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Abstract: Non-blocking synchronisation is known to alleviate the hazards of 
deadlock, livelock, and priority inversion. We present the design and portable 
implementation of a lock-free dynamically resizable array. Our lock-free 
implementation of a shared vector outperforms its lock-based STL counterpart 
and the implementation provided by Intel by a factor of 10 or more. The ABA 
problem is fundamental to all CAS-based designs. We offer a solution, called 
the λδ approach that is practical and efficient and offers speeds comparable to 
the direct application of the architecture-specific CAS2 instruction used for 
version counting. Our lock-free vector demonstrated high scalability when 
compared to the application of non-blocking transactions. We demonstrate the 
use of our non-blocking synchronisation methodology and our shared vector for 
the engineering of a framework for verification and semantics parallelisation of 
the mission data system’s (MDS) goal networks which provide for testing and 
development of autonomous real-time flight applications. 
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This paper is a revised and expanded version of a paper entitled ‘Scalable 
nonblocking concurrent objects for mission critical code’ presented  
at Proceedings of 24th International Conference on Object-Oriented 
Programming, Systems, Languages, and Applications (OOPSLA 2009), ACM 
SIGPLAN, Orlando, Florida, October 2009. 

 

1 Introduction 

Robotic space mission projects pose the challenging task of engineering some of the most 
complex real-time embedded software systems. The notion of concurrency is of critical 
importance for the design and implementation of such systems. The present software 
development and certification protocols (such as RTCA, 1992) do not reach the level of 
detail of offering guidelines for the engineering of reliable concurrent software. In this 
work, we provide a detailed analysis of the state-of-the-art non-blocking programming 
techniques and derive a generic implementation for scalable lightweight concurrent 
objects that can help in implementing efficient and safe concurrent interactions in mission 
critical code. 

1.1 Non-blocking objects 

The most common technique for controlling the interactions of concurrent processes is 
the use of mutual exclusion locks. A mutual exclusion lock guarantees thread-safety of a 
concurrent object by blocking all contending threads trying to access it except the one 
holding the lock. In scenarios of high contention on the shared data, such an approach can 
seriously affect the performance of the system and significantly diminish its parallelism. 
For the majority of applications, the problem with locks is one of difficulty of providing 
correctness more than one of performance. The application of mutually exclusive locks 
poses significant safety hazards and incurs high complexity in the testing and validation 
of mission-critical software. Locks can be optimised in some scenarios by utilising  
fine-grained locks or context-switching. Often due to the resource limitations of  
flight-qualified hardware, optimised lock mechanisms are not a desirable alternative 
(Lowry, 2002). Even for efficient locks, the interdependence of processes implied by the 
use of mutual exclusion introduces the dangers of deadlock, livelock, and priority 
inversion. The incorrect application of locks is hard to determine with the traditional 
testing procedures and a program can be deployed and used for a long period of time 
before the flaws become evident and eventually cause anomalous behaviour. 

To achieve higher safety and gain performance, we suggest the application of  
non-locking synchronisation. A concurrent object is non-blocking if it guarantees that 
some process in the system will make progress in a finite amount of steps (Herlihy and 
Shavit, 2008). An object that guarantees that each process will make progress in a finite 
number of steps is defined as wait-free. Obstruction-freedom (Herlihy et al., 2003) is an 
alternative non-blocking condition that ensures progress if a thread eventually executes in 
isolation. It is the weakest non-blocking property and obstruction-free objects require the 
support of a contention manager to prevent livelocking. 
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1.2 Impact for space systems 

Modern robotic space exploration missions are expected to embed a large array of 
advanced components and functionalities and perform a complex set of scientific 
experiments. The high degree of autonomy and increased complexity of such systems 
pose significant challenges in assuring the reliability and efficiency of their software. A 
survey on the challenges for the development of modern spacecraft software by Lowry 
(2002) reveals that in July 1997 The Mars Pathfinder mission experienced a number of 
anomalous system resets that caused an operational delay and loss of scientific data. The 
follow-up analysis identified the presence of a priority inversion problem caused by the 
low-priority meteorological process blocking the high-priority bus management process. 
The software engineers found out that it would have been impossible to detect the 
problem with the black box testing applied at the time. A more appropriate priority 
inversion inheritance algorithm had been ignored due to its frequency of execution, the 
real-time requirements imposed, and its high cost incurred on the slower flight-qualified 
computer hardware. The subtle interactions in the concurrent applications of the modern 
aerospace autonomous software are of critical importance to the system’s safety and 
operation. The presence of a large number of concurrent autonomous processes implies 
an increased volume of interactions that are hard to predict and validate. Allowing fast 
and reliable concurrent synchronisation is of critical importance to the design of 
autonomous spacecraft software. 

1.3 Mission data system 

Mission data system (MDS) (Dvorak et al., 2007) is the Jet Propulsion Laboratory’s 
framework for designing and implementing complete end-to-end data and control 
autonomous flight systems. The framework focuses on the representation of three main 
software architecture principles: 

1 system control: a state-based control architecture with explicit representation of 
controllable states (Dvorak et al., 2002) 

2 goal-oriented operation: control intent is expressed by defining a set of goals as part 
of a goal network (Barett et al., 2004) 

3 layered data management: an integrated data management and transport protocols 
(Wagner, 2005). 

In MDS a state variable provides access to the data abstractions representing the physical 
entities under control over a continuous period of time, spanning from the distant past to 
the distant future. As explained by Wagner (2005), the implementation’s intent is to 
define a goal timeline overlapping or coinciding with the timeline of the state variables. 
Computing the guarantees necessary for achieving a goal might require the lookup of past 
states as well as the computation of projected future states. MDS employs the concept of 
goals to represent control intent. Goals are expressed as a set of temporal constraints 
(TCs) (Dechev et al., 2008). Each state variable is associated with exactly one state 
estimator whose function is to collect all available data and compute a projection of the 
state value and its expected transitions. Control goals are considered to be those that are 
meant to control external physical states. Knowledge goals are those goals that represent 
the constraints on the software system regarding a property of a state variable. Not all 
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states are known at all time. The most trivial knowledge goal is the request for a state to 
be known, thus enabling its estimator. A data state is defined as the information regarding 
the available state and goal data and its storage format and location. The MDS platform 
considers data states an integral part of the control system rather than a part of the system 
under control. There are dedicated state variables representing the data states. In addition, 
data states can be controlled through the definition of data goals. A data state might store 
information such as location, formatting, compression, and transport intent and status of 
the data. A data state might not be necessary for every state variable. In a simple control 
system where no telemetry is used, the state variable implementation might as well store 
the information regarding the variable’s value history and its extrapolated states. 

At its present state of design and implementation, MDS does not provide a concurrent 
synchronisation mechanism for building safer and faster concurrent interactions. 
Elevating the level of efficiency and reliability in the execution of the concurrent 
processes is of particular significance to the implementation of the System Control and 
the Data Management modules of MDS. It is the goal of this paper to illustrate the  
trade-offs in the semantics and application of some advanced non-blocking techniques 
and analyse their applicability in MDS. The most ubiquitous and versatile data structure 
in the ISO C++ Standard Template Library (Stroustrup, 2000) is vector, offering a 
combination of dynamic memory management and constant-time random access. 
Because of the vector’s wide use and challenging parallel implementation of its  
non-blocking dynamic operations, we illustrate the efficiency of each non-blocking 
approach discussed in this work with respect to its applicability for the design and 
implementation of a shared non-blocking vector. A number of pivotal concurrent 
applications in the MDS framework employ a shared STL vector (in all scenarios 
protected by mutually exclusive locks). Such is the Data Management Service library 
described by Wagner (2005). 

2 Non-blocking data structures 

Lock-free and wait-free algorithms exploit a set of portable atomic primitives such as the 
word-size compare-and-swap (CAS) instruction (Gifford and Spector, 1987). The design 
of non-blocking data structures poses significant challenges and their development and 
optimisation is a current topic of research (Fraser and Harris, 2007; Herlihy and Shavit, 
2008). The CAS atomic primitive [commonly known as Compare and Exchange, 
CMPXCHG, on the Intel x86 and Itanium architectures (Intel, 2007)] is a CPU 
instruction that allows a processor to atomically test and modify a single-word memory 
location. CAS requires three arguments: a memory location (Li), an old value (Ai), and a 
new value (Bi). The instruction atomically exchanges the value stored at Li with Bi, 
provided that Li’s current value equals Ai. The result indicates whether the exchange was 
performed. For the majority of implementations the return value is the value last read 
from Li (that is Bi if the exchange succeeded). Some CAS variants, often called  
compare-and-set, have a return value of type boolean. The hardware architecture ensures 
the atomicity of the operation by applying a fine-grained hardware lock such as a cache 
or a bus lock [as is the case for IA-32 (Intel, 2007)]. The application of a CAS-controlled 
speculative manipulation of a shared location (Li) is a fundamental programming 
technique in the engineering of non-blocking algorithms (Herlihy and Shavit, 2008) (an 
example is shown in Algorithm 1). In our pseudocode we use the symbols ^, &, and . to 
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indicate pointer dereferencing, obtaining an object’s address, and integrated pointer 
dereferencing and field access. When the value stored at Li is the control value of a  
CAS-based speculative manipulation, we call Li and Li

^ control location and control 
value, respectively. We indicate the control value’s type with the string value type. The 
size of value type must be equal or less than the maximum number of bits that a hardware 
CAS instruction can exchange atomically (typically the size of a single memory word). In 
the most common cases, value type is either an integer or a pointer value. In the latter 
case, the implementor might reserve two extra bits per each control value and use them 
for implementation-specific value marking (Fraser and Harris, 2007). This is possible if 
we assume that the pointer values stored at Li are aligned and the two low-order bits have 
been cleared. In Algorithm 1, the function fComputeB yields the new value Bi. Typically, 
Bi is a value directly derived from the function’s arguments and is not dependent on the 
value stored at the control location. 
Algorithm 1 CAS-controlled speculative manipulation of Li 

1: repeat 
2:  value type Ai = Li^ 
3:  value type Bi = fComputeB 
4: until CAS(Li, Ai, Bi)==Bi 

Linearisability (Herlihy and Shavit, 2008) is a correctness condition for concurrent 
objects: a concurrent operation is linearisable if it appears to execute instantaneously in a 
given point of time τlin between the time τinv of its invocation and the time τend of its 
completion. The literature often refers to τlin as a linearisation point. The implementations 
of many non-blocking data structures require the update of two or more memory 
locations in a linearisable fashion (Dechev et al., 2006; Fraser and Harris, 2007). The 
engineering of such operations (e.g., push_back and resize in a shared dynamically 
resizable array) is critical and particularly challenging in a CAS-based design. Harris  
et al. (2002) propose in a software implementation of a multiple-compare-and swap 
(MCAS) algorithm based on CAS. This software-based MCAS algorithm has been 
applied by Fraser in the implementation of a number of lock-free containers such as 
binary search trees and skips lists (Fraser, 2004). The cost of the MCAS operation is 
expensive requiring 2M +1 CAS instructions. Consequently, the direct application of the 
MCAS scheme is not an optimal approach for the design of lock-free algorithms. A 
common programming technique applied for the implementation of the complex  
non-blocking operations is the use of a Descriptor Object (Section 2.1). 

