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Abstract: The high-level contribution of this paper is correlation analysis 
between the centrality values observed for nodes (a computationally 
lightweight metric) and the maximal clique size (a computationally hard 
metric) that each node is part of in complex real-world network graphs. The 
real-world network graphs studied range from regular random network graphs 
to scale-free network graphs. The maximal clique size for a node is the size of 
the largest clique (in terms of the number of constituent nodes) the node is part 
of. We observe the degree-based centrality metrics such as the degree centrality 
and eigenvector centrality to be relatively better correlated with the maximal 
clique size compared to the shortest path-based centrality metrics such as the 
closeness centrality and betweenness centrality. As the real-world networks get 
increasingly scale-free, we observe the correlation between the centrality value 
and the maximal clique size to increase. 
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1 Introduction 

Network science is a fast-growing discipline in academics and industry. It is the science 
of analysing and visualising complex real-world networks using graph theoretic 
principles. Several metrics are used to analyse the characteristics of the real-world 
network graphs; among them ‘centrality’ is a commonly used metric. The centrality of a 
node is a measure of the topological importance of the node with respect to the other 
nodes in the network (Newman, 2010). It is purely a link-statistics based measure and not 
based on any offline information (such as reputation of the node, cost of the node, etc.). 
The commonly used centrality metrics are degree centrality (DegC), eigenvector 
centrality (EVC), closeness centrality (ClC) and betweenness centrality (BWC). DegC of 
a node is simply the number of immediate neighbours for the node in the network. The 
EVC of a node is a measure of the degree of the node as well as the degree of its 
neighbour nodes. We refer to DegC and EVC as degree-based centrality metrics. ClC of a 
node is the inverse of the sum of the shortest path distances of the node to every other 
node in the network. BWC of a node is the ratio of the number of shortest paths the node 
is part of for any source-destination node pair in the network, summed over all possible 
source-destination pairs that do not involve the particular node. We refer to  
ClC and BWC as shortest path-based centrality metrics. Computationally efficient 
polynomial-time algorithms have been proposed in the literature (Strang, 2005; Cormen 
et al., 2009; Brandes, 2001; Newman, 2010) to determine exact values for each of the 
above centrality metrics; hence we categorise centrality as a computationally lightweight 
metric. 

A ‘clique’ is a complete sub graph of a graph (i.e., all the nodes that are part of the 
sub graph are directly connected to each other). Cliques are used as the basis to identify 
closely-knit communities in a network as part of studies on homophily and diffusion. 
Unfortunately, the problem of finding the maximum-sized clique in a graph is an NP-hard 
problem (Cormen et al., 2009), prompting several exact algorithms and heuristics to be 
proposed in the literature (Tomita and Seki, 2003; Palla et al., 2005; Fortunato, 2010; 
Sadi et al., 2010; Pattabiraman et al., 2013). In this paper, we choose a recently proposed 
exact algorithm (Pattabiraman et al., 2013) to determine the size of the maximum clique 
for large-scale complex network graphs and extend it to determine the size of the 
maximal clique that a particular node is part of. We define the maximal clique size for a 
node as the size of the largest clique (in terms of the number of constituent nodes) the 
node is part of. Note that the maximal clique for a node need not be the maximum clique 
for the entire network graph; but, the maximum clique for the entire graph could be the 
maximal clique for one or more nodes in the network. 

Since the maximal clique size problem is a computationally hard problem and exact 
algorithms run significantly slower on large network graphs, our goal in this paper is to 
explore whether the maximal clique size correlates well to one of the commonly studied 
computationally lightweight metrics, viz., centrality of the vertices, for complex  
real-world network graphs: if we observe a high positive correlation between maximal 
clique size and one or more centrality metrics, we could then infer the maximal clique 
size of the vertices to be directly correlated to the centrality values of the corresponding 
vertices in real-world network graphs. Ours will be the first paper to conduct a correlation 
study between centrality and maximal clique size for real-world network graphs. To the 
best of our knowledge, we did not come across such a paper that has done correlation 
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study between these two metrics (and in general, a computationally hard metric vis-a-vis 
a computationally lightweight metric) for real-world network graphs. 

We hypothesise the degree-based centrality metrics to exhibit a high positive 
correlation with maximal clique size, compared to that observed with the shortest path-
based centrality metrics. From the results obtained for real-world network graphs, we 
observe our hypothesis to be true: the eigenvector-based centrality metric shows a high 
positive correlation to the maximal clique size and the BWC metric shows a low 
correlation to the maximal clique size. The high positive correlation between EVC and 
maximal clique size indicates that a high degree vertex present in a neighbourhood of 
high degree vertices is likely to be part of larger cliques; on the other hand, nodes that are 
part of a maximal sized clique need not always play the central role in facilitating 
communication between any two nodes in the network; rather it is more likely the nodes 
whose maximal clique is smaller (i.e., at the best are part of smaller-sized cliques) play a 
central role in facilitating communication between various nodes and communities in the 
network (a measure of BWC). We observe the correlation between the centrality metrics 
and maximal clique size to increase with increase in the variation of node degrees in the 
network. As we transition from a regular random network (variation in node degree is 
minimum and all nodes have comparable degrees) to a scale-free network (variation in 
node degrees is the maximum; a majority of the nodes have low degree, but there are 
some appreciable number of high-degree nodes), we observe the correlation coefficient 
between the centrality value and maximal clique size for the nodes to increase. In 
addition to the above correlation study, we also analyse the distribution of the maximal 
clique size of the nodes in the real-world network graphs as well as analyse the 
assortativity index of the vertices in these graphs with respect to both maximal clique size 
and node degree. We observe the frequency distribution of the maximal clique size of the 
nodes to resemble a Poisson distribution for five of the six real-world network graphs 
considered in this study while the remaining network graph exhibits an exponential-style 
distribution for the maximal clique size of the nodes. 

