ(i,p) by zero. 
Step 2 Solution Search: 
 Perform the following procedure N times. 
 Step 2-1 Find the index (imin, pmin) of the weight vector min min( , )i pλ  which has the 

minimum counter value min min( , )i pc  among all weight vectors in .′L  Then, 
select min min( , )i px  as the first parent. 

 Step 2-2 Randomly choose an index min min( , )q qi p  from B(imin, pmin) and select 
min min( , )q qi px  as the second parent. Then, generate an offspring y from two 

parents min min( , )i px  and min min( , )q qi px  by applying genetic operators. 

 Step 2-3 For each index min min( , )min min min min( , ) ( , ),   if  ( | )j ji p
j ji p B i p s∈ y λ  is better 

than min min min min( , ) ( , )( | ),j j j ji p i ps x λ  then the current solution min min( , )j ji px  is 

replaced by the generated offspring y, i.e., min min( , ) .j ji p =x y  

 Step 2-4 For each index min min( , )min min min min( , ) ( , ),   j ji p
j ji p B i p c∈  is incremented by 

one. 
Step 3 Termination: 
 If the termination criterion is satisfied, then stop and pick non-dominated solutions on 

fitness vector ′f  from {x(i,0), x(i,1),…,x(i,J)} for each i ∈ {1, 2,…,N} as the output of 
the optimisation. Otherwise, go to Step 2. 

4.5 MOEA-pMRS: preference-based multi-level robust solution search 

MOEA-MRS described in the previous section tries to find multi-level robust solutions 
from the minimum noise to the best average objective values in a single run of the 
algorithm. For the case that the decision maker has a preference for the noise level, as an 
extension of MOEA-MRS, we also propose a MOEA-pMRS. MOEA-MRS described in 
the previous section controls the amount of solution search for each area of m + 1 
dimensional objective space by counting c(i,p). m + 1 dimensional objective space can be 
uniformly searched by incrementing c(i,p) one by one. For the preference-based search of 
the noise level, the proposed MOEA-pMRS varies the increased amount to each c(i,p). In 
MOEA-pMRS, the increased amount to c(i,p) is increased by increasing the distance from 
the preferred noise level. Since the increased amount of the preferred noise level becomes 
lower than the ones of other noise levels, solutions with the preferred noise level gets 
many chances to generate offspring and update current solutions. For the preferred noise 
level F (= [0, J]), MOEA-pMRS is the algorithm that Step 2-4) of MOEA-MRS 
described in the previous section is replaced by the following Step 2-4’). 

min min

min min min min

( , )min min min min min

( , ) ( , ) min

Step 2 4’)

For each ( , ) ( ,  ),| |  1 is added to ,

i.e.,   | |  1.

j j

j j j j

i p
j j j

i p i p
j

i p B i p F p c

c c F p

−

∈ − +

= + − +

α

α

 

α is the parameter to control the increased amount to c(i,p), and α = 2 is used in this work. 
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Figure 5 shows a conceptual figure of focused search areas of MOEA-MRS,  
MOEA-pMRS with a large F and MOEA-pMRS with a small F. MOEA-MRS searches 
the entire trade-off between the noise level and objective values while MOEA-pMRSs 
focus the search on specific noise levels. MOEA-pMRS with a large F searches solutions 
with good average objective values even their influence of noise is high. On the other 
hand, MOEA-pMRS with a small F searches solutions with low influence of noise even 
their average objective values are bad. In this way, if the decision maker have a 
preference for specific noise level, MOEA-pMRS can focus the solution search on the 
preferred noise level. 

Figure 5 Difference of focused search areas of MOEA-MRS and two MOEA-pMRSs with 
different values of F (see online version for colours) 

Trade-off among objectives

MOEA-MRS :
the search to find the entire trade-off between noise level and objectives

MOEA-pMRS with a large F = 6 (=J) :
the preference-based search to find solutions with

- good averaged objective values

- even their influence of noise is high

MOEA-pMRS with a small F =0 :
the preference-based search to find solutions with

- low influence of noise

- even their averaged objective values are bad

 

5 Experimental setup 

5.1 Test problems 

To verify the effectiveness of the proposed MOEA-MRS and MOEA-pMRS, we use two 
test problems. The first one is the noisy DTLZ2 which is a continuous problem, and the 
second one is the noisy multi-objective knapsack problem which is a discrete problem. 
Both of them are categorised as Type C described in Section 2.2. 