A number of advanced Software Transactional Memory (STM) libraries provide  
non-blocking transactions with dynamic linearisable operations (Dice and Shavit, 2007; 
Spear et al., 2007). Such transactions can be utilised for the design of non-blocking 
containers (Spear et al., 2007). As our performance evaluation demonstrates, the high 
cost of the extra level of indirection and the conflict detection and validation schemes in 
STM systems does not allow performance comparable to that of a hand-crafted lock-free 
container that relies solely on the application of portable atomic primitives. Sections 3 
and 5.1 describe in detail the implementation of a non-blocking shared vector using  
CAS-based techniques and STM, respectively. Section 6 provides analysis of the 
suggested implementation strategies and discusses the performance evaluation of the two 
approaches. 
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2.1 The descriptor object 

The consistency model implied by the linearisability requirement is stronger than the 
widely applied Lamport’s sequential consistency model (Lamport, 1979). According to 
Lamport’s definition, sequential consistency requires that the results of a concurrent 
execution are equivalent to the results yielded by some sequential execution (given the 
fact that the operations performed by each individual processor appear in the sequential 
history in the order as defined by the program). The pseudocode in Algorithm 2 shows 
the two-step execution of a Descriptor Object. In our non-blocking design, a Descriptor 
Object stores three types of information: 

a Global data describing the state of the shared container (υδ), e.g., the size of a 
dynamically resizable array (Dechev et al., 2006). 

b A record of a pending operation on a given memory location. We call such a record 
requesting an update at a shared location Li from an old value, old_val, to a new 
value, new_val, a Write Descriptor (ωδ). The shortcut notation we use is ωδ @ Li: 
old_val → new_val. The fields in the Write Descriptor Object store the target 
location as well as the old and the new values. 

c A boolean value indicating whether ωδ contains a pending write operation that needs 
to be completed. 

The use of a Descriptor allows an interrupting thread help the interrupted thread complete 
an operation rather than wait for its completion. As shown in Algorithm 2, the technique 
is used to implement, using only two CAS instructions, a linearisable update of two 
memory locations: 

1 a reference to a Descriptor Object (data type pointer to δ stored in a location Lδ) 

2 an element of type value type stored in Li. 

In step 1, Algorithm 2, we perform a CAS-based speculation of a shared location Lδ that 
contains a reference to a Descriptor Object. The purpose of this CAS-based speculation in 
step 1 is to replace an existing Descriptor Object with a new one. Step 1 executes in the 
following fashion: 

1 We read the value of the current reference to δ stored in Lδ (line 3). 

2 If the current δ object contains a pending operation, we need to help its completion 
(lines 4–5). 

3 We record the current value, Ai, at Li (line 7) and compute the new value, Bi, to be 
stored in Li (line 8). 

4 A new ωδ object is allocated on the heap, initialised (by calling fωδ), and its fields 
Target, OldValue, and NewValue are set (lines 9–12). 

5 Any additional state data stored in a Descriptor Object must be computed (by calling 
fυδ). Such data might be a shared element or a container’s size that needs to be 
modified (line 13). 
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6 A new Descriptor Object is initialised containing the new Write Descriptor and the 
new descriptor’s data. The new descriptor’s pending operation flag (WDpending) is 
set to true (lines 14–15). 

7 We attempt a swap of the old Descriptor Object with the new one (line 16). Should 
the CAS fail, we know that there is another process that has interrupted us and 
meanwhile succeeded to modify Lδ and progress. We need to go back at the 
beginning of the loop and repeat all the steps. Should the CAS succeed, we proceed 
with step 2 and perform the update at Li. 

The size of a Descriptor Object is larger than a memory word. Thus, we need to store and 
manipulate a Descriptor Object through a reference. Since the control value of step 1 
stores a pointer to a Descriptor Object, to prevent ABA (Section 4), all references to 
descriptors must be memory managed by a safe non-blocking garbage collection (GC) 
scheme. We use the prefix μ for all variables that require safe memory management. In 
step 2, we execute the Write Descriptor, WD, in order to update the value at Li. Any 
interrupting thread (after the completion of step 1) detects the pending flag of ωδ and, 
should the flag’s value be still positive, it proceeds to executing the requested update ωδ 
@ Li: Ai → Bi. There is no need to perform a CAS-based loop and the execution of a 
single CAS execution is sufficient for the completion of ωδ. Should the CAS from step 2 
succeed, we have completed the two-step execution of the Descriptor Object. Should it 
fail, we know that there is an interrupting thread that has completed it already. 
Algorithm 2 Two-step execution of a δ object 

1: Step 1: place a new descriptor in Lδ
2: repeat 
3:  δ μOldDesc = Lδ^ 
4:  if μOldDesc.WDpending == true then 
5:  execute μOldDesc.WD 
6:  end if 
7:  value type Ai = Li

^ 
8:  value type Bi = fComputeB 
9:  ωδ WD = fωδ() 
10:  WD.Target = Li 
11:  WD.OldElement = Ai 
12:  WD.NewElement = Bi 
13:  υδ DescData = fυδ() 
14:  δ μNewDesc = fδ(DescData, WD) 
15:  μNewDesc.WDpending = true 
16: until CAS(Lδ, μOldDesc, μNewDesc) == μNewDesc 
17:  
18: Step 2: execute the write descriptor 
19: if μNewDesc.WDpending then 
20:  CAS(WD.Target, WD.OldElement, WD.NewElement) 
  WD.NewElement 
21:  μNewDesc.WDPending = false 
22: end if 
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2.2 Non-blocking concurrent semantics 

The use of a Descriptor Object provides the programming technique for the 
implementation of some of the complex non-blocking operations in a shared container, 
such as the push_back, pop_back, and reserve operations in a shared vector (Dechev et 
al., 2006). The use and execution of a Write Descriptor guarantees the linearisable update 
of two or more memory locations. 

Definition 1: An operation whose success depends on the creation and execution of a 
Write Descriptor is called an ωδ-executing operation. 

The operation push_back of a shared vector (Dechev et al., 2006) is an example of an  
ωδ-executing operation. Such ωδ-executing operations have lock-free semantics and the 
progress of an individual operation is subject to the contention on the shared locations Lδ 
and Li (under heavy contention, the body of the CAS-based loop from step 1, Algorithm 2 
might need to be re-executed). For a shared vector, operations such as pop_back do not 
need to execute a Write Descriptor (Dechev et al., 2006). Their progress is dependent on 
the state of the global data stored in the Descriptor, such as the size of a container. 

Definition 2: An operation whose success depends on the state of the υδ data stored in the 
Descriptor Object is a δ-modifying operation. 

A δ-modifying operation, such as pop_back, needs only update the shared global data 
(the data of type υδ, such as size) in the Descriptor Object (thus pop_back seeks an 
atomic update of only one memory location: Lδ). Since an ωδ-executing operation by 
definition always performs an exchange of the entire Descriptor Object, every ωδ-
executing operation is also δ-modifying. The semantics of a δ-modifying operation are 
lock-free and the progress of an individual operation is determined by the interrupts by 
other δ-modifying operations. An ωδ-executing operation is also δ-modifying but as is 
the case with pop_back, not all δ-modifying operations are ωδ-executing. Certain 
operations, such as the random access read and write in a vector (Dechev et al., 2006), do 
not need to access the Descriptor Object and progress regardless of the state of the 
descriptor. Such operations are non-δ-modifying and have wait-free semantics (thus no 
delay if there is contention at Lδ). 

Definition 3: An operation whose success does not depend on the state of the Descriptor 
Object is a non-δ-modifying operation. 

2.2.1 Concurrent operations 

The semantics of a concurrent data structure can be based on a number of assumptions. 
Similarly to a number of fundamental studies in non-blocking design (Herlihy and Shavit, 
2008; Fraser and Harris, 2007), we assume the following premises: each processor can 
execute a number of operations. This establishes a history of invocations and responses 
and defines a real-time order between them. An operation O1 is said to precede an 
operation O2 if O2’s invocation occurs after O1’s response. Operations that do not have 
real-time ordering are defined as concurrent. A sequential history is one where all 
invocations have immediate responses. A linearisable history is one where: 



   

 

   

   
 

   

   

 

   

   10 D. Dechev and P. LaBorde    
 

    
 
 

   

   
 

   

   

 

   

       
 

a all invocations and responses can be reordered so that they are equivalent to a 
sequential history 

b the yielded sequential history must correspond to the semantic requirements of the 
sequential definition of the object 

c in case a given response precedes an invocation in the concurrent execution, then it 
must precede it in the derived sequential history. 

When two δ-modifying operations (Oδ1 and Oδ2) are concurrent, according to  
Algorithm 2, Oδ1 precedes Oδ2 in the linearisation history if and only if Oδ1 completes 
step 1, Algorithm 2 prior to Oδ2. 

Definition 4: We refer to the instant of successful execution of the global Descriptor 
exchange at Lδ (line 16, Algorithm 2) as τδ. 

Definition 5: A point in the execution of a δ object that determines the order of an  
ωδ-executing operation acting on location Li relative to other writer operations acting on 
the same location Li, is referred to as the λδ-point (τλδ) of a Write Descriptor. 

The order of execution of the λδ-points of two concurrent ωδ-executing operations 
determines their order in the linearisation history. The λδ-point does not necessarily need 
to coincide with the operation’s linearisation point, τlin. As illustrated in Dechev et al. 
(2006), τlin can vary depending on the operations’ concurrent interleaving. The 
linearisation point of a shared vector’s (Dechev et al., 2006) δ-modifying operation can 
be any of the three possible points: 

a some point after τδ at which some operation reads data form the Descriptor Object 

b τδ or 

c the point of execution of the write descriptor, τwd (the completion of step 2, 
Algorithm 2). 

The core rule for a linearisable operation is that it must appear to execute in a single 
instant of time with respect to other concurrent operations. The linearisation point need 
not correspond to a single fixed instruction in the body of the operation’s implementation 
and can vary depending on the interrupts the operation experiences. In contrast, the  
λδ-point of an ωδ object corresponds to a single instruction in the objects 
implementation, thus making it easier to statically argue about an operation’s correctness. 
In the pseudo code in Algorithm 2 τλδ ≡ τδ. 

3 Descriptor-based shared vector 

In this section, we present a first lock-free design and implementation of a dynamically 
resizable array (vector). The most extensively used container in the C++ Standard 
Template Library (STL) is vector, offering a combination of dynamic memory 
management and constant-time random access. Our approach is based on a single 32-bit 
word atomic CAS instruction. It provides a linearisable and highly parallelisable  
STL-like interface, lock-free memory allocation and management, and fast execution. 
Experiments on a dual-core Intel processor with shared L2 cache indicate that our lock-
free vector outperforms its lock-based STL counterpart and the latest concurrent vector 
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implementation provided by Intel by a large factor. The performance evaluation on a 
quad dual-core AMD system with non-shared L2 cache demonstrated timing results 
comparable to the best available lock-based techniques. The presented design implements 
the most common STL vector’s interfaces, namely random access read and write, tail 
insertion and deletion, pre-allocation of memory, and query of the container’s size. 

3.1 Lock-free data structures 

Recent research into the design of lock-free data structures includes linked-lists (Harris, 
2001; Michael, 2002) double-ended queues (Michael, 2003; Sundell and Tsigas, 2004), 
stacks (Hendler et al., 2004), hash tables (Michael, 2002; Shalev and Shavit, 2003), and 
binary search trees (Fraser, 2004). The problems encountered include excessive copying, 
low parallelism, inefficiency and high overhead. Despite the widespread use of the STL 
vector in real-world applications, the problem of the design and implementation of a 
lock-free dynamic array has not yet been discussed. The vector’s random access, data 
locality, and dynamic memory management poses serious challenges for its non-blocking 
implementation. Our goal is to provide an efficient and practical lock-free STL-style 
vector that can be effectively applied in embedded real-time applications. 

3.2 Design principles 

We developed a set of design principles to guide our implementation: 

a thread-safety: all data can be shared by multiple processors at all times 

b lock-freedom: apply non-blocking techniques for our implementation 

c portability: do not rely on uncommon architecture-specific instructions 

d easy-to-use interfaces: offer the interfaces and functionality available in the 
sequential STL vector 

e high level of parallelism: concurrent completion of non-conflicting operations should 
be possible 

f minimal overhead: achieve lock-freedom without excessive copying (Alexandrescu 
and Michael, 2004), minimise the time spent on CAS-based looping and the number 
of calls to CAS. 

The lock-free vector’s design and implementation provided follow the syntax and 
semantics of the ISO STL vector as defined in ISO C++ (ISO/IEC 14882 International 
Standard, 1998). 