The rest of this paper is organised as follows: Section 2 discusses related work and 
motivates the need for a correlation coefficient analysis between centrality and maximal 
clique size. Section 3 reviews the four centrality metrics studied in this paper and briefly 
discusses the algorithmic approach to determine them on network graphs. Section 4 
describes an efficient branch-and-bound technique based exact algorithm proposed in the 
literature to determine the maximum clique size for massively large complex network 
graphs and our extensions to the algorithm to determine the size of the maximal clique 
that an individual node is part of (so that it can be applied for every node in the network). 
Section 5 describes the six real-world network graphs that are used in this paper and 
presents an analysis of the degree distribution of the vertices and the distribution of the 
maximal clique size of the vertices in these graphs. The section also presents an analysis 
of the assortativity index of the vertices in the real-world network graphs with respect to 
node degree and maximal clique size. Section 6 presents the results of the correlation 
studies between centrality and maximal clique size at the node level for each of the  
real-world network graphs. Section 7 concludes the paper. Throughout the paper, we use 
the terms ‘node’ and ‘vertex’ as well as ‘link’ and ‘edge’ interchangeably. They mean the 
same. 
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2 Related work and motivation 

To the best of our knowledge, ours is the first work to focus on correlation coefficient 
analysis between a computationally hard metric (maximal clique size for the individual 
vertices) with that of a computationally lightweight metric (centrality values of individual 
vertices) for complex real-world network graphs. The work available in the literature so 
far considers these two metrics separately. Recently, Li et al. (2014) conducted a 
correlation coefficient analysis study among the centrality metrics for real-world network 
graphs. Centrality metrics have been widely studied for analysis and visualisation of 
complex networks in several domains, ranging from biological networks to social 
networks (e.g., Koschutzki and Schreiber, 2008; Opsahl et al., 2010). The research focus 
with regards to cliques in the context of complex networks is to come up with efficient 
heuristics to reduce the run-time complexity in determining the maximum size clique for 
the entire network graph. Though branch-and-bound has been the common theme among 
these works, the variation is in the approach used to arrive at the bounds and enforce 
them in the search space. Strategies used for pruning the search space are typically based 
on node degree (e.g., Pattabiraman et al., 2013), vertex ordering (e.g., Carraghan and 
Pardalos, 1990) and vertex colouring (e.g., Ostergard, 2002). Recently, Rossi et al. (2014) 
proposed a parallelised branch and bound approach for determining cliques in real-world 
networks ranging from 1,000 to 100 million nodes. Nevertheless, none of the research so 
far has focused on identifying correlation between the maximal clique size for an 
individual vertex (the size of the largest clique that a particular vertex is part of) with any 
of the commonly studied metrics (like centrality) for network analysis. Ours is the first 
step in this direction. With the problem of determining maximum size clique for the 
entire network graph and maximal size cliques for the individual vertices being NP-hard 
and computationally time-consuming for complex real-world networks of larger size, it 
becomes imperative to analyse the correlations of the maximal clique size values of the 
individual vertices with that of the network metrics that can be easily computed so that 
meaningful inferences about maximal clique size values can be made. 

3 Centrality metrics 

This section discusses the four centrality metrics that are studied in this paper. We 
discuss the algorithm/approach used to determine each of them and also illustrate the 
same with an example and figures. The highest ranked vertex or set of vertices with 
respect to each of the centrality metrics is shown shaded in the graphs of these figures. 
The algorithms to determine the centrality metrics use the adjacency matrix of the 
network graph as the basis; it is a binary matrix where there is a 1 in the ith row and jth 
column, if there is an edge from vertex i to vertex j and 0 otherwise. 

3.1 Degree centrality 

DegC of a vertex is the number of neighbours adjacent to it. The larger the number of 
neighbours for a vertex, the higher the DegC of the vertex. We determine DegC by 
simply multiplying the adjacency matrix with a column vector of 1s [1 1 1 1 … 1 1]T, 
where the number of 1s is the number of vertices in the network graph. Since the number 
of neighbours for a vertex can take only discrete values, it is possible that two or more 
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vertices could have identical values for DegC. In such cases, the ranking among the 
vertices has to be either arbitrarily broken or based on some ordering among the vertices 
(like the vertex ID). Figure 1 illustrates an example to compute the DegC. 

Figure 1 Example to illustrate the computation of DegC (see online version for colours) 

 

Figure 2 Example to illustrate the computation of ClC (see online version for colours) 

 

3.2 Closeness centrality 

The ClC of a vertex is the inverse of the sum of shortest path distances from the vertex to 
every other vertex. We determine the ClC of a vertex i by running the breadth first search 
(BFS) algorithm (Cormen et al., 2009) starting from that vertex i; the root of the BFS tree 
(vertex i) is said to be at level 0, its one-hop neighbours are at level 1, its two-hop 
neighbours are at level 2 and so on. The length of a shortest path from vertex i to vertex j 
is the level of vertex j in the BFS tree rooted at vertex i. The sum of the shortest path 
distances for vertex i is then simply the sum of the level values of all the vertices in the 
BFS tree rooted at vertex i. Since the sum of the shortest path distances is an integer 
value, the ClC will take only discrete values; two or more vertices are likely to have 
identical values for the sum of shortest path distances, leading to ambiguity in the ranking 
of vertices based on ClC. Figure 2 illustrates an example to determine the ClC of the 



   

 

   

   
 

   

   

 

   

   8 N. Meghanathan    
 

    
 
 

   

   
 

   

   

 

   

       
 

vertices in a graph. As can be seen, vertices (3 and 4) that lie in the centre of the network 
are likely to have smaller values for the sum of shortest path distances, compared to 
vertices that are in the periphery. 