5.1.1 Continuous test problem: nDTLZ2 

We extend DTLZ2 problem (Deb et al., 2002) to a noisy continuous test problem. The 
noisy DTLZ2 (nDTLZ2) is simply formulated by 

DTLZ2Minimise ( ) ( ) ( 1, 2, , ),jf z j m+ = …x x  (9) 



   

 

   

   
 

   

   

 

   

   16 H. Sato and T. Hashimoto    
 

    
 
 

   

   
 

   

   

 

   

       
 

where DTLZ2 ( 1, 2, , )jf j m= …  are the original objective functions of DTLZ2 (Deb et al., 
2002), and z(x) is the noise function. Note that nDTLZ2 is categorised as Type C 
described in Section 2.2 because the noise level depends on x. More precisely, nDTLZ2 
is formulated by 

( )( ) ( )

( )( ) ( )

( )( )

1 2 2 11

1 2 2 12

1 23

Minimise

( ) cos cos ...cos cos ,1
2 2 2 2

( ) cos cos ...cos cos ,1
2 2 2 2

( ) cos cos ..1
2 2

z MM m m

z MM m m

z M

π π π πf zg x x x x

π π π πf zg x x x x

π πf g x x

− −

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ++ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ++ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= + ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

x xx

x xx

x x ( )

( )( ) ( )

2

1

.sin ,
2

   

( ) sin ,1
2

Mm

z MMm

π zx

πf zg x

−
⎛ ⎞ +⎜ ⎟
⎝ ⎠

⎛ ⎞= ++ ⎜ ⎟
⎝ ⎠

x

x xx

#

 (10) 

where g is the distance function, and z is the noise function. z is the only difference  
from the original DTLZ2. A solution x consists of n variables 1 2 1{ ,  , , ,mx x x −…  

1, , , },M M M
m nmx x x+ …  and all the elements are real values in the range [0, 1]. The last part 

1{ , , , }M M M M
m nmx x x+= …x  in x determines the distance g(xM) between x and the true 

Pareto front in the objective space. g(xM) is defined by the following equation. 

( ) ( )2 .0.5
M M
i

MM
i

x

g x
∈

= −∑
x

x  (11) 

A solution with xM = {0.5, 0.5,…,0.5} achieves the minimum g(xM) = 0 and becomes a 
true POS. 

In the nDTLZ2, the last part xM also determines the noise level z(xM). z(xM) is 
formulated by 

( ) ( )2 · (0,1) · ,0.7
M M
i

MM
i

x

g R N x
∈

= −∑
x

x  (12) 

where R is the scaling parameter to control the scale of noise level, and N is the  
zero-mean Gaussian probability distribution function with the standard deviation 1. In the 
nDTLZ2, a solution with xM = {0.7, 0.7,…,0.7} has the smallest noise. 

Figure 6(a) shows the objective space of the nDTLZ2 with m = 2 objectives, and 
Figure 6(b) shows g and z functions for a variable ( ).M M

ix ∈ x  In the nDTLZ2, the 
distance to the true Pareto front in the objective space is determined by g. For example, 
the solution a with the smallest g in Figure 6(b) is the closest to the true Pareto front 
among three solutions in Figure 6(a). Contrary, the solution c with the largest g in  
Figure 6(b) is the farthest to the true Pareto front among three solutions in Figure 6(a). 
Next, in the nDTLZ2, the noise level is determined by z. In Figure 6(a), the size of circle 
around each solution indicates the noise level. Although the noise of b is the smallest, its 
distance to the true Pareto front is larger than a. Contrary, although a is closest to the true 
Pareto front in the objective space, its noise is larger than b. Additionally, c is the farthest 
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from the true Pareto front and its noise is the largest among three solutions. That is, there 
is the optimal trade-off between the distance g and the noise z in the nDTLZ2, and the 
task of the proposed MOEA-MRS in the nDTLZ2 is to find solutions distributed in the 
range 0.5 0.7M

ix≤ ≤  (grey region) by the solution search with the extended weight 
vectors. 