3.3 Algorithms 

In this section, we define a semantic model of the vector’s operations, provide a 
description of the design and the applied implementation techniques, outline a correctness 
proof based on the adopted semantic model, address concerns related to memory 
management, and discuss some alternative solutions to our problem. The presented 
algorithms have been implemented in ISO C++ and designed for execution on an 
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ordinary multi-threaded shared-memory system supporting only single-word read, write, 
and CAS instructions. 

3.3.1 Implementation overview 

The major challenges of providing a lock-free vector implementation stem from the  
fact that key operations need to atomically modify two or more non-colocated words.  
For example, the critical vector operation push_back increases the size of the vector  
and stores the new element. Moreover, capacity-modifying operations such as reserve 
and push_back potentially allocate new storage and relocate all elements in case  
of a dynamic table (Cormen et al., 2001) implementation. Element relocation must  
not block concurrent operations (such as write and push_back) and must guarantee  
that interfering updates will not compromise data consistency. Therefore, an update 
operation needs to modify up to four vector values: size, capacity, storage, and a vector’s 
element. 

Figure 1 Lock-free vector 

 

Note: T denotes a data structure parameterised on T. 

The UML diagram in Figure 1 presents the collaborating classes, their programming 
interfaces and data members. Each vector object contains the memory locations of  
the data storage of its elements as well as an object named ‘Descriptor’ that encapsulates 
the container’s size, a reference counter required by the applied memory management 
scheme (Section 3.3.3) and an optional reference to a ‘Write Descriptor’. Our  
approach requires that data types bigger than word size is indirectly stored  
through pointers. Like Intel’s concurrent vector (Intel, 2006), our implementation avoids 
storage relocation and its synchronisation hazards by utilising a two-level array. 
Whenever push_back exceeds the current capacity, a new memory block twice the size of 
the previous one is added. 

The semantics of the pop_back and push_back operations are guaranteed by the 
‘Descriptor’ object. The use of a ‘Descriptor’ and ‘WriteDescriptor’ [similar to a Barnes 
(1993) style announcement] allows a thread-safe update of two memory locations thus 
eliminating the need for a DCAS instruction. An interrupting thread intending to change 
the descriptor will need to complete any pending operation. Not counting memory 
management overhead, push_back executes two successful CAS instructions to update 
two memory locations. Table 1 illustrates the implemented operations as well as their 
signatures, descriptor modifications, and runtime guarantees. 
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Table 1 Vector – operations 

 Operations Memory locations 

push_back Vector × Elem → void 2: element, size 
pop_back Vector → Elem 1: size 
reserve Vector × size_t → Vector n: all elements 
read Vector × size_t → Elem none 
write Vector × size_t × Elem → Vector 1: element 
size Vector → size_t none 

The remaining part of this section presents the generalised pseudo-code of the 
implementation and omits code necessary for a particular memory management scheme. 
The function HighestBit returns the bit-number of the highest bit that is set in an integer 
value. On modern x86 architectures HighestBit corresponds to the BSR assembly 
instruction. FBS is a constant representing the size of the first bucket and equals eight in 
our implementation. 

• Push_back (add one element to end): The first step is to complete a pending 
operation that the current descriptor might hold. In case that the storage capacity has 
reached its limit, new memory is allocated for the next memory bucket. Then, 
push_back defines a new ‘Descriptor’ object and announces the current write 
operation. Finally, push_back uses CAS to swap the previous ‘Descriptor’ object 
with the new one. Should CAS fail, the routine is re-executed. After succeeding, 
push_back finishes by writing the element. 

• Pop_back (remove one element from end): Unlike push_back, pop_back does not 
utilise a ‘Write Descriptor’. It completes any pending operation of the current 
descriptor, reads the last element, defines a new descriptor, and attempts a CAS on 
the descriptor object. 

• Non-bound checking read and write at position i: The random access read and write 
do not utilise the descriptor and their success is independent of the descriptor’s 
value. 

• Reserve (increase allocated space): In the case of concurrently executing reserve 
operations, only one succeeds per bucket, while the others deallocate the acquired 
memory. 

• Size (read number of elements): The size operations returns the size stored in the 
‘Descriptor’ minus a potential pending write operation at the end of the vector. 

Algorithm 3 push_back vector, elem 

1: repeat 
2:  desccurrent ← vector.desc 
3:  CompleteWrite(vector, desccurrent.pending) 
4:  bucket ← HighestBit(desccurrent.size + FBS) − HighestBit(FBS) 
5:  if vector.memory[bucket] = NULL then 
6:  AllocBucket(vector, bucket) 
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7:  end if 
8:  writeop ← new WriteDesc(At(desccurrent.size), elem, 
  desccurrent.size) 
9:  descnext ← new Descriptor(desccurrent.size+1, writeop) 
10: until CAS(&vector.desc, desccurrent, descnext) 
11: CompleteWrite(vector, descnext.pending) 

Algorithm 4 AllocBucket vector, bucket 

1: bucketsize ← FBSbucket+1 
2: mem ← new T[bucketsize] 
3: if not CAS(&vector.memory[bucket], NULL, mem) then 
4:  Free(mem) 
5: end if 

Algorithm 5 Size vector 

1: desc ← vector.desc 
2: size ← desc.size 
3: if desc.writeop.pending then 
4:  size ← size – 1 
5: end if 
6: return size 

Algorithm 6 Read vector, i 

1: return At(vector, i)^ 

Algorithm 7 Write vector, i, elem 

1: At(vector, i)^ ← elem 

Algorithm 8 pop_back vector 

1: repeat 
2:  desccurrent ← vector.desc 
3:  CompleteWrite(vector, desccurrent.pending) 
4:  elem ← At(vector, desccurrent.size – )^ 
5:  descnext ← new Descriptor(desccurrent.size –, NULL) 
6: until CAS(& vector.desc, desccurrent, descnext) 
7: return elem 

Algorithm 9 Reserve vector, size 

1: i ← HighestBit(vector.desc.size + FBS –1)- 
 HighestBit(FBS) 
2: if i < 0 then 
3:  i ← 0 
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4: end if 
5: while i < HighestBit(size + FBS – 1) – HighestBit(FBS) 
 do 
6:  i ← i + 1 
7:  AllocBucket(vector, i) 
8: end while 

Algorithm 10 At vector, i 

1: pos ← i + FBS 

2: hibit ← HighestBit(pos) 

3: idx ← pos xor 2hibit 

4: return &vector.memory[hibit – HighestBit(FBS)][idx] 

Algorithm 11 CompleteWrite vector, writeop 

1: if writeop.pending then 

2:  CAS(At(vector, writeop.pos), writeop.valueold, 

  writeop.valuenew) 

3:  writeop.pending ← false 

4: end if 

3.3.2 Correctness 

The main correctness requirement of the semantics of the vector’s operations is 
linearisability. The definition of linearisability (Herlihy and Shavit, 2008) implies that 
each concurrent history yields responses that are equivalent to the responses of some 
legal sequential history for the same requests. Secondly, the order of the operations 
within the sequential history must be consistent with the real-time order. Let us assume 
that there is an operation oi ∈ Svec, where Svec is the set of all the vector’s operations. We 
assume that oi can be executed concurrently with n other operations {o1, o2 …, on} ∈ Svec. 
We outline a proof that operation oi is linearisable. 

• Linearisation points: For all non-descriptor-modifying operations the linearisation 
point is at the time instance τa when the atomic read (Algorithm 4, line 1) or write 
(Algorithm 5, line 1) of the element is executed. Assume oi is a descriptor-modifying 
operation. It is carried out in two stages: modify the Descriptor variable and then 
update the data structure’s contents. Let us define time points (TPs) τdesc (Algorithm 
1, line 10; Algorithm 6, line 6) and τwritedesc (Algorithm 9, line 2) denote the instances 
of time when oi executes an atomic update to the vector’s Descriptor variable and 
when oi’s Write Descriptor is completed by oi itself or another concurrent operation 
oc ∈ {o1, o2 …, on}, respectively. Similarly, time point τreadelem (Algorithm 1, line 7; 
Algorithm 6, line 4) defines when oi reads an element. oi is either a pop_back or 
push_back operation. The linearisation point is either τreadelem or τdesc for the former 
case and τreadelem, τdesc, or τwritedesc for the latter case. 
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• Sequential semantics: let Sc be the set of all concurrent operations {o1, …, on} in a 
time interval [τα, τβ]. If ,i co S∀ ∈  DescriptorModifying(oi), the linearisation point for 
each operation is τdesc(oi). Similarly, if ,i co S∀ ∈  Non-DescriptorModifying(oi), the 
linearisation point for each operation is τa(oi). In these cases, the resulting sequential 
histories are directly derived from the temporal order of the linearisation points. In 
the remaining cases, the derivation of a sequential history is significantly more 
complex. It is possible to transform all non-descriptor modifying operations into 
descriptor modifying in order to simplify the vector’s sequential semantics. Given 
our current implementation, this can be achieved in a straightforward manner. We 
have chosen not to do so in order to preserve the efficiency and wait-freedom of the 
current non-descriptor modifying operations. Table 2 determines the linearization 
points for each pair of concurrent operations (o1, o2) where DescriptorModifying(o1) 
and Non-DescriptorModifying(o2). 

We emphasise that the presented ordering relations are o1 \ o2 read write push_back 
τwritedesc(o1), τa(o2) τreadelem(o1), τa(o2) pop_back τdesc(o1), τa(o2) τreadelem(o1), τa(o2) not 
transitive. Consider an example with three operations o1 (push_back), o2 (write), and 
o3 (read), which access the same element. We assume that TPs τa(o2), τa(o3) occur 
between τreadelem(o1) and τwritedesc(o1) as well as that o2 returns before the invocation of 
o3. The resulting sequential history is o1, o2, o3. It is derived from the real-time 
ordering between o2 and o3, and the pair-wise ordering relation between push_back 
and write in Table 2. A thorough linearisability proof for even the simplest data 
structure is non-trivial and a further detailed elaboration is beyond the scope of this 
presentation. 

• Non-blocking: We prove the non-blocking property of our implementation by 
showing that out of n threads at least one makes progress. Since the progress of non-
descriptor modifying operations is independent, they are wait-free. Thus, it suffices 
to consider an operation o1, where o1 is either a push_back or pop_back. A Write 
Descriptor can be simultaneously read by n threads. While one of them will 
successfully perform the Write Descriptor’s operation (o2), the others will fail and 
not attempt it again. This failure is insignificant for the outcome of operation o1. The 
first thread attempting to change the descriptor will succeed, which guarantees the 
progress of the system. 

Table 2 Linearisation points of o1, o2 

o1 \ o2 Read Write 

push_back τwritedesc(o1), τa(o2) τreadelem(o1), τa(o2) 
pop_back τdesc(o1), τa(o2) τreadelem(o1), τa(o2) 

3.3.3 Memory management 

Our algorithms do not require the use of a particular memory management scheme. A 
garbage collected environment would have significantly reduced the complexity of the 
implementation (by moving key implementation problems inside the GC 
implementation). However, we do not know of any available general lock-free garbage 
collector for C++. 
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• Object reclamation: Our concrete implementation uses primarily reference counting 
as described by Michael and Scott (1995). The major drawback of this scheme is that 
a timing window allows objects to be reclaimed while a different thread is about to 
increase the counter. Consequently, objects cannot be freed but only recycled. 
Alternatives such as Michael’s (2004a) hazard pointers and Herlihy et al.’s (2005) 
pass the buck (PTB) overcome the problem. To gain an insight about the impact of 
the application of such a sophisticated non-blocking GC approach, as opposed to 
reference counting, we have re-implemented and integrated Herlihy et al.’s PTB 
approach. Our performance analysis in Section 3.3.6 briefly compare the 
performance of two variations of our vector: one relying on reference counting and 
the other utilising PTB. 

• Allocator recent: Research by Michael (2004b) and Gidenstam et al. (2005) presents 
implementations of true lock-free memory allocators. Due to its availability and 
performance, we selected Gidenstam’s allocator for our performance tests. 