3.3 Eigenvector centrality 

EVC of a vertex is a measure of the degree of the vertex as well as the degree of its 
neighbours. EVC of the vertices are the entries in the principal eigenvector of the 
adjacency matrix of the graph. 

Each vertex has an entry (in the order of the vertex IDs) in the principal eigenvector. 
The larger the value of the entry for an vertex in the principal eigenvector, the higher is 
its ranking with respect to EVC. The principal eigenvector is determined by running the 
power-iteration algorithm (Strang, 2005) on the adjacency matrix of the network graph. 
The eigenvector Xi+1 of a network graph at the end of the (i + 1)th iteration is given by: 

1 ,
|| ||

i
i

i

AXX
AX+ =  where ||AXi|| is the normalised value of the product of the adjacency 

matrix A of a given graph and the tentative eigenvector Xi at the end of iteration i. The 
initial value of Xi is the transpose of [1, 1, …, 1], a column vector of all 1s, where the 
number of 1s correspond to the number of vertices in the graph. We continue the 
iterations until the normalised value ||AXi+1|| converges to that of the normalised value 
||AXi||. The value of the column vector Xi at this juncture is the principal eigenvector of 
the graph; the entries corresponding to the individual rows in Xi represent the EVC of the 
vertices of the graph. The converged normalised value of the principal eigenvector is 
referred to as the spectral radius. The EVC values are more likely to be continuous (real 
numbers); hence, unless two vertices have the same degree as well as connected to the 
same number of neighbours with identical degree distribution, their EVC values are 
likely to be different – leading to unambiguous ranking of the vertices with respect to 
EVC. 

Figure 3 Example to illustrate the computation of EVC (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    Correlation coefficient analysis 9    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 illustrates an example to determine the EVC of the vertices of a network graph. 
As can be seen in the example, the EVC of a vertex is a function of both its degree as 
well as the degrees of its neighbours. Vertices 3 and 5 have the same degree  
(3 neighbours each); however, vertex 3 is connected to two vertices that have a high 
degree (3) and vertex 5 is connected to three vertices that have a lower degree (2); hence, 
vertex 3 has a higher EVC than vertex 5. 

3.4 Betweenness centrality 

BWC is a measure of how significant a node is in facilitating communication between 
any two nodes in the network. BWC for a node is the ratio of the number of shortest 
paths a node is part of for any source-destination node pair in the network, summed over 
all possible source-destination pairs that do not involve the particular node. If the number 
of shortest paths between two nodes j and k that go through node i as the intermediate 
node is denoted as spjk(i) and the total number of shortest paths between the two nodes j 

and k is denoted as spjk, then the BWC for node i is given by: 
( )

( ) .jk

jkj k i

sp i
BWC i

sp≠ ≠

= ∑  

The algorithm described below is a BFS-based variation of the computationally efficient 
algorithm proposed by Brandes (2001). 

The number of shortest paths from a node j to all other nodes k in an undirected graph 
can be determined by running the well-known BFS algorithm on the graph, starting from 
vertex j (which is also considered to be at level 0 for this BFS run). All the vertices that 
are directly reachable from vertex j are said to be at level 1; the two hop neighbours of 
vertex j are at level 2 and so on. Though the BFS algorithm primarily determines a 
shortest path tree rooted at vertex j, the level of a vertex k on this BFS tree (i.e., the 
minimum number of hops from the root j to vertex k) can be used to determine the 
number of shortest paths from the root vertex j to the vertex k. The number of shortest 
paths from the root j (at level 0) to itself is set to be 1. For any other vertex k (at level l, 
where l > 0) on this shortest path BFS tree rooted at j: the number of shortest paths from j 
to k (spjk) is the sum of the number of shortest paths from j to each of the neighbours of k 
(in the original graph) that are at level l – 1 on the BFS tree. 

The number of shortest paths between two nodes j and k that go through node i (i.e., 
spjk(i)) is simply the maximum of the number of shortest paths from vertex j to i and the 
number of shortest paths from vertex k to i. This can be determined from the BFS trees 
rooted at vertices j and k using the approach described earlier. However, the above 
assertion holds true (i.e., spjk(i) > 0) only if node i lies on at least one shortest path 
between j and k. We test this by keeping track of the set of predecessors at all levels  
(< l; l > 0) for a vertex k (at level l; l > 0) in the BFS tree rooted at vertex j and  
vice-versa. Accordingly, the set of predecessors for a vertex k at level l in a BFS tree 
rooted at vertex j is the union of all the neighbour vertices of k (in the original graph) at 
level l – 1 in the BFS tree (rooted at j) as well as the union of the sets of predecessors of 
all these neighbour vertices. For an undirected graph, to test whether vertex i is on one of 
the shortest paths from vertex j to k, it is enough to test whether node i is one among the 
predecessors for vertex k on the BFS tree rooted at vertex j. 