Figure 6 The noisy DTLZ2 problem (nDTLZ2), (a) the objective space (b) the distance g and 
the noise z (see online version for colours) 
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5.1.2 Discrete test problem: nMOKP 

We also extend multi-objective knapsack problem (MOKP) (Zitzler and Thiele, 1999) to 
a noisy discrete test problem. The noisy MOKP (nMOKP) is simply formulated by 

MOKP

,1

Maximise  ( ) ( ) ( )
  ( 1, 2, , ),

Subject to  

z
j j

n
l j l jl

f f z
j m

w x c
=

= +⎧⎪ =⎨
⋅ ≤⎪⎩ ∑

…
x x x

 (13) 

where MOKP  ( 1, 2, , )jf j m= …  are the original objective functions of MOKP (Zitzler and 
Thiele, 1999), and z(x) is noise the function. The noise function z(x) is the only difference 
from the original MOKP. Note that nMOKP is also categorised as Type C because the 
noise level depends on x. More precisely, the noisy objective functions 
 ( 1, 2, , )z

jf j m= …  are formulated by 

,
1 1

( ) (0, / 3 )  ( 1, 2, , )
n n

z
l j l lj

l l

f p x R N l n x j m
= =

= ⋅ + ⋅ ⋅ =∑ ∑ …x  (14) 

where, the first term is the original objective function MOKP ,jf  and the second term is the 
noise function z(x). In the nMOKP, there are n items and m knapsacks (objectives).  
Each item l has m kinds of profits pl,j (j = 1, 2,…,m) and m kinds of weights  
wl,j (j = 1, 2,…,m). The task is to find combinations of items x = {x1, x2,…,xn} ∈ {0, 1}n 
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which maximises the total of profits on m kinds of objectives subject to the total of 
weights does not exceed m kinds of knapsack capacities cj. The capacities of knapsacks cj 
are defined as 

,1
 (  1,2,  ..., )

n
j l jl

c w j m
=

= ⋅ =∑φ  (15) 

where φ is the feasibility ratio for each knapsack (constraint). In this work, infeasible 
solutions are repaired by repeatedly removing a randomly chosen item from the solution 
until all constraints are satisfied. Also, R is the scaling parameter to control the scale of 
noise level, and N is the zero-mean Gaussian probability distribution function with the 
standard deviation l/3n. Note that the noise value, the second term of equation (14), is 
increased by increasing item number l. 

All profits pl,j and weights wl,j are generated by random integers in the range of  
[10, 100] in the same manner as the original MOKP (Zitzler and Thiele, 1999). However, 
for analysis of the experimental result, a special reordering of pairs of profit  
pl,1 and weight wl,1 (l = 1, 2,…,n) is performed in this work. We calculate ratios  
pl,1/wl,1 (l = 1, 2,…,n) and reorder pairs of profit pl,1 and weight wl,1 to satisfy  
p1,1/w1,1 > pn,1/wn,1 > p2,1/w2,1 > pn–1,1/wn–1,1…. That is, the ratio pl,1/wl,1 is increased by 
increasing the difference |l – n/2| between item number l and the intermediate item 
number n/2. 

5.2 Parameters 

In this work, we use the nDTLZ2 problem with m = 2 objectives, n = 11 variables and the 
scaling parameter R = 0.125. For solving the nDTLZ2, we use SBX crossover with the 
crossover ratio 0.8 and the distribution parameter ηc = 15 and the polynomial mutation 
with the mutation ratio 1/n and the distribution parameter ηm = 20 (Deb and Goyal, 1996). 

Also, we use the nMOKP with m = 2 objectives, n = 500 items (bits) and the scaling 
parameter R = 15. For solving then MOKP, we use the uniform crossover with the 
crossover ratio 0.8 and the bit-flip mutation with the mutation ratio 4/n. 

For both problems, as the common parameters, the basic decomposition parameter 
and the extended decomposition parameter are set to H = 200 and J = 40, respectively. 
The distance to determine the neighbourhood weight vectors is set to D = 0.06. To 
calculate the average objective function values ( 1, 2, , )jf j m′ = …  and the total standard 
deviation 1,mf +′  the number of evaluation for each generated solution is set to r = 100. 

6 Experimental results and discussion 

6.1 Results of MOEA-MRS in nDTLZ2 

First, we verify the effectiveness of the proposed MOEA-MRS on the nDTLZ2 problem. 
In this section, the termination criterion to stop MOEA-MRS is set to 8,000 generations. 
Figure 7 shows the obtained solutions in the objective space. Note that the both objective 
functions of the nDTLZ2 should be minimised. All solutions are plotted based on their 
average objective function values 1f ′  and 2.f ′  First, the blue points are the obtained 
solutions x(1,J), x(2,J),…,x(N,J) without considering the noise. Next, we focus only on three 
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basic weight vector indices i = {10, 100, 190}, solutions x(10,J), x(100,J), x(190,J) without 
considering the noise are plotted with blue circles, and solutions x(10,p), x(100,p), x(190,p)  

(p = 0, 1,…,J – 1) considering the noise are plotted with red circles. The size of circle 
indicates the noise level. 