3.3.4 ABA hazards 

The semantics of the presented lock-free vector’s operations can be corrupted by the 
occurrence of the ABA problem (Section 4). Consider the following execution: assume a 
thread T0 attempts to perform a push_back; in the vector’s ‘Descriptor’, push_back stores 
a write-descriptor announcing that the value of the object at position i should be changed 
from A to B. Then, a thread T1 interrupts and reads the write-descriptor. Later, after T0 
resumes and successfully completes the operation, a third thread T2 can modify the value 
at position i from B back to A. When T1 resumes its CAS is going to succeed and 
erroneously execute the update from A to B. There are two particular instances when the 
ABA problem can affect the correctness of this vector’s implementation: 

1 the user intends to store a memory address value A multiple times 

2 the memory allocator reuses the address of an already freed object. 

A universal solution to the ABA problem is to associate a version counter to each 
element on platforms supporting CAS2. However, because of hardware requirements of 
our primary application domain, we cannot currently assume availability of CAS2. In 
Section 4, we analyse in depth the hazards of ABA and suggest a generic methodology 
for ABA avoidance. 

Given the current implementation, to eliminate the ABA problem of 2 (in the absence 
of CAS2), we have incorporated a variation of Herlihy et al.’s (2005) PTB algorithm 
utilising a separate thread to periodically reclaim unguarded objects. The vector’s 
vulnerability to 1 (in the absence of CAS2), can be eliminated by requiring the data 
structure to copy all elements and store pointers to them. Such behaviour complies with 
the STL value-semantics (Stroustrup, 2000), however it can incur significant overhead in 
some cases due to the additional heap allocation and object construction. In a lock-free 
system, both the object construction and heap allocation can execute concurrently with 
other operations. However, for significant applications, our vector can be used because 
the application programmer can avoid ABA problem 1. For example, a vector of unique 
elements (e.g., a vector recording live or active objects) does not suffer this problem. 
Similarly, a vector that has a ‘growth phase’ (using push_back) that is separate from a 
‘write phase’ (using assignment to elements) (e.g., an append-only vector) is safe. 
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3.3.5 Alternatives 

In this section, we discuss several alternative designs for lock-free vectors. 

• Copy on write: Alexandrescu and Michael (2004) present a lock-free map, where 
every write operation creates a clone of the original map, which insulates 
modifications from concurrent operations. Once completed, the pointer to the map’s 
representation is redirected from the original to the new map. The same idea could be 
adopted to implement a vector. Since the complexity of any write operation 
deteriorates to O(n) instead of O(1), this scheme would be limited to applications 
exhibiting read-often but write-rarely access patterns. 

• Using software DCAS: Harris et al. (2002) present a software multi-compare and 
swap (MCAS) implementation based on CAS instructions. While convenient, the 
MCAS operation is expensive (requiring 2M+1 CAS instructions). Thus, it is not the 
best choice for an effective implementation. 

• Contiguous storage: Techniques similar to the ones used in our vector 
implementation could be applied to achieve a vector with contiguous storage. The 
difference is that the storage area can change during the data structure’s lifetime. 
This requires resize to move all elements to the new location. Hence, storage and its 
capacity should become members of the descriptor. Synchronisation between write 
and resize operations is what makes this approach difficult. A straightforward 
solution is to apply descriptor-modifying semantics for all random access write 
operations as well as resize. 

We discussed the descriptor- and non-descriptor modifying writes in the context of the 
two-level array and the contiguous storage vector. However, these write properties are 
not inherent in these two approaches. In the two-level array, it is possible to make each 
write operation descriptor modifying, thus ensure a write within bounds. In the 
contiguous storage approach, element relocation could replace the elements with marked 
pointers to the new location. Every access to these marked pointers would get redirected 
to the new storage. 

3.3.6 Performance evaluation 

We ran performance tests on an Intel IA-32 SMP machine with two 1.83 GHz processor 
cores with 512 MB shared memory and 2 MB L2 shared cache running the MAC OS X 
operating system. In our performance analysis, we compare the lock-free approach (with 
its integrated lock-free memory management and memory allocation) with the concurrent 
vector provided by Intel (2006) as well as an STL vector protected by a lock. For the 
latter scenario we applied different types of locking synchronisations – an operating 
system dependent mutex, a reader/writer lock, a spin lock, as well as a queuing lock. We 
used this variety of lock-based techniques to contrast our non-blocking implementation to 
the best available locking synchronisation technique for a given distribution of 
operations. We utilise the locking synchronisation provided by Intel (2006). 

Similarly to the evaluation of other lock-free concurrent containers (Fraser, 2004; 
Michael, 2002), we have designed our experiments by generating a workload of various 
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operations (push_back, pop_back, random access write, and read). In the experiments, we 
varied the number of threads, starting from 1 and exponentially increased their number to 
32. Every active thread executed 500,000 operations on the shared vector. We measured 
the CPU time (in seconds) that all threads needed in order to complete. Each iteration of 
every thread executed an operation with a certain probability; push_back (+), pop_back  
(–), random access write (w), random access read (r). We use per-thread linear 
congruential random number generators where the seeds preserve the exact sequence  
of operations within a thread across all containers. We executed a number of tests  
with a variety of distributions and found that the differences in the containers’ 
performances are generally preserved. As discussed by Fraser (2004), it has been 
observed that in real-world concurrent application, the read operations dominate and 
account to about 70% to 75% of all operations. For this reason we illustrate the 
performance of the concurrent vectors with a distribution of +:15%, –:5%, w:10%,  
r:70% on Figure 2. Similarly, Figure 4 demonstrates the performance results  
with a distribution containing predominantly writes, +:30%, –:20%, w:20%, r:30%.  
In these diagrams, the number of threads is plotted along the x-axis, while the  
time needed to complete all operations is shown along the y-axis. Both axes use 
logarithmic scale. 

Figure 2 Shared vector performance results A – Intel core duo (see online version for colours) 

 

The current release of Intel’s concurrent vector does not offer pop_back or any 
alternative to it. To include its performance results in our analysis, we excluded the 
pop_back operation from a number of distributions. Figures 3 and 5 present two of these 
distributions. For clarity we do not depict the results from the QueuingLock and 
SpinLock implementations. According to our observations, the QueuingLock 
performance is consistently slower than the other lock-based approaches. As indicated in 
(intel, 2006), SpinLocks are volatile, unfair, and not scalable. They showed fast execution 
for the experiments with eight threads or lower, however their performance significantly 
deteriorated with the experiments conducted with 16 or more active threads. To find a 
lower bound for our experiments we timed the tests with a non-thread safe STL-vector 
with pre-allocated memory for all operations. For example, in the scenario described in 

Figure 5, the lower bound is about a 1
10

 of the lock-free vector. 

 



   

 

   

   
 

   

   

 

   

   20 D. Dechev and P. LaBorde    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 Shared vector performance results B – Intel core duo (see online version for colours) 

 

Figure 4 Shared vector performance results C – Intel core duo (see online version for colours) 

 

Figure 5 Shared vector performance results D – Intel core duo (see online version for colours) 
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Under contention our non-blocking implementation consistently outperforms the 
alternative lock-based approaches in all possible operation mixes by a significantly large 
factor. It has also proved to be scalable as demonstrated by the performance analysis. 
Lock-free algorithms are particularly beneficial to shared data under high contention. It is 
expected that in a scenario with low contention, the performance gains will not be as 
considerable. 

We presented a first practical and portable design and implementation of a lock-free 
dynamically resizable array. We developed an efficient algorithm that supports disjoint 
access parallelism and incurs minimal overhead. To provide a practical implementation, 
our approach integrates non-blocking memory management and memory allocation 
schemes. We compared our implementation to the best available concurrent lock-based 
vectors on a dual-core system and have observed an overall speed-up of a factor of 10. 

4 The ABA problem 

The ABA problem is a fundamental problem to all CAS-based designs. Its significance 
has increased with the suggested use of CAS as a core atomic primitive for the 
implementation of portable lock-free algorithms. Here, we offer a solution, called the λδ 
approach, that by a large factor outperforms the use of GC for the safe management of 
each shared location. It offers speeds comparable to the direct application of the 
architecture-specific CAS2 instruction used for version counting. A practical alternative 
to the application of the architecture-specific CAS2 is particularly important to the 
majority of complex embedded systems. We offer an explicit and detailed analysis of the 
ABA problem, its relation to the most commonly applied non-blocking programming 
techniques and correctness guarantees, and the possibilities for its detection and 
avoidance. The current state of the art leaves the elimination ABA hazards to the 
ingenuity of the software designer. Here, we analyse the concurrent interactions that lead 
to ABA as well as ABAs relation to the most commonly described non-blocking 
programming techniques. We define a generic and practical condition for ABA avoidance 
for a lock-free linearisable design. We demonstrate our approach by integrating it into an 
advanced non-blocking data structure, a lock-free dynamically resizable array. Our 
performance evaluation establishes that the single word CAS-based λδ approach delivers 
performance comparable to the use of CAS2. 

The ABA problem can seriously corrupt the semantics of a non-blocking algorithm 
(Gifford and Spector, 1987; Michael, 2004a; Dechev et al., 2006). While of a simple 
nature and derived from the application of a basic hardware primitive, the ABA 
problem’s occurrence is due to the intricate and complex interactions of the application’s 
concurrent operations. The importance of the ABA problem has been reiterated in the 
recent years with the application of CAS for the development of non-blocking 
programming techniques. Avoiding the hazards of ABA imposes an extra challenge for a 
lock-free algorithm’s design and implementation. To the best of our knowledge, the 
literature does not offer an explicit and detailed analysis of the ABA problem, its relation 
to the most commonly applied non-blocking programming techniques and correctness 
guarantees, and the possibilities for its detection and avoidance. Thus, at the present 
moment of time, eliminating the hazards of ABA in a non-blocking algorithm is left to 
the ingenuity of the software designer. In this section, we study in detail and define the 
conditions that lead to ABA. We investigate the relationship between the ABA hazards 
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and the most commonly applied non-blocking programming techniques and correctness 
guarantees. Based on our analysis, we define a generic and practical condition, called the 
λδ approach, for ABA avoidance for a lock-free linearisable design (Section 4.3). We 
demonstrate the application of our approach by incorporating it in a complex  
and advanced non-blocking data structure, a lock-free dynamically resizable array  
(Section 3). We survey the literature for other known ABA prevention techniques 
(usually described as a part of a non-blocking algorithm’s implementation) and study in 
detail three known solutions to the ABA problem (Section 4.1). Our work establishes the 
criteria we apply in our search for a generic and practical solution to the ABA problem 
(Section 4.2). Our performance evaluation (Section 4.4) establishes that the single word 
CAS-based λδ approach is fast, efficient, and practical. 

Definition 6: The ABA problem is a false positive execution of a CAS-based speculation 
on a shared location Li. 

As illustrated in Table 3, ABA can occur if a process P1 is interrupted at any time after it 
has read the old value (Ai) and before it attempts to execute the CAS instruction from 
Algorithm 1. An interrupting process (Pk) might change the value at Li to the a Bi. 
Afterwards, either Pk or any other process Pj ≠ P1 can eventually store Ai back to Li. 
When P1 resumes, its CAS loop succeeds (false positive execution) despite the fact that 
Li’s value has been meanwhile manipulated. 
Table 3 ABA at Li 

Step Action 

Step 1 P1 reads Ai from Li 
Step 2 Pk interrupts P1; Pk stores the value Bi into Li 
Step 3 Pj stores the value Ai into Li 
Step 4 P1 resumes; P1 executes a false positive CAS 

Definition 7: A non-blocking algorithm is ABA-free if its semantics cannot be corrupted 
by the occurrence of ABA problem. 

ABA-freedom is achieved when: 

a occurrence of ABA is harmless to the algorithm’s semantics or 

b ABA is avoided. 

The former scenario is uncommon and strictly specific to the algorithm’s semantics. The 
latter scenario is the general case and in this work we focus on providing details of how 
to eliminate ABA. 