Figure 4 illustrates an example to compute the BWC of the vertices in the example 
graph that is also used in Figures 1 to 3. We notice that BWC-based ranking of the 
vertices is different from the DegC and EVC-based ranking of the vertices. The degree 
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and EVC-centralities take into consideration only the degree of the vertices and they are 
positively correlated. However, the BWC centrality takes into consideration the 
contribution of a vertex in facilitating communication between any two vertices in the 
network on the shortest path; such vertices are likely to be more central to the network 
and form the backbone or the core of the network. As can be seen in the example run of 
Figure 4, vertex 4 that was ranked lower with respect to degree and EVC is ranked the 
highest (along with vertex 3) with respect to BWC. Also note that in this example graph, 
no source-destination pair need to go through vertices 1 or 6 or 7 on a shortest path. As a 
result, the BWC for each of these three vertices (1, 6 and 7) is 0. 

Figure 4 Example to illustrate the computation of BWC (see online version for colours) 

 

4 Clique 

A clique is a sub graph of a graph in which all the vertices are adjacent to each other. The 
problems of finding maximum size clique for the entire graph as well as the maximal size 
cliques for the individual nodes are NP-hard problems (Cormen et al., 2009). Several 
exact algorithms (that at the worst case incur exponential time for a NP-hard problem) 
have been proposed to determine maximum size cliques for sparse graphs. Recently, with 
the surge in interest to analyse large real-world networks from a graph theoretic point of 
view, researchers have proposed efficient exact algorithms (e.g., Tomita and Seki, 2003; 
Palla et al., 2005; Fortunato, 2010; Sadi et al., 2010; Pattabiraman et al., 2013) to 
determine maximum size cliques for large/dense graphs. The common theme (Ostergard, 
2002) behind these algorithms is a branch and bound approach of searching through all 
possible candidate cliques and limiting the search to only viable candidate sets of vertices 
whose agglomeration has scope of being a clique of size larger than the currently known 
clique found as part of the search; the variation among these exact algorithms is the 
pruning strategy (the approach taken to compute the bounds and use them) to limit the 
search. In this section, we will describe one such branch and bound-technique based 
exact algorithm that has been recently proposed in the literature (Pattabiraman et al., 
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2013) to determine maximum size clique in large network graphs and explain our 
modification to the algorithm so that it can be used to determine the maximal cliques that 
each vertex in the graph is part of; the largest among these cliques is the maximum size 
clique for the entire graph. 

Figure 5 outlines the pseudo code of the algorithm (proposed originally by 
Pattabiraman et al., 2013) to determine the maximum size clique for an entire graph. The 
algorithm starts with an estimate of 0 for the maximum size clique (variable max) in the 
entire graph; the value for max is updated as and when a clique of size larger than the 
latest value of max is found. The procedure MAXCLIQUE proceeds in iterations, with 
each iteration designed to determine the maximum size clique for the entire graph that 
could also include vertex vi (considered in the increasing order of the IDs). In a particular 
iteration, vertex vi is considered worthy of exploration for presence in a maximum size 
clique only if its degree is at least the value of max at that time (i.e., only vertices that 
could be part of a clique of size larger than the currently known maximum size clique are 
considered – a pruning strategy). For each such vertex vi, a candidate set U of neighbour 
vertices vj (whose degree is at least the latest value for max) is constructed and passed to 
the sub routine CLIQUE to find a clique among these vertices; the initial size of the 
clique is 1 – accounting for vi. 

Figure 5 Exact algorithm to determine the maximum size clique for an entire graph 

 Subroutine CLIQUE(G = (V, E), U, size) 
  // size is the size of clique found so far 
   if U = φ then 
Procedure MAXCLIQUE (G = (V, E))    if size > max then 
 max ← 0     max ← size 
 for i : 1 to |V| do    return 
  if degree(vi) ≥ max then   while |U| > 0 do 
   U ← φ    if size + |U| ≤ max then 
   for each vj ∈ Neighbour(vi) 

do 
    return 

    if degree(vj) ≥ max then    select any vertex u from U 
     U ← U ∪ {vj}    U ← U \{u} 

   CLIQUE(G, U, 1)    N’(u) := {w | w ∈ Neighbour(u) ∧ 
degree(u) ≥ max} 

    Clique(G, U ∩ N’(u), size + 1) 

Source: Adapted from Pattabiraman et al. (2013) 

The sub routine CLIQUE called with vertex vi as the first constituent vertex of the largest 
possible clique involving vi, expands with one vertex at a time through a combination of 
iterations and recursions; the sub routine runs as long as the size of the set U is greater 
than zero or if the current value of max is less than the sum of the sizes of the set U and 
the current clique found so far (a pruning strategy). In each such iteration, a vertex u (that 
is also a neighbour of the starting vertex vi and the other vertices in the clique determined 
so far) is randomly removed from the set U and the neighbours of u that are also present 
in U (and hence are neighbours of the starting vertex vi and the other vertices that are part 
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of the clique found so far) are only further considered to be candidates that could be part 
of the clique, and a recursive call to the CLIQUE sub routine is made with the value of 
variable size (the size of the largest clique found so far involving vertex vi) incremented 
by 1 – accounting for u as the latest entrant in the clique determined so far. Each 
recursive call to CLIQUE is accompanied by an iteration where a vertex u (that is also a 
neighbour of the vertices already part of the clique) is removed from the set U passed to 
the sub routine and only the neighbours of u that are also neighbours of the vertices 
already in the clique are considered. During any such recursive call, if the size of the set 
U passed to the sub routine CLIQUE reaches zero, the algorithm terminates the sequence 
of recursions and updates the value of max if the size of the clique determined so far 
involving vertex vi is larger than the current value of max. During the sequence of returns 
from the recursive calls, it is possible that a new sequence of recursions and iterations is 
triggered due to the presence of a neighbour u of vi that has scope for being in a clique 
(involving vi) of size larger than the clique found so far for the entire graph. The 
algorithm explores all such possible cliques involving vertex vi that have scope for 
exceeding the currently known maximum size clique for the entire graph. 