Figure 7 The obtained solutions in the nDTLZ2 problem (see online version for colours) 
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From the result, first we can see that the blue solutions x(1,J), x(2,J),…,x(N,J) without 
considering the noise approximate the trade-off between two objective functions. These 
blue solutions are used for the first stage of the decision-making shown in Figure 1. Next, 
for each of three basic weight vector indices i = {10, 100, 190}, we can see that the 
proposed MOEA-MRS can simultaneously obtain multi-level robust solutions with 
different levels of noise in a single run of the algorithm. These red solutions are used for 
the second stage of the decision-making shown in Figure 1. 

Next, we analyse the obtained solutions in the variable space. Here, we focus on the 
obtained solutions x(190,p) (p = 0, 1,…,J) for the basic weight vector index i = 190.  
Figure 8 shows the distance function g and the noise function z for the variable 

2 ( ),M Mx ∈ x  and the obtained solutions x(190,p) (p = 0, 1,…,J) are plotted on the horizontal 
axis. The solution x(190,J) without considering the noise is plotted as the blue point, and the 
solutions x(190,p) (p = 0, 1,…,J – 1) considering the noise are plotted as the red points. 

From the result, we can see that the obtained solutions are distributed in or near the 
grey region 2(0.5 0.7)Mx≤ ≤  showing the optimal trade-off between the distance g and 
the noise z. Also, Figure 9 shows the obtained solutions x(190,p) (p = 0, 1,…,J) on all 
variables 2 3 11{ , , , }.M M M M

nx x x == …x  From the result, we can see that the obtained 
solutions are distributed in or near the optimal grey regions of all variables in xM. 
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Figure 8 The obtained solutions x(190,p) (p = 0, 1,…,J) on the variable 2
Mx  (see online version  

for colours) 

The bound of 

the minimum 

The bound of 

the minimum 

 

Figure 9 The obtained of solutions x(190,p) (p = 0, 1,…,J) on all variables in xM (see online 
version for colours) 
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6.2 Results of MOEA-MRS in nMOKP 

Next, we verify the effectiveness of the proposed MOEA-MRS in the nMOKP. In this 
section, the termination criterion of MOEA-MRS is set to 104 generations. Figure 10 
shows the obtained solutions in the objective space. Note that the both objective functions 
of the nMOKP should be maximised. The blue points are the obtained solutions x(1,J), 
x(2,J),…,x(N,J) without considering the noise. We focus on three basic weight vector indices 
i = {10, 100, 190}, solutions x(10,J), x(100,J), x(190,J) without considering the noise are plotted 
with blue circles, and solutions x(10,p), x(100,p), x(190,p) (p = 0, 1,…,J – 1) considering the 
noise are plotted with red circles. 

Figure 10 The obtained solutions in the nMOKP problem (see online version for colours) 
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From the result, as a general tendency, we can see that solutions with large objective 
values 1f ′  and 2f ′  have large noises with large circles. This result in the nMOKP also 
reveals that the proposed MOEA-MRS is able to simultaneously find multi-level robust 
solutions with different levels of the noise for each search direction in the objective space 
in the single run of the algorithm. 

Next, we focus on the basic weight vector index i = 190 and observe the selected 
items of the obtained solutions in the nMOKP. The selected items of three solutions 
x(190,0), x(190,2) and x(190,J=40) are shown in Figure 11. For each item (bit) l, selected item (1) 
is shown in black, and unselected item (0) is shown in white in this figure. As described 
in Section 5.1, the noise level is increased by increasing the item (bit) number l. Also, the 
ratio pl,1/wl,1 is increased by increasing the difference |l – 250| between item number l and 
the intermediate item number 250. From this result, we can see that the solution x(190,J=40) 

with a large noise selects many items with large item number l. That is, x(190,J=40) selects 
items with high pl,1/wl,1 even if their noises are high. On the other hand, the robust 
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solution x(190,0) with a small noise tends to not select items with large l. That is, x(190,0) 
avoids to select items with high noise even if their pl,1/wl,1 are high. This result reveals 
that the proposed MOEA-MRS is able to extract items (variables) with low influences of 
noise. 