4.1 Known ABA prevention techniques 

A general strategy for ABA avoidance is based on the fundamental guarantee that no 
process Pj(Pj ≠ P1) can possibly store Ai again at location Li (step 3, Table 3). One way to 
satisfy such a guarantee is to require all values stored in a given control location to be 
unique. To enforce this uniqueness invariant we can place a constraint on the user and 
request each value stored at Li be used only once (Known Solution 1). Enforcing this 
constraint can be facilitated if a programming language’s type system supports 
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uniqueness typing (Vries et al., 2008) that forbids the use of more than a single reference 
to an object. We are not familiar with any programming language or library that 
implements uniqueness typing in a concurrent environment. To achieve this goal, it 
would be necessary to design and apply a complex tool-chain of static and dynamic 
program analysis. For a large majority of concurrent algorithms, enforcing uniqueness 
typing would not be a suitable solution since their applications imply the usage of a value 
or reference more than once. 

An alternative approach to satisfying the uniqueness invariant is to apply a version 
tag attached to each value. The usage of version tags is the most commonly cited solution 
for ABA avoidance (Gifford and Spector, 1987). The approach is effective, when it is 
possible to apply, but suffers from a significant flaw: a portable single-word CAS 
instruction is insufficient for the atomic update of a word-sized control value and a  
word-sized version tag. An effective application of a version tag (Detlefs et al., 2002) 
requires the hardware architecture to support a more complex atomic primitive that 
allows the atomic update of two memory location, such as compare-and-swap two (CAS2 
co-located words) or DCAS (CAS2 memory locations). The availability of such atomic 
primitives might lead to much simpler, elegant, and efficient concurrent designs (in 
contrast to a CAS-based design). It is not desirable to suggest a CAS2/DCAS-based ABA 
solution for a CAS-based algorithm, unless the implementor explores the optimization 
possibilities of the algorithm upon the availability of CAS2/DCAS. A proposed hardware 
implementation (entirely built into a present cache coherency protocol) of an innovative 
alert-on-update (AOU) instruction (Spear et al., 2007) has been suggested by Spear et al. 
to eliminate the CAS deficiency of allowing ABA. The main drawbacks for using version 
tags is the fact that a large number of the current hardware architectures, such as the 
majority of real-time embedded systems (Volpe and Peters, 2003), do not support 
complex atomic primitives such as CAS2, DCAS, LL/SC, and AOU. A synchronisation 
scheme on such machines can rely only on the portable single-word CAS instruction. 

In Reinholtz (2008), offers a technique for applying version tags using a 32-bit single-
word memory swap (Known Solution 2). Similarly to the AtomicStampedReference in 
the Java Concurrency Library, Reinholtz’s reference counting pointers (RCP) split a 
version counter into two half-words: a half-word used to store the control value’s data 
value (an integer version counter in RCPs case) and a half-word used as a version tag. 
The limitations of this approach are: 

a there is a limit of maximum 216 − 1 writes for each control location 

b the range of values that can be represented in a control value is significantly 
decreased (by a factor of 216). 

To guarantee the uniqueness invariant of a control value of type pointer in a concurrent 
system with dynamic memory usage, we face an extra challenge: even if we write a 
pointer value no more than once in a given control location, the memory allocator might 
reuse the address of an already freed object (Ai) and pose an ABA hazard. To prevent this 
scenario, all control values of pointer type must be guarded by a concurrent non-blocking 
GC scheme such as hazard pointers (Michael, 2004a) (that uses a list of hazard pointers 
per thread) or Herlihy et al.’s (2005) PTB algorithm (that utilises a dedicated thread to 
periodically reclaim unguarded objects). While enhancing the safety of a concurrent 
algorithm (when needed), the application of a complementary GC mechanism might 
come at a significant performance cost (see Section 6 for details). 



   

 

   

   
 

   

   

 

   

   24 D. Dechev and P. LaBorde    
 

    
 
 

   

   
 

   

   

 

   

       
 

A known approach for avoiding a false positive execution of the Write Descriptor 
from Algorithm 2 is the application of value semantics for all values of type value type 
(Known Solution 3). As discussed in Hendler et al. (2004) and Dechev et al. (2006), an 
ABA avoidance scheme based on value semantics relies on: 

a Extra level of indirection: All values are stored in shared memory indirectly through 
pointers. Each write of a given value vi to a shared location Li needs to allocate on 
the heap a new reference to vi ( ),

ivη  store ( )
ivη  into Li, and finally safely delete the 

pointer value removed from Li. If the value type of vi is pointer then ’s
ivη  type is 

pointer to pointer. 

b Non-blocking GC: All references stored in shared memory (such as )
ivη  need to be 

safely managed by a non-blocking GC scheme (e.g., hazard pointers, PTB). 

As reflected in our performance test results (Section 6), the usage of both, an extra level 
of indirection as well as the heavy reliance on a non-blocking GC scheme for managing 
the Descriptor Objects and the references to value_type objects, is very expensive with 
respect to the space and time complexity of a non-blocking algorithm. However, the use 
of value semantics is the only known approach for ABA avoidance in the execution of a 
Write Descriptor Object. In Section 4.3, we present a three-step execution approach that 
helps us eliminate ABA, avoid the need for an extra level of indirection, and reduce the 
usage of the computationally expensive GC scheme. 

4.2 Criteria 

To provide a practical and generic solution to the ABA problem without incurring a 
prohibitive cost to the lock-free application, our search for a solution has been guided by 
the following design criteria: 

a Complexity and semantics preservation: An ABA avoidance scheme should not 
incur extra algorithmic complexity and should preserve the application’s  
non-blocking guarantees and correctness conditions. For example, a shared vector’s 
tail operations have a complexity of O(1) that must be preserved. 

b Dynamic and open memory usage: Ability to support dynamic and open memory 
usage at a minimal cost. 

c Fast performance: An ABA prevention scheme should make minimal usage of 
expensive GC and should not prevent disjoint-access parallelism. Some lock-free 
container’s implementations provide a combination of lock-free (δ-modifying) and 
wait-free (non-δ-modifying) operations (Dechev et al., 2006). Wait-free operations 
are fast and progress regardless the contention on the shared memory. Preserving the 
wait-free semantics of such operations might be critical to the container’s 
performance. While sometimes necessary to apply, the application of GC schemes 
must be limited to an absolute minimum. 

d Portability: We assume the availability of single-word atomic read, write, and CAS 
instructions. We consider solutions based on multi-word CAS, AOU (Spear et al., 
2007), or LL/SC to be platform-specific. 
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e Unlimited data usage: We prefer to avoid placing constraints on the usage of the 
data values. We assume that the data values stored in a shared container need not be 
unique, there is no restriction on the range of values (imposed by the ABA 
prevention algorithm), data elements can be written and read an arbitrary number of 
times to/from any location, and there is no restriction on the number of writer 
threads. 

f No extra levels of indirection: A famous quote by David Wheeler states: “Any 
problem in computer science can be solved with another layer of indirection, but that 
usually will create another problem” (Stroustrup, 2000). As illustrated in Section 6, 
the application of an extra level of indirection suffers performance penalties, leads to 
heavy usage of the costly GC scheme, increases the complexity of the non-blocking 
algorithm, and is difficult to integrate in an already existing non-blocking 
implementation. 

4.3 Implementing a λδ-modifying operation 

Let us designate the point of time when a certain δ-modifying operation reads the state of 
the descriptor object by ,readτ

δ
 and the instants when a thread reads a value from and 

writes a value into a location Li by 
iaccessτ  and ,

iwriteτ  respectively. Algorithm 12 

demonstrates the occurrence of ABA in the execution of a δ object with two concurrent 
δ-modifying operations 

1
(Oδ  and 

2
)Oδ  and a concurrent write, Oi, to Li. We assume that 

the δ object’s implementation follows Algorithm 2. The execution of 
1

Oδ  and 
2

Oδ  and Oi 

proceeds in the following manner: 

1 
1

Oδ  reads the state of the current δ object as well as the current value at Li, Ai (line 

1–2, Algorithm 12). Next, 
1

Oδ  proceeds with instantiating a new δ object and 

replaces the old descriptor with the new one (line 3, Algorithm 12). 

2 
1

Oδ  is interrupted by 
2
.Oδ  

2
Oδ  reads Lδ and finds the WDpending flag’s value to be 

true (line 4, Algorithm 12). 

3 
1

Oδ  resumes and completes the execution of its δ object by storing Bi into Li (line 5, 

Algorithm 12). 

4 An interrupting operation, Oi, writes the value Ai into Li (line 6, Algorithm 12). 

5 
2

Oδ  resumes and executes ωδ it has previously read, the ωδ’s CAS falsely succeeds 

(line 6, Algorithm 12). 

The placement of the λδ-point plays a critical role for achieving ABA safety in the 
implementation of an ωδ-executing operation. The λδ-point from Algorithm 12 
guarantees that the ωδ-executing operation 

1
Oδ  completes before 

2
.Oδ  However, at the 

time τwd when 
2

Oδ  executes the write descriptor, 
2

Oδ  has no way of knowing whether 

1
Oδ  has completed its update at Li or not. Since 

1
Oδ ’s λδ-point ≡ τδ, the only way to know 
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about the status of 
1

Oδ  is to read Lδ. Using a single-word CAS operation prevents 
2

Oδ  

from atomically checking the status of Lδ and executing the update at Li. 
Algorithm 12 ABA occurrence in the execution of a Descriptor Object 

1: 
1

: readO τ
δδ  

2: 
1

:
iaccessO τδ  

3: 
1

:O τδ δ  
4: 

2
: readO τ

δδ  
5: 

1
: wdO τδ  

6: :
ii writeO τ  

7: 
2

: wdO τδ  

Definition 8: A concurrent execution of one or more non-ωδ-executing δ-modifying 
operations with one ωδ-executing operation, 

1
,Oδ  performing an update at location Li is 

ABA-free if 
1
’sOδ  -point .

iaccessτ≡λδ  We refer to an ωδ-executing operation where its 

-point
iaccessτ≡λδ  as a λδ-modifying operation. 

Assume that in Algorithm 12 the 
1
’sOδ  -point .

iaccessτ≡λδ  As shown in Algorithm 12, 

the ABA problem in this scenario occurs when there is a hazard of a spurious execution 
of 

1
’sOδ  Write Descriptor. Having a λδ-modifying implementation of 

1
Oδ  allows any 

non-ωδ-executing δ-modifying operation such as 
2

Oδ  to check 
1
’sOδ  progress while 

attempting the atomic update at Li requested by 
1
’sOδ  Write Descriptor. Our three-step 

descriptor execution approach, described in Section 4.3, offers a solution based on 
Definition 8. In an implementation with two or more concurrent ωδ-executing operations, 
each ωδ-executing operation must be λδ-modifying in order to eliminate the hazard of a 
spurious execution of an ωδ that has been picked up by a collaborating operation. To 
effectively avoid the ABA hazard at Li, we generalise two fundamental strategies: 

a Guarantee that a Write Descriptor created by 
1
,Oδ  or any other ωδ-executing 

operation, succeeds at most once. We refer to such a δ object as a  
once-execute descriptor. Definition 8 offers the basics for a solution of this type. In 
our example in Algorithm 12, a once-execute-descriptor strategy would cause the 
attempt to re-execute the write descriptor by 

1
Oδ  (line 7, Algorithm 12) or any other 

operation to fail. Our three-step δ execution approach presented in Section 4.3 is one 
possible way of implementing a once-execute-descriptor. 

b Guarantee that no concurrent interleaving of operations can write a value posing 
ABA hazard (such as Bi in Algorithm 12) at Li. Relying on a methodology that 
employs unique values, such as Known Solution 1, is an approach of this type. 
Requiring uniqueness typing for ABA prevention is an overkill. The guarantee we 
need is that no thread can restore an old value Ai in a shared location Li while there is 
an alive ωδ object in the system requesting ωδ@Li: Ai → any_valuei. Modern 
mainstream programming languages do not yet explicitly support concurrency and 
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lack the tools to express and enforce such a concurrent and dynamic correctness 
condition. 