Figure 6 Exact algorithm to determine the maximal clique size for each vertex in a graph 

Procedure MAXIMALCLIQUE (G = (V, E)) 

 for i : 1 to |V| do 

  maximalCliqueSize[vi] ← 0 

  U ← φ 

  for each vj ∈ Neighbour(vi) do 

   U ← U ∪ {vj} 

  CLIQUE(G, vi, U, 1) 

   

Subroutine CLIQUE(G = (V, E), vi, U, size) // size is the size of clique found so far for vertex vi 

 if U = φ then 

  if size > maximalCliqueSize[vi] then 

   maximalCliqueSize[vi] ← size 

  return 

 while |U| > 0 do 

  if size + |U| ≤ maximalCliqueSize[vi] then 

    return 

  select any vertex u from U 

  U ← U \{u} 

  N’(u) := {w | w ∈ Neighbour(u) ∧ degree(u) ≥ maximalCliqueSize[vi]} 

  Clique(G, vi, U ∩ N’(u), size + 1) 

Source: Adapted from Pattabiraman et al. (2013) 
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At the end, the algorithm returns the maximum size clique for the entire graph that also 
happens to be the maximal size clique involving some vertex vi such that there is no other 
vertex vj (i > j) that is also part of the clique. Since the algorithm proceeds with vertices 
in the increasing order of their IDs, if the maximum size clique for the entire graph 
involves at least one vertex vi with a smaller ID, the presence of the maximum size clique 
is detected much earlier and the subsequent iterations (with vertices whose IDs are 
greater than vi, but could be part of only cliques of size smaller or equal to the maximum 
size clique of the entire graph involving vi) are merely pruned, contributing to the  
time-efficiency of the algorithm. Hence, the labelling of the vertices with their IDs plays 
a significant role in the run-time complexity of the algorithm; the algorithm is capable of 
quickly determining the maximum size clique if the latter comprises of at least one vertex 
with a smaller ID. 

Figure 6 illustrates our modifications (to determine the size of the maximal clique that 
each vertex is part of) to the pseudo code of the algorithm presented in Figure 5. The 
trade-off is an increase in the run-time of the algorithm: we cannot just prune our search 
based on the vertex IDs; we have to explore the neighbourhood of each of the vertices to 
determine the maximal size clique that each vertex is part of. Since to start with, the 
maximal size clique known for vertex vi is 0, there is no need to filter the neighbours of vi 
in procedure MAXIMALCLIQUE based on the degree of the neighbours; all neighbours 
of vi are included in the set U and passed onto the sub routine CLIQUE. However, we 
could retain all of the pruning steps in sub routine CLIQUE (called to find the maximal 
size clique for each of the vertices vi) and recursive calls to the same: there is no need to 
explore the neighbours of vertex u whose degree is less than that of the currently known 
maximal clique size for vertex vi. 

5 Real-world network graphs and their analysis 

In this section, we describe the network graphs analysed and illustrate the degree 
distribution and the distribution of the maximal clique size of the vertices in the network 
graphs. We do so to understand the topological structure of the real-world network graphs 
as well as to elucidate the impact of the degree and maximal clique size distribution of 
the vertices on the correlation between the centrality values and the maximal clique size 
observed for the vertices. The network graphs analysed are briefly described as follows: 

1 Zachary’s Karate Club (Zachary, 1977): Social network of friendships (78 edges) 
between 34 members of a karate club at a US university in the 1970s. 

2 Dolphins’ Social Network (Lusseau et al., 2003): An undirected social network of 
frequent associations (159 edges) between 62 dolphins in a community living off 
Doubtful Sound, New Zealand. 

3 US Politics Books Network (Krebs, 2008): Nodes represent a total of 105 books 
about US politics sold by the online bookseller Amazon.com. A total of 441 edges 
represent frequent co-purchasing of books by the same buyers, as indicated by the 
‘customers who bought this book also bought these other books’ feature on Amazon. 
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4 Word Adjacencies Network (Newman, 2006): This is a word co-appearance network 
representing adjacencies of common adjective and noun in the novel ‘David 
Copperfield’ by Charles Dickens. A total of 112 nodes represent the most commonly 
occurring adjectives and nouns in the book. A total of 425 edges connect any pair of 
words that occur in adjacent position in the text of the book. 

5 US College Football Network (Girvan and Newman, 2002): Network represents  
the teams that played in the Fall 2000 season of the American Football games and 
their previous rivalry – nodes (115 nodes) are college teams and there is an edge 
(613 edges) between two nodes if and only if the corresponding teams have 
competed against each other earlier 

6 US Airports 1997 Network: A network of 332 airports in the USA (as of 1997) 
wherein the vertices are the airports and two airports are connected with an edge  
(a total of 2,126 edges) if there is at least one direct flight between them in both the 
directions. 

Data for networks (1) to (5) can be obtained from http://www-personal.umich.edu/~mejn/ 
netdata/; data for net (6) is at http://vlado.fmf.unilj.si/pub/networks/pajek/data/gphs.htm. 