Figure 11 Selected items (bits) of three solutions with different noise levels (see online version 
for colours) 

Item (bit) number l

Noise
Small Large

Small LargeLarge

Profit per weight

 

6.3 Results of MOEA-pMRS in nDTLZ2 

Finally, we verify the effectiveness of the proposed MOEA-pMRS in nDTLZ2.  
Figure 12(a) shows all solutions obtained by MOEA-MRS at 8,000 generation,  
and these solutions are obtained in the same experiment shown in Section 6.1.  
Figures 12(b) to 12(d) show all solutions obtained by MOEA-MRS and two  
MOEA-pRMSs with F = {0, J = 40} at 3,000 generation. Note the difference between 
Figure 12(a) and Figures 12(b) to 12(d) is the total number of generations. MOEA-MRS 
searches the entire trade-off between the noise level and the objective values.  
MOEA-pMRS with F = 0 focuses the solution search on the minimum noise level, and 
MOEA-pMRS with F = 40 focuses the solution search on the best (minimum) average 
objective values. 

From the result in Figure 12(a), we can see that the solutions obtained by  
MOEA-MRS at 8,000 generation are widely distributed in the grey region which is the 
entire optimal trade-off between the noise level and the objective values in the objective 
space of nDTLZ2. However, from the result in Figure 12(b), the solutions obtained by 
MOEA-MRS at 3,000 generation have large gaps especially around the border of the 
minimum noise. That is, to approximate the entire trade-off between the noise level and 
the average objective values, 3,000 generations are not enough for MOEA-MRS. 

If the decision maker has a preference for a specific noise level, MOEA-pMRS can be 
applied and reduce the total computational time. Figure 12(c) shows solutions obtained 
by MOEA-pMRS with F = 0 which has a preference for the lowest noise level at  
3,000 generation. From the result, we can see that the distribution density of solutions  
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around the border of the minimum noise value is higher than the ones of not only  
MOEA-MRS at 3,000 generation but also MOEA-MRS at 8,000 generation. Similarly, 
Figure 12(d) shows solutions obtained by MOEA-pMRS with F = 40 which has a 
preference for the best (minimum) objective values at 3,000 generations. From the result, 
we can see that the distribution density of solutions around the border of the best 
(minimum) objective values is higher than the ones of not only MOEA-MRS at  
3,000 generation but also MOEA-MRS at 8,000 generation. These results reveal that the 
proposed MOEA-pMRS can emphasise the solution search for a preferred noise level 
with a small number of generations if the decision maker has a preference for the noise 
level. 

Figure 12 All solutions obtained by two MOEA-MRSs with different total number of generations 
and two MOEA-pMRS with F = {0, J = 40}, (a) MOEA-MRS (8,000 generation)  
(b) MOEA-MRS (3,000 generation) (c) MOEA-pMRS with F = 0 (3,000 generation) 
(d) MOEA-pMRS with F = 40 (3,000 generation) (see online version for colours) 
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7 Conclusions 

For the two-stage MCDM considering the noise level, in this work we proposed 
MOEAMRS which simultaneously searches multi-level robust solutions with different 
noise levels for each search direction in the multi-dimensional objective space of 
NMOPs. As an extension of MOEA-MRS, we also proposed MOEA-pMRS which 
focuses the solutions search on a specific noise level to consider the case that the decision 
maker has a preference for the noise level. To verify the effectiveness of the proposed 
MOEA-MRS and MOEA-pMRS, we used continuous nDTLZ2 and discrete nMOKP 
problems extended from the conventional DTLZ2 and MOKP, respectively. The 
experimental results showed that the proposed MOEA-MRS was able to obtain multi-
level robust solutions with different noise levels for each search direction in a single run 
of the algorithm. In the nDTLZ2 problem, we showed that the proposed MOEA-MRS 
obtained solutions in the optimal region showing the optimal trade-off between the 
distance to the true Pareto front and noise levels. Also, in then MOKP, we showed that 
the proposed MOEA-MRS was able to extract items (variables) with low influences of 
noise. Furthermore, we showed that the proposed MOEA-pMRS was able to emphasise 
the solution search for specific noise levels. 

As future work, we will try to decrease the total number of evaluations in the 
proposed MOEA-MRS and MOEA-pMRS since the current algorithm needs many 
evaluations to assign fitness values for each solution. 
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