In Algorithm 13, we suggest a design strategy for the implementation of a λδ-modifying 
operation. Our approach is based on a three-step execution of the δ object. While similar 
to Algorithm 2, the approach shown in Algorithm 13 differs by executing a fundamental 
additional step: in step 1 we store a pointer to the new descriptor in Li prior to the attempt 
to store it in Lδ in step 2. Since all δ objects are memory managed, we are guaranteed that 
no other thread would attempt a write of the value μNewDesc in Li or any other shared 
memory location. The operation is λδ-modifying because, after the new descriptor is 
placed in Li, any interrupting writer thread accessing Li is required to complete the 
remaining two steps in the execution of the Write Descriptor. However, should the CAS 
execution in step 2 (line 26) fail, we have to unroll the changes to Li performed in step 1 
by restoring Li’s old value preserved in WD.OldElement (line 20) and retry the execution 
of the routine (line 21). To implement Algorithm 13, it is necessary to distinguish 
between objects of type value_type and δ. A possible solution is to require that all 
value_type values are pointers and all pointer values stored in Li are aligned with the two  
low-order bits cleared during their initialisation. That way, we can use the two low-order 
bits for designating the type of the pointer values. Subsequently, every read must check 
the type of the pointer obtained from a shared memory location prior to manipulating it. 
Once an operation succeeds at completing step 1, Algorithm 13, location Li contains a 
pointer to a δ object that includes both: Li’s previous value of type value_type and a write 
descriptor WD that provides a record for the steps necessary for the operation’s 
completion. Any non-δ-modifying operation, such as a random access read in a shared 
vector, can obtain the value of Li (of type value_type) by accessing WD.OldElement 
(thus going through a temporary indirection) and ignore the Descriptor Object. Upon the 
success of step 3, Algorithm 13, the temporary level of indirection is eliminated. Such an 
approach would preserve the wait-free execution of a non-δ-modifying operation. The ωδ 
data type needs to be amended to include a field TempElement (line 9, Algorithm 13) that 
records the value of the temporary δ pointer stored in Li. The cost of the λδ operation is 3 
CAS executions to achieve the linearisable update of two shared memory locations (Li 
and Lδ). 
Algorithm 13 Implementing a λδ-modifying operation through a three-step execution of a δ 

object 

1: Step 1: place a new descriptor in Li 
2: value type Bi = fComputeB 
3: value type Ai 
4: ωδ WD = fωδ() 
5: WD.Target = Li 
6: WD.NewElement = Bi 
7: υδ DescData = fυδ() 
8: δ μNewDesc = fδ(DescData, WD) 
9: WD.TempElement = &NewDesc 
10: μNewDesc.WDpending = true 
11: repeat 
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12:  Ai = ^Li 
13:  WD.OldElement = Ai 
14: until CAS(Li, Ai, μNewDesc) == μNewDesc 
15:  
16: Step 2: place the new descriptor in Lδ 
17: bool unroll = false 
18: repeat 
19:  if unroll then 
20:  CAS(WD.Target, μNewDesc, WD.OldElement) 
21:  go to 3 
22:  end if 
23:  δ μOldDesc = ^Lδ 
24:  if μOldDesc.WDpending == true then 
25:  execute μOldDesc.WD 
26:  end if 
27:  unroll = true 
28: until CAS(Lδ, μOldDesc, μNewDesc) == μNewDesc 
29:  
30: Step 3: execute the Write Descriptor 
31: if μNewDesc.WDpending then 
32:  CAS(WD.Target, WD.TempElement, WD.NewElement) 
  == WD.NewElement 
33:  μNewDesc.WDPending = false 
34: end if 

4.4 Performance evaluation 

We incorporated the presented ABA elimination approach in the implementation of the 
non-blocking dynamically resizable array as presented in Section 3. Our test results 
indicate that the λδ approach offers ABA prevention with performance comparable to the 
use of the platform-specific CAS2 instruction to implement version counting. This 
finding is of particular value to the engineering of some embedded real-time systems 
where the hardware does not support complex atomic primitives such as CAS2 (Lowry, 
2002). We ran performance tests on an Intel IA-32 SMP machine with two 1.83GHz 
processor cores with 512 MB shared memory and 2 MB L2 shared cache running the 
MAC OS X operating system. In our performance analysis we compare: 
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1 λδ approach: The implementation of a vector with a λδ-modifying push_back and a 
δ-modifying pop_back. Table 4 shows that in this scenario the cost of push_back is 
three single-word CAS operations and pop_back’s cost is one single-word CAS 
instruction. 

2 All-GC approach: The use of an extra level of indirection and memory management 
for each element. Because of its performance and availability, we have chosen to 
implement and apply Herlihy et al.’s (2005) PTB algorithm. In addition, we use PTB 
to protect the Descriptor Objects for all of the tested approaches. 

3 CAS2-based approach: The application of CAS2 for maintaining a reference counter 
for each element. A CAS2-based version counting implementation is easy to apply to 
almost any pre-existent CAS-based algorithm. While a CAS2-based solution is not 
portable and thus not meeting our goals, we believe that the approach is applicable 
for a large number of modern architectures. For this reason, it is included in our 
performance evaluation. In the performance tests, we apply CAS2 (and version 
counting) for updates at the shared memory locations at Li and a single-word CAS to 
update the Descriptor Object at Lδ. 

Table 4 offers an overview of the shared vector’s operations’ relative cost in terms of 
number and type of atomic instructions invoked per operation. 

Figure 6 Performance results A (see online version for colours) 
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Figure 7 Performance results B (see online version for colours) 

 

Figure 8 Performance results C (see online version for colours) 
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Figure 9 Performance results D (see online version for colours) 

 

Table 4 A shared vector’s operations cost (best case scenario) 

 push_back pop_back read_i write_i 

1 λδ approach 3 CAS 1 CAS Atomic read Atomic write 
2 All-GC 2CAS + GC 1CAS + GC Atomic read Atomic write + GC 
3 CAS2-based 1CAS2 + 1CAS 1 CAS Atomic read 1 CAS2 

We varied the number of threads, starting from 1 and exponentially increased their 
number to 64. Each thread executed 500,000 lock-free operations on the shared container. 
We measured the execution time (in seconds) that all threads needed to complete. Each 
iteration of every thread executed an operation with a certain probability (+, –, random 
access w, random access r]. We show the performance graph for a distribution of +:40%, 
–:40%, w:10%, r:10% on Figure 6. Figure 7 demonstrates the performance results with 
less contention at the vector’s tail, +:25%, –:25%, w:10%, r:40%. Figure 8 illustrates the 
test results with a distribution containing predominantly random access read and write 
operations, +:10%, –:10%, w:40%, r:40%. Figure 9 reflects our performance evaluation 
on a vector’s use with mostly random access read operations: +:20%, –:0%, w:20%, 
r:60%, a scenario often referred to as the most common real-world use of a shared 
container (Fraser, 2004). The number of threads is plotted along the x-axis, while the 
time needed to complete all operations is shown along the y-axis. According to the 
performance results, compared to the All-GC approach, the λδ approach delivers 
consistent performance gains in all possible operation mixes by a large factor, a factor of 
at least 3.5 in the cases with less contention at the tail and a factor of 10 or more when 
there is a high concentration of tail operations. These observations come as a 
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confirmation to our expectations that introducing an extra level of indirection and the 
necessity to memory manage each individual element with PTB (or an alternative 
memory management scheme) to avoid ABA comes with a pricy performance overhead. 
The λδ approach offers an alternative by introducing the notion of a λδ-point and enforces 
it though a three-step execution of the δ object. The application of version counting based 
on the architecture-specific CAS2 operation is the most commonly cited approach for 
ABA prevention in the literature (Hendler et al., 2004; Herlihy et al., 2005). Our 
performance evaluation shows that the λδ approach delivers performance comparable to 
the use of CAS2-based version counting. CAS2 is a complex atomic primitive and its 
application comes with a higher cost when compared to the application of atomic write or 
a single-word CAS. In the performance tests we executed, we notice that in the scenarios 
where the random access write is invoked more frequently (Figures 8 and 9), the 
performance of the CAS2 version counting approach suffers a performance penalty and 
runs slower than the λδ approach by about 12% to 20%. According to our performance 
evaluation, the λδ approach is a systematic, effective, portable, and generic solution for 
ABA avoidance. The λδ scheme does not induce a performance penalty when compared 
to the architecture-specific application of CAS2-based version counting and offers a 
considerable performance gain when compared to the use of All-GC. 

5 STM-based non-blocking design 

A variety of recent STM approaches (Dice and Shavit, 2007; Spear et al. 2007) claim safe 
and easy to use concurrent interfaces. The most advanced STM implementations allow 
the definition of efficient ‘large-scale’ transactions, i.e., dynamic and unbounded 
transactions. Dynamic transactions are able to access memory locations that are not 
statically known. Unbounded transactions pose no limits on the number of locations 
being accessed. The basic techniques applied are the utilisation of public records of 
concurrent operations and a number of conflict detection and validation algorithms that 
prevent side-effects and race conditions. To guarantee progress transactions help those 
ahead of them by examining the public log record. The availability of non-blocking, 
unbounded, and dynamic transactions provides an alternative to CAS-based designs for 
the implementation of non-blocking data structures. The complex designs of such 
advanced STMs often come with an associated cost: 

a Two levels of indirection: A large number of the non-blocking designs require two 
levels of indirection in accessing data. 

b Linearisability: The linearisability requirements are hard to meet for an unbounded 
and dynamic STM. To achieve efficiency and reduce the complexity, all known  
non-blocking STMs offer the less demanding obstruction-free synchronisation 
(Herlihy et al., 2003). 

c STM-oriented programming model: The use of STM requires the developer to be 
aware of the STM implementation and apply an STM-oriented programming model. 
The effectiveness of such programming models is a topic of current discussions in 
the research community. 

d Closed memory usage: Both non-blocking and lock-based STMs often require a 
closed memory system (Dice and Shavit, 2007). 
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e Vulnerability of large transactions: In a non-blocking implementation large 
transactions are a subject to interference from contending threads and are more likely 
to encounter conflicts. Large blocking transactions can be subject to time-outs, 
requests to abort or introduce a bottleneck for the computation. 

f Validation: A validation scheme is an algorithm that ensures that none of the 
transactional code produces side-effects. Code containing I/O and exceptions needs 
to be reworked as well as some class methods might require special attention. 
Consider a class hierarchy with a base class A and two derived classes B and C. 
Assume B and C inherit a virtual method f and B’s implementation is side-effect free 
while C’s is not. A validation scheme needs to disallow a call to C’s method f. 

With respect to our design goals, the main problems associated with the application of 
STM are meeting the stricter requirements posed by the lock-free progress and safety 
guarantees and the overhead introduced by the application of an extra level of indirection 
and the costly conflict detection and validation schemes. 

5.1 Obstruction-free descriptor vs. lock-free descriptor 

To be able to reduce the complexity of implementing non-blocking transactions, the 
available non-blocking STM libraries often provide the weaker obstruction-free progress 
guarantee. Even for experienced software designers, understanding the subtle differences 
between lock-free and obstruction-free designs is challenging. To better illustrate how 
obstruction-free objects differ from lock-free objects, in Algorithm 14 we demonstrate 
the implementation of an obstruction-free Descriptor Object. While similar to the 
execution of a lock-free Descriptor Object (Section 2.1), the obstruction-free Descriptor 
object from Algorithm 14 differs in two significant ways: 

1 No thread collaboration when executing the Write Descriptor: Interrupting threads 
need not help interrupted threads complete. Obstruction-free execution guarantees 
that a thread will complete eventually in isolation. Thus, every time a thread 
identifies an interrupt it can simply repeat its update routine until the sequence of 
instructions completes without interrupts. Intuitively, a larger number of instructions 
in the execution routine implies a higher risk of interrupts. 