5.1 Degree distribution of the real-world network graphs 

Figure 7 presents the degree distribution of the vertices in the six network graphs in the 
form of both the probability mass function (the fraction of the vertices with a particular 
degree) and the cumulative distribution function (the sum of the fractions of the vertices 
with degrees less than or equal to a certain value). We also compute the average node 
degree and the spectral radius degree ratio (ratio of the spectral radius and the average 
node degree); the spectral radius (bounded below by the average node degree and 
bounded above by the maximum node degree) is the largest eigenvalue of the adjacency 
matrix of the network graph, obtained as a result of computing the EVC of the network 
graphs. The spectral radius degree ratio is a measure of the variation in the node degree 
with respect to the average node degree; the closer the ratio is to 1, the smaller the 
variations in the node degree and the degrees of the vertices are closer to the average 
node degree (characteristic of random graph networks). The farther the ratio from 1, the 
larger the variations in degree of the nodes (characteristic of scale-free networks).  
Figure 7 presents the degree distribution of the network graphs in the increasing order of 
their spectral radius ratio for node degree (1.01 to 3.23). The US College Football 
network exhibits minimal variations in the degree of its vertices (each team has more or 
less played against an equal number of other teams). The US Airports Network exhibits 
maximum variation in the degree of its vertices (there are some hub airports from which 
there are flights to several other airports; whereas there are several airports with only 
fewer connections to other airports). In between these two extremes of networks, we have 
the other four network graphs, all of which have a spectral radius ratio for node degree 
around 1.4–1.7, indicating a moderate variation in the node degree. 
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Figure 7 Distribution of node degrees in the real-world network graphs (probability mass 
function and cumulative distribution), (a) US College Football Network (115 nodes,  
613 edges) (b) Dolphins’ Social Network (62 nodes, 159 edges) (c) Politics Books 
Network (105 nodes, 441 edges) (d) Karate Club Network (34 nodes, 78 edges)  
(e) Word Adjacencies Network (112 nodes, 425 edges) (f) US Airports’97 Network  
(332 nodes, 2,126 edges) (see online version for colours) 
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Figure 7 Distribution of node degrees in the real-world network graphs (probability mass 
function and cumulative distribution), (a) US College Football Network (115 nodes,  
613 edges) (b) Dolphins’ Social Network (62 nodes, 159 edges) (c) Politics Books 
Network (105 nodes, 441 edges) (d) Karate Club Network (34 nodes, 78 edges)  
(e) Word Adjacencies Network (112 nodes, 425 edges) (f) US Airports’97 Network  
(332 nodes, 2,126 edges) (continued) (see online version for colours) 
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Figure 8 Distribution of maximal clique size of the vertices in the real-world network graphs,  
(a) karate club network (34 nodes, 78 edges) (b) Word Adjacencies Network  
(112 nodes, 425 edges) (c) dolphins’ social network (62 nodes, 159 edges)  
(d) US Politics Books Network (105 nodes, 441 edges) (e) US Airports’97 Network 
(332 nodes, 2,126 edges) (f) US College Football Network (115 nodes, 613 edges)  
(see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

5.2 Maximal clique size distribution of the real-world network graphs 

Figure 8 presents the distribution of the maximal clique size of the vertices for the six 
real-world network graphs, in the increasing order of the average value for the maximal 
clique size of the vertices. An interesting observation is that five of the six real-world 
network graphs exhibit a Poisson-style distribution for the maximal clique size and the 
average value of the maximal clique size for the nodes is very close to the maximum 
value. The only real-world network that does not exhibit a Poisson-style distribution for 
the maximal clique size is the US Airports Network whose distribution of the maximal 
clique size appears to be more of a scale-free pattern with a long tail (wherein the average 
maximal clique size is 5.56, but there exists a significant number of nodes whose 
maximal clique size values are 21 and 22). We can also notice that the average value of 
the maximal clique size of the nodes is not proportional to the number of nodes in the 
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network nor to the spectral radius ratio for node degree. This is evident from three of the 
six real-world networks with comparable number of nodes (Word Adjacency Network – 
112 nodes, US Politics Books Network – 112 nodes and the US Football Network –  
105 nodes) incurring significantly different average values for the maximal clique size 
(3.56, 4.57 and 6.38, respectively). Similarly, though the spectral radius ratio for node 
degree increases with increase in the scale-free nature of the networks, we do not observe 
any such pattern of increase or decrease for the maximal clique size; for example: the US 
Football Network, Word Adjacency Network and the US Airports Network have spectral 
radius ratio for node degree values of 1.01, 1.73 and 3.22 respectively; whereas, their 
average maximal clique size values are 6.38, 3.56 and 5.56 respectively (no pattern of 
increase or decrease with increase in the spectral radius ratio for node degree). 
Table 1 Assortativity index for maximal clique size and node degree 