2 Unrolling: When an attempted update at Lδ fails, the operation needs to invoke a 
mechanism for unrolling any modifications it had performed to shared memory. In 
our obstruction-free Descriptor, the Write Descriptor stores the necessary 
information to execute an undo of step 1, Algorithm 14 should the attempted update 
at Lδ in step 2, Algorithm 14 fail. The unrolling approach requires that we store two 
types of objects in a shared location Li: elements of type value type and Write 
Descriptors of type ωδ. To distinguish between these two types of objects, we need 
to employ bit marking of the unused low-order bits for all Write Descriptors objects 
stored in Li. When an interrupting thread recognises an ωδ object, it can simply 
ignore its presence and obtain the element (of type value type) by reading the field 
OldElement of the Write Descriptor. 
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Algorithm 14 Implementing a descriptor object with obstruction-free semantics 

1: Step 1: update Li 
2: δ μOldDesc = Lδ^ 
3: value type Ai = Li

^ 
4: value type Bi = fComputeB 
5: ωδ WD = fωδ() 
6: WD.Target = Li 
7: WD.NewElement = Bi 
8: υδ DescData = fυδ() 
9: δ μNewDesc = fδ(DescData, WD) 
10: WD.TempElement = &NewDesc.WD 
11: repeat 
12:  Ai = Li

^ 
13:  WD.OldElement = Ai 
14: until CAS(Li, Ai, μNewDesc.WD) == μNewDesc.WD 
15:  
16: Step 2: place the new descriptor in Lδ 
17: bool unroll = false 
18: repeat 
19:  if unroll then 
20:  CAS(WD.Target, μNewDesc, WD.OldElement) 
21:  goto 1 
22:  end if 
23:  unroll = true 
24: until CAS(Lδ, μOldDesc, μNewDesc) == μNewDesc 
25:  
26: Step 3: execute the write descriptor 
27: 27: CAS(WD.Target, WD.TempElement, WD.NewElement) 

Obstruction-free objects following a design similar to Algorithm 14 eliminate the 
overhead an interrupting thread might experience when helping an interrupted thread. 
However, in scenarios with high contention, obstruction-free objects might experience 
frequent interrupts that could result in poor scalability and even livelocking. 

5.2 RSTM-based vector 

The Rochester Software Transactional Memory (RSTM) (Spear et al., 2007) is a word- 
and indirection-based C++ STM library that offers obstruction-free non-blocking 
transactions. As explained by the authors in Spear et al. (2007), while helping provide 
lightweight committing and aborting of transactions, the extra level of indirection can 
cause a dramatic performance degradation due to the more frequent capacity and 
coherence misses in the cache. In this section, we employ the RSTM library (version 4) 
to build an STM-based non-blocking shared vector. We chose to use RSTM because of 
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its flexible and efficient object-oriented C++ design, demonstrated high performance 
when compared to alternative STM techniques, and the availability of non-blocking 
transactions. In Algorithms 15, 16, 17, and 18, we present the RSTM-based 
implementations of the read, write, pop_back, and push_back operations, respectively. 
According to the RSTM API (Spear et al., 2007), access to shared data is achieved by 
utilising four classes of shared pointers: 

1 a shared object (class sh_ptr <T>) representing on object that is untouched by a 
transaction 

2 a read only object (class rd_ptr <T>) referring to an object that has been opened for 
reading 

3 a writable object (class wr_ptr <T>) pointing to an object opened for writing by a 
transaction 

4 a privatised object (class un_ptr <T>) representing an object that can be accessed by 
one thread at a time. 

These smart pointer templates can be instantiated only with data types derived from a 
core RSTM object class stm::Object. Thus, we need to wrap each element stored in the 
shared vector in a class STMVectorNode that derives from stm::Object. Similarly, we 
define a Descriptor class STMVectorDesc (derived from stm::Object) that stores the 
container-specific data such as the vector’s size and capacity. The tail operations need to 
modify (within a single transaction) the last element and the Descriptor object (of type 
STMVectorDesc) that is stored in a location Ldesc. The vector’s memory array is named 
with the string mem. In the pseudo-code in Algorithms 17 and 18 we omit the details 
related to the management of mem (such as the resizing of the shared vector should the 
requested size exceed the container’s capacity). 

Algorithm 15 RSTM vector, operation read location p 

1: BEGIN TRANSACTION 

2: rd ptr < STMVectorNode > rp(mem[p]) 

3: result = rp->value 

4: END TRANSACTION 

5: return result 

Algorithm 16 RSTM vector, operation write v at location p 

1: BEGIN TRANSACTION 

2: wr ptr< STMVectorNode > wp(mem[p]) 

3: wp->val = v 

4: sh ptr< STMVectorNode > nv = 

 new sh ptr< STMVectorNode >(wp) 

5: mem[p] = nv 

6: END TRANSACTION 
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Algorithm 17 RSTM vector, operation pop_back 

1: BEGIN TRANSACTION 
2: rd ptr< STMVectorNode > rp(mem[Ldesc-> size-1]) 
3: sh ptr< STMVectorDesc > desc = 
 new sh ptr< STMVectorDesc > 
 (new STMVectorDesc(Ldesc->size-1)) 
4: result = rp->value 
5: Ldesc = desc 
6: END TRANSACTION 
7: return result 

Algorithm 18 RSTM vector, operation push_back v 

1: BEGIN TRANSACTION 
2: sh_ptr< STMVectorNode > nv = 
 new sh_ptr< STMVectorNode >(new STMVectorNode(v)) 
3: sh_ptr< STMVectorDesc > desc = 
 new sh_ptr< STMVectorDesc > 
 (new STMVectorDesc(Ldesc->size+1)) 
4: mem[size] = nv 
5: Ldesc = desc 
6: END TRANSACTION 

6 Analysis and results 

To evaluate the performance of the discussed synchronisation techniques, we analyse the 
performance of three approaches for the implementation of a shared vector: 

1 The RSTM-based non-blocking vector implementation as presented in Section 5.1. 

2 An RSTM lock-based execution of the vector’s transactions. RSTM provides the 
option of running the transactional code in a lock-based mode using redo locks 
(Spear et al., 2007). Though blocking and not meeting our goals for safe and reliable 
synchronisation, we include the lock-based RSTM vector execution to gain 
additional insight about the relative performance gains or penalties that the discussed 
non-blocking approaches offer when compared to the execution of a lock-based, 
STM-based container. 

3 The hand-crafted Descriptor-based approach as presented in Section 3. 

We ran performance tests on an Intel IA-32 SMP machine with two 1.83 GHz processor 
cores with 512 MB shared memory and 2 MB L2 shared cache running the MAC OS X 
operating system. We designed our experiments by generating a workload of the various 
operations. We varied the number of threads, starting from 1 and exponentially increased 
their number to 32. Each thread executed 500,000 lock-free operations on the shared 
container. We measured the execution time (in seconds) that all threads needed to 
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complete. Each iteration of every thread executed an operation with a certain probability 
(+, –, random access w, random access r). We show the performance graph for a 
distribution of +:10%, –:10%, w:40%, r:40% on Figure 10. Figure 11 demonstrates the 
performance results in a read-many-write-rarely scenario, +:10%, –:10%, w:10%, r:70%. 
Figure 12 illustrates the test results with a distribution +:25%, –:25%, w:12%, r:38%. The 
number of threads is plotted along the x-axis, while the time needed to complete all 
operations is shown along the y-axis. To increase the readability of the performance 
graphs, the y-axis uses a logarithmic scale with a base of 10. Our test results indicate that 
for the large majority of scenarios the hand-crafted CAS-based approach outperforms by 
a significant factor the transactional memory approaches. The Descriptor-based approach 
offers simple application and fast execution. The STM-based design offers a flexible 
programming interface and easy to comprehend concurrent semantics. The main deterrent 
associated with the application of STM is the overhead introduced by the extra level of 
indirection and the application of costly conflict detection and validation schemes. 
According to our performance evaluation, the non-blocking RSTM vector demonstrates 
poor scalability and its performance progressively deteriorates with the increased volume 
of operations and active threads in the system. In addition, RSTM transactions offer 
obstruction-free semantics. To eliminate the hazards of livelocking, the software 
designers need to integrate a contention manager with the use of an STM-based 
container. Because of the limitations present in the state of the art STM libraries (Spear  
et al., 2007; Dice and Shavit, 2007), we suggest that a shared vector design based on the 
utilisation of non-blocking CAS-based algorithms can better serve the demands for safe 
and reliable concurrent synchronization in mission critical code. 

Figure 10 Performance results 1 (see online version for colours) 
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Figure 11 Performance results 2 (see online version for colours) 

 

Figure 12 Performance results 3 (see online version for colours) 
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7 Verification and semantic parallelisation of goal networks 

In this section, we describe the design, implementation, and application of a first 
concurrency and time centred framework for verification and semantic parallelisation of 
real-time C++ within the JPL MDS framework. The end goal of the industrial project that 
motivated our work is to provide certification artefacts and accelerated testing of the 
complex software interactions in autonomous flight systems. The process of software 
certification establishes the level of confidence in a software system in the context of its 
functional and safety requirements. A software certificate contains the evidence required 
for the system’s independent assessment by an authority having minimal knowledge and 
trust in the technology and tools employed (Denney and Fischer, 2005). Providing such 
certification evidence may require the application of a number of software development, 
analysis, verification, and validation techniques (Lowry, 2002). The dominant paradigms 
for software development, assurance, and management at NASA rely on the principle 
“test what-you-fly and fly-what-you-test”. This methodology had been applied in a large 
number of robotic space missions at the Jet Propulsion Laboratory. For such missions, it 
has proven suitable in achieving adherence to some of the most stringent standards of 
man-rated certification such as the DO-178B (RTCA, 1992), the Federal Aviation 
Administration (FAA) software standard. Its level A certification requirements demand 
100% coverage of all high and low level assurance policies. Some future space 
exploration projects suggest the engineering of some of the most complex man-rated 
software systems. As stated in the Columbia Accident Investigation Board Report, the 
inability to thoroughly apply the required certification protocols had been determined to 
be a contributing factor to the loss of STS-107, Space Shuttle Columbia. 

Schumann and Visser’s (2006) discussion suggests that the current certification 
methodologies are prohibitively expensive for systems of such complexity. A detailed 
analysis by Lowry (2002) indicates that at the present moment the certification cost of 
mission-critical space software exceeds its development cost. The challenges of 
certifying and re-certifying avionics software has led NASA to initiate a number of 
advanced experimental software development and testing platforms, such as the MDS 
(Rasmussen et al., 2005), as well as a number of program synthesis, modelling, analysis, 
and verification techniques and tools, such as The JavaPathFinder (Brat et al., 2005), the 
CLARAty project (Volpe et al., 2001), Project Golden Gate (Dvorak et al., 2004), The 
New Millenium Architecture Prototype (New-MAAP) (Dvorak, 2002). The high cost and 
demands of man-rated certification have motivated the experimental development of 
several accelerated testing platforms (Boehm et al., 2004). A great number of the 
experimental faster-than-real-time flight software simulators require the parallelization of 
previously sequential real-time algorithms. 

In Perrow (1999), studies the risk factors in the modern high technology systems. His 
work identifies two significant sources of complexity in modern systems: interactions 
and coupling. The systems most prone to accidents are those with complex interactions 
and tight coupling. With the increase of the size of a system, the number of functions it 
has to serve, as well as its interdependence with other systems, its interactions become 
more incomprehensible to human and machine analysis and this can cause unexpected 
and anomalous behaviour. Tight coupling is defined by the presence of time-dependent 
processes, strict resource constraints, and little or no possible variance in the execution 
sequence. Perrow classifies space missions in the riskiest category since both hazard 
factors are present. We argue that the notions of concurrency and time are the most 
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critical elements in the design and implementation of an embedded autonomous space 
system. According to a study on concurrent models of computation for embedded 
software by Lee and Neuendorffer (2005), the major contributing factors to the 
development and design complexity of such systems are the underlying sequential 
memory models and the lack of first class representation of the notions of time and 
concurrency in the applied programming languages. 

In this section, we present the design and implementation of a first concurrency and 
time centred framework for verification and semantic parallelisation of real-time C++ 
within the JPL MDS framework. Our notion of semantic parallelisation implies the 
thread-safe concurrent execution of system algorithms that utilise shared data, based on 
the application’s semantics and invariants. As a practical industrial-scale application, we 
demonstrate the parallelisation and verification of the MDS’ goal networks, a critical 
component of the JPLs MDS. 