Network 
index Network name 

Spectral radius 
ratio for node 

degree 

Assortativity index 
for maximal clique 

size 

Assortativity 
index for node 

degree 
(vi) US Airports 1997 

Network 
3.22 0.17 –0.21 

(iv) Word Adjacencies 
Network 

1.73 0.20 –0.09 

(i) Zachary’s Karate 
Network 

1.46 0.13 –0.48 

(iii) US Politics Books 
Network 

1.41 0.20 –0.02 

(ii) Dolphins’ Social 
Network 

1.40 0.23 –0.04 

(v) US College Football 
Network 

1.01 0.59 0.19 

5.3 Assortativity index: maximal clique size and node degree 

The assortativity index for a network graph with respect to a particular node-related 
metric is a measure of the association of nodes with similar values for the metric 
(Newman, 2010). For example, the assortativity index of a graph with respect to node 
degree is a measure of the association of higher degree nodes with other high degree 
nodes as well as the association of nodes of lower degree nodes with other lower degree 
nodes. In this section, we analyse the assortativity index of the six real-world network 
graphs with respect to the maximal clique size and node degree, and examine the nature 
of association between nodes having higher values for each of these two metrics. If m is 
the node-related metric of interest, then the assortativity index of the network graph with 
respect to m is evaluated as the correlation coefficient of the values (with respect to 
metric m) for the end nodes of the edges in the graph. Consider a network graph of n 
nodes and set of undirected (bi-directional) edges E; let m[1], m[2], …, m[n] be the 
values for nodes 1, 2, …, n with respect to metric m and m  be the average value of the 
metric, the assortativity index with respect to metric m is given by equation (1). 
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Positive values for the assortativity index with respect to a metric indicates that the 
network exhibits assortativity with respect to the metric (nodes with higher values for the 
metric are more likely to be connected to nodes with higher values and vice-versa); 
negative values for the assortativity index indicates the network exhibits disassortativity 
(nodes with lower values for the metric are more likely to be connected to nodes with 
higher values for the metric and vice-versa); assortativity index values close to 0 
indicates the network is more neutral with respect to the metric (i.e., no correlation 
between the values for the end nodes). 

Table 1 lists the assortativity index values for the maximal clique size and degree of 
the vertices for the six real-world network graphs, along with their spectral radius ratio 
for node degree. We observe the assortativity index (with respect to the maximal clique 
size) for all the six network graphs to be positive and the assortativity index value for the 
maximal clique size increases with increase in the level of randomness in the network, 
indicating that the association of nodes of a particular maximal clique size with other 
nodes that are also of the same maximal clique size is more by chance. On the other hand, 
we observe the assortativity index (with respect to the node degree) for five of the six 
network graphs (i.e., all network graphs, except the US Football Network that exhibits 
the characteristic of random graphs) to be negative and the assortativity index values for 
the node degree gets more negative with increase in the scale-free nature of the network, 
indicating high degree nodes are more likely to be associated with low degree nodes 
(especially with increase in the spectral radius ratio for node degree). 

6 Correlation coefficient analysis: centrality vs. maximal clique size 

In this section, we present the results of correlation coefficient analysis conducted 
between the centrality values observed for the vertices vis-a-vis the maximal size clique 
that each vertex is part of. The analysis has been conducted on the six real-world network 
graphs (mentioned in Section 5) with respect to the four centrality metrics (degree-based 
DegC and EVC as well as the shortest-path based BWC and ClC metrics) and the 
maximal clique size measured for the vertices in these graphs. We implemented the 
algorithms to determine each of the four centrality metrics (see Section 3 for a description 
of these metrics and the algorithms/approach taken to measure each of these metrics) and 
the exact algorithm to determine the maximal clique size for each of the vertices in a 
graph (see Figure 6). The visualisation figures presented in the paper were obtained by 
porting the network data as well as the centrality/maximal clique size results to Gephi 
(Cherven, 2013) and making appropriate changes to the settings in the latter. The layout 
algorithm chosen in Gephi for visualisation is the Fruchterman Reingold algorithm 
(Fruchterman and Reingold, 1991) that presents the network in a circular format (like a 
globe). 
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Table 2 presents a correlation coefficient analysis of the four centrality metrics and 
the maximal clique size observed for the vertices in each of the six real-world network 
graphs studied in this paper. Values of correlation coefficient greater than or equal to 0.8 
(high correlation) have been highlighted in yellow; values below 0.5 (low correlation) are 
highlighted in light blue; and values between 0.5 and 0.8 (moderate correlation) are not 
highlighted in any colour. If X  and Y  are the average values of the two metrics (say X 
and Y) observed for the vertices (IDs 1 to n, where n is the number of vertices) in the 
network, the formula used to compute the correlation coefficient between two metrics X 
and Y is given in equation (2), as follows: 

( ) ( )

( ) ( )
1

2 2
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Table 2 Correlation between centrality metrics and maximal clique size for the nodes  
(see online version for colours) 

Network 
index 

Network name 
(increasing order of 
spectral radius ratio) 

Degree vs. 
clique 

Eigenvector 
vs. clique 

Closeness 
vs. clique 

Betweenness 
vs. clique 

(5) US College Football 
Network 

0.315 0.348 –0.028 –0.168 

(2) Dolphins’ Social 
Network 

0.776 0.563 0.418 0.277 

(3) US Politics Books 
Network 

0.701 0.747 0.321 0.367 

(1) Zachary’s Karate 
Network 

0.641 0.767 0.615 0.458 

(4) Word Adjacencies 
Network 

0.706 0.815 0.835 0.478 

(6) US Airports 1997 
Network 

0.868 0.953 0.843 0.404 

As we can see in Table 2, in general, the correlation between the centrality metrics and 
the maximal clique size increases as the spectral radius ratio for node degree increases. 
This implies, the more scale-free a real-world network is, the higher the correlation 
between the centrality value and the maximal clique size observed for a node. With 
several of the real-world networks being mostly scale-free, we expect these networks to 
exhibit a similar correlation to that observed in this paper. 

Figures 9 to 14 depict the correlation observed for the four centrality metrics with that 
of the maximal clique size for the vertices in the real-world network graphs. In these 
figures, the node size is a measure of the node centrality (the larger a node is, the larger is 
its centrality value); the node colour is a measure of the maximal size clique the vertex is 
part of (the darker a node is, the larger is the size of the maximal clique for the node). 
Among the two classes of centrality metrics, we observe the degree-based centrality 
metrics (DegC and EVC) to be very positively and highly correlated with the maximal 
clique size observed for the nodes. Between the two degree-based centrality metrics, the 
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EVC metric shows higher positive correlations to the maximal clique size. This could be 
attributed to the EVC of a node being a measure of both the degree of the node as well as 
the degrees of its neighbours. That is, a node with high degree as well as located in a 
neighbourhood of high degree vertices is more likely to be part of a maximal clique of 
larger size. In addition, as the networks get increasingly scale-free, nodes with high 
degree are more likely connected to other similar nodes with high degree (to facilitate an 
average path length that is almost independent of network size: characteristic of  
scale-free networks) contributing to a positive correlation between degree-based 
centrality metrics and maximal clique size. 

Figure 9 US College Football Network: correlation of maximal clique size with centrality 
metrics, (a) DegC (b) EVC (c) ClC (d) BWC 

  
(a)     (b) 

  
(c)     (d) 

With respect to the two shortest-path based centrality metrics, the BWC metric is 
observed to exhibit a low correlation with maximal clique size for all the six real-world 
network graphs; the correlation coefficient increases as the network becomes increasingly 
scale-free. In networks with minimal variation in node degree (like the US College 
Football network that is more closer to a random network), nodes that facilitate  
shortest-path communication between several node pairs in the network are not part of a 
larger size clique; on the other hand, nodes that are part of larger size cliques in such 
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random networks exhibit a relatively lower BWC. Since the degrees of the vertices in 
random networks are quite comparable to the average node degree, there is no clear 
ranking of the vertices based on the degree-based centrality metrics and maximal size 
cliques that they are part of. Also, if at all a vertex ends up being a larger sized clique in 
random network graphs, it does not facilitate shortest path communication between the 
majority of the vertices (contributing to a negative/zero correlation or at best a low 
correlation with BWC). As the network becomes increasingly scale-free, the hubs that 
facilitate shortest-path communication between any two nodes in the network exhibit 
higher betweenness and closeness centralities as well as form a clique with other  
high-degree hubs – exhibiting the ultra small-world property; the average path length is 
ln(ln N), where N is the number of nodes in the network (Newman, 2010). The 
correlation of the ClC values and the maximal clique size values observed for the vertices 
in real-world network graphs is significantly higher (i.e., positive correlation) for 
networks that are increasingly scale-free. 

Figure 10 Dolphins’ social network: correlation of maximal clique size with centrality metrics, 
(a) DegC (b) EVC (c) ClC (d) BWC 

  

(a)     (b) 

  

(c)     (d) 
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Figure 11 US Politics Books Network: correlation of maximal clique size with centrality metrics, 
(a) DegC (b) EVC (c) ClC (d) BWC 

  
(a)     (b) 

  
(c)     (d) 

Figure 12 Zachary’s karate club network: correlation of maximal clique size with centrality 
metrics, (a) DegC (b) EVC (c) ClC (d) BWC 

  
(a)     (b) 
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Figure 12 Zachary’s karate club network: correlation of maximal clique size with centrality 
metrics, (a) DegC (b) EVC (c) ClC (d) BWC (continued) 

  
(c)     (d) 

Figure 13 Word Adjacencies Network: correlation of maximal clique size with centrality metrics, 
(a) DegC (b) EVC (c) ClC (d) BWC 

  
(a)     (b) 

  
(c)     (d) 
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Figure 14 US Airports (1997) network: correlation of maximal clique size with centrality metrics, 
(a) DegC (b) EVC (c) ClC (d) BWC 

  
(a)     (b) 

  
(c)     (d) 

Overall, the degree-based centrality metrics exhibit a relatively better correlation with the 
maximal clique size compared to that of the shortest-path based centrality metrics 
(especially in networks with low-moderate variation in node degree). For real-world 
networks that exhibit moderate-high variation in node degree, the shortest-path based 
centrality metrics (especially ClC) fast catch up with that of the degree-based centrality 
metrics and exhibit higher levels of positive correlation with maximal clique size. We 
anticipate that as the networks become increasingly scale-free, the hubs (that facilitate 
shortest-path communication between any two nodes) are more likely to form the 
maximum clique for the entire network graph – contributing to higher levels of positive 
correlation between any of the four centrality metrics and maximal clique size. 

7 Conclusions 

The correlation coefficient analysis studies between the four centrality metrics (degree, 
eigenvector, betweenness and closeness centralities) and the maximal clique size for the 
vertices in the real-world network graphs illustrate several significant findings that have 
been so far not reported in the literature: 
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1 the degree-based centrality metrics (especially the EVC) exhibit a significantly high 
positive correlation to the maximal clique size as the networks get increasingly scale-
free 

2 the BWC of the vertices exhibits a low correlation with that of the maximal size 
cliques the vertices can be part of 

3 in real-world networks that are close to random network graphs, the centrality 
metrics exhibit a low correlation to maximal clique size (especially in the case of 
shortest-path based closeness and BWC metrics) 

4 for all the four centrality metrics, the extent of positive correlation with maximal 
clique size increases as the real-world networks become increasingly scale-free. 

With the problem of determining maximal clique sizes for individual vertices being 
computationally time consuming, our approach taken in this paper to study the 
correlation between maximal clique sizes to centrality can be the first step in identifying 
positive correlation between cliques/clique size in real-world network graphs to one or 
more network metrics (like centrality) that can be quickly determined and henceforth, 
appropriate inferences can be made about the maximal size cliques of the individual 
vertices. We observe the degree-based centrality metrics (especially the EVC) to show 
promising positive correlations to that of maximal clique sizes of the individual vertices, 
especially as the networks get increasingly scale-free; this observation could form the 
basis of future research for centrality-clique analysis for complex real-world networks. 
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