7.1 Temporal constraint networks 

A temporal constraint network (TCN) defines the goal-oriented operation of a control 
system in the context of a system under control. The TCNs application is at the core of 
the Jet Propulsion Laboratory’s MDS (Rasmussen et al., 2005) state-based and  
goal-oriented unified architecture for testing and development of mission software. The 
framework’s state- and model-based methodology and its associated systems engineering 
processes and development tools have been successfully applied on a number of test 
applications including the physical rovers Rocky 7 and Rocky 8 and a simulated Entry, 
Descent, and Landing (EDL) component for the Mars Curiosity mission. A TCN consists 
of a set of TCs and a set of TPs. In this model of goal-driven operation, a time point is 
defined as an interval of time when the configuration of the system is expected to satisfy 
a property predicate. The width of the interval corresponds to the temporal uncertainty 
inherent in the satisfaction of the predicate. Similarly, TCs have an associated interval of 
time corresponding to the acceptable bounds on the interactions between the control 
system and the system under control during the performance of a specific activity. A 
TCN graph topology represents a snapshot at a given time of the known set of activities 
the control system has performed so far, is currently engaged in, and will be performing 
in the near future up to the horizon of the elaborated plan initially created as a solution 
for a set of goals. The topology of a TCN must satisfy a number of invariants. 

a A TCN is a directed acyclic graph where the vertices represent the set of all TPs 
(Stps) and the edges the set of all TCs (Stcs). 

b For each time point TPi ∈ Stps, there is a set of temporal constraints that are 
immediate successors suuc(S )

i
 of TPi and a set, predS ,

i
 consisting of all of TPi’s 

immediate predecessors. 

c Each temporal constraint TCj ∈ Stcs has exactly one successor succTP
j
 and one 

predecessor predTP .
j
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d For each pair {TPi, TCj}, where succTP TC ,
ji ≡  predTC S

ij ∈  must hold. The 

reciprocal invariant must also be valid, namely for each pair of {TPi, TCj} such that 
predTP TC ,

ji ≡  succTC S .
ij ∈  

e The firing window of a time point TPi ∈ Stps is represented by the pair of time 
instances min max{TP ,TP }.

i i
 Assuming that the current moment of time is represented 

by Tnow, then min now maxTP T TP ,
i i
≤ ≤  for every TPi ∈ Stps. 

Any implementation (in C++, Java or another programming language) must operate 
under the assumptions that the basic TCN invariants are satisfied. Thus, prior to 
implementing a solution to the TCN constraint propagation problem, it is necessary to 
guarantee the correctness and consistency of the topology of the goal network. 

7.2 Verification and automatic parallelisation framework 

In this section, we describe the design, implementation, and practical application of our 
framework for verification and semantic parallelization of real-time C++ within JPLs 
MDS framework (Figure 13). The input to the framework is the MDS mission planning 
and execution module that is based on the definition of TCNs. At the core of the most 
recent implementations at JPL of this critical module is an optimized iterative algorithm 
for the real-time propagation of TCs, developed and described by Lou (2002). Constraint 
propagation poses performance challenges and speed bottlenecks due to the algorithm’s 
frequent execution and the necessary real-time update of the goal network’s topology. 
Our goal is, given the implementation of the optimised iterative propagation scheme and 
the topology of a particular goal network, to establish the correctness of the core TCN 
semantic invariants (see Section 7.1) and automatically derive an implementation that can 
be executed concurrently on one of the JPLs experimental testbeds for accelerated testing 
(Boehm et al., 2004). Our approach for achieving concurrent execution is based on the 
idea of identifying Time Phases within a goal network, which allow the semantic 
parallelisation of the constraint propagation algorithm. In our work, we define semantic 
parallelisation as the thread-safe concurrent execution of an algorithm (whose operation 
is dependent on shared data), derived from the application’s semantics and invariants. In 
the following sections we describe how we reach our goal of verification and semantic 
parallelization of the mission planning and control module by constructing and executing 
a formal verification model in alloy (Jackson, 2006) that represents the implementation’s 
core semantics and functionality. We refine a formal modelling and analysis 
methodology, initially suggested by Rouquette (2008), that helps us analyse the logical 
properties of the goal network model and automatically derive a meta-model for our 
parallel solution. 
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Figure 13 A framework for verification and semantic parallelisation (see online version  
for colours) 

 

7.2.1 The problem of TCN constraint propagation 

A classic solution to the problem of constraint propagation in TCN is the direct 
application of Floyd-Warshall’s all-pairs-shortest-path algorithm (Cormen et al., 2001), 
offering a complexity of O(N3), where N is the number of TPs in the TCN topology. 
Since by definition, the goal of the TCN propagation algorithm is to compute the real-
time values of the network’s TCs, the algorithm is frequently executed and, given the 
massive scale of a real world goal network, can cause significant bottleneck for the 
overall system’s performance. In Lou (2002), describes an innovative and effective TCN 
propagation scheme with a complexity close to linear. Lou’s TCN propagation is based 
on the concept of alternating forward and backward propagation passes. A forward pass 
updates the time interval at each time point by considering only its incoming TCs 
(Algorithm 19). Similarly, a backward pass recomputes the time windows at each time 
point by considering only its outgoing TCs (Algorithm 20). The scheme utilises a shared 
container, named a propagation queue, to keep track of all TPs whose successor TPs’ 
windows are about to be updated next (during a forward pass) and all TPs whose 
predecessor TPs’ windows are about to be updated next (during a backward pass). A 
forward pass begins by selecting all TPs with no predecessors and inserts them into the 
propagation queue. A backward pass begins by selecting all TPs with no successors and 
inserts them into the propagation queue. Each iteration is carried out until: 

a An iteration completes without updating any temporal constraints (thus indicating 
that there are no more updates to be performed during the pass). In this case, the 
TCN topology is considered to be temporally consistent. 

b The iteration has stumbled upon a time window of negative value and the algorithm 
terminates with the outcome of having a temporally inconsistent network. 

As stated by Lou (2002), prior to the execution of the optimised propagation scheme, it is 
critical to guarantee the validity of the core TCN invariants for the topology of the 
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particular goal network. For example, the propagation scheme operates under the 
assumption that the goal network graph is cycle free. Should there be cycles, the 
propagation would enter into an endless loop. 
Algorithm 19 Forward pass. Arguments: a reference to the time point about to the updated (tp) 

and a reference to the global data structure recording the state updates (vstate) 

1: mintmp ← tp.min 
2: maxtmp ← tp.max 
3: for j = 0 to tp.preds_size do 
4:  mintmp ← std::max(mintmp, tp.preds[j].pred.min + 
  tp.preds[j].min) 
5:  maxtmp ← std::min(maxtmp, tp.preds[j].pred.max + 
  tp.preds[j].max) 
6: end for 
7: if tp.min! = mintmp then 
8:  ASSERT ( tp.min < mintmp) 
9:  tp.min ← mintmp 
10:  vstate.aIncr(vstate.count) {atomically increment the 
  state vector’s counter} 
11: end if 
12: if tp.max! = maxtmp then 
13:  ASSERT (tp.max > maxtmp) 
14:  tp.max ← maxtmp 
15:  vstate.aIncr(vstate.count) {atomically increment the 
  state vector’s counter} 
16: end if 
17: return !(mintmp > maxtmp) 

Alogrithm 20 Backward Pass. Arguments: a reference to the time point about to the updated (tp) 
and a reference to the global data structure recording the state updates (vstate) 

1: mintmp ← tp.min 
2: maxtmp ← tp.max 
3: for j = 0 to tp.succs size do 
4:  mintmp ← std::max(mintmp, tp.succs[j].succ.min − tp.succs[j].max) 
5:  maxtmp ← std::min(maxtmp, tp.succs[j].succ.max − tp.succs[j].min) 
6: end for 
7: if tp.min! = mintmp then 
8:  ASSERT (tp.min < mintmp) 
9:  tp.min ← mintmp 
10:  vstate.aIncr(vstate.count) {atomically increment the 
  state vector’s counter}  
11: end if 
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12: if tp.max! = maxtmp then 
13:  ASSERT (tp.max > maxtmp) 
14:  tp.max ← maxtmp 
15:  vstate.aIncr(vstate.count) {atomically increment the 
  state vector’s counter}  
16: end if 
17: return !(mintmp > maxtmp) 

7.2.2 Modelling, formal verification, and automatic parallelisation 

Alloy (Jackson, 2006) is a lightweight formal specification and verification tool for the 
automated analysis of user-specified invariants on complete or partial models. The Alloy 
Analyzer is implemented as a front-end, performing the role of a model-finder, to a 
boolean SAT-solver. Formal verification and modelling of JPLs flight software has been 
previously demonstrated to be effective and successful by Gluck and Holzmann (2002). 
We use the Alloy specification language (Jackson, 2006) to formally represent and check 
the semantics of the temporal constraint networks library (Algorithm 21) and its main 
invariants (Algorithm 22). In our C++ goal networks implementation we have applied 
generic programming techniques and concepts (Dos Reis and Stroustrup, 2005), so that 
we can maintain a higher level of expressiveness. As a result we have achieved a 
significant similarity in the way the main TCN notions and invariants are expressed in 
our actual implementation and the Alloy verification models. 

We utilise the Alloy Analyzer to implement our semantic parallelisation approach. 
Our method for semantic parallelisation of the goal network is based on the observation 
that in a topology we can identify groups of TPs that would allow the concurrent 
execution of the propagation passes. A possible criterion for identifying such groups 
would be to identify the TPs in a topology that allow disjoin-access to the shared data. 
Given the method used to compute the time window min max[TP ,TP ]

i i
 for each TPi ∈ Stps, 

we have observed that the functionally-independent TPs are the TPs that are equidistant 
(with respect to the longest path) from the root of the graph. Thus, in our methodology, 
we define a Time Phase Tphi as the set of the TPs Tph(S )

i
 in a topology that are 

equidistant, with respect to the longest path, from the root of the graph. In such a way, by 
definition, the computations of min max[TP ,TP ]

a a
 and min max[TP ,TP ]

b b
 for every pair of 

{TPa, TPb}, such that TphTP S
ia ∈  and TphTP S ,

ib ∈  are mutually independent and allow 

disjoin-access to the shared data. With the support of Alloy Analyzer we define and 
identify the time phases in a goal network graph (Algorithm 23 and Algorithm 24). 
Figure 14 provides an example of a goal network containing 15 TPs and six-time phases. 
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Algorithm 21 Definition of the notions of temporal constraint and time point 

1: sig TC {declaration of the Temporal Constraint signature} 
2:  tc_pred: one TP, 
3:  tc_succ: one TP 
4: sig TP {declaration of the Time Point signature} 
5:  tp_preds: set TC, 
6:  tp succs: set TC 

Algorithm 22 Main TCN invariants expressed in the alloy specification language 

1: all tc:TC | tc in tc.tc pred.tp succs 
2: all tc:TC | tc in tc.tc succ.tp preds 
3: all tc:TP | some tp.tp preds ⇒ tp.tp preds.tc succ = tp 
4: all tc:TP | some tp.tp succs ⇒ tp.tp succs.tc pred = tp 
5: no ∧(tc pred.tp preds) & iden {check for cycles} 
6: no ∧(tc succ.tp succs) & iden {check for cycles} 

Algorithm 23 Definition of the notions of time phase and TCN (with time phases) 

1: sig Tph {declaration of the Time Phase signature} 
2:  events: set TP, 
3:  next: lone Tph, 
4:  tcn: one TCN 
5: sig TCN {declaration of the TCN signature} 
6: epoch: TP, 
7: tps: set TP, 
8: tcs: set TC, 
9: init: one Tph 

Algorithm 24 Main time phase invariants expressed in the alloy specification language 

1: all p:Tph 
2:  p.events.tp succs.tc succ in p.∧next.events 
3:  p.events.tp preds.tc pred in p.∧ ~next.events 
4:  p in p.tcn.init.*next 
5:  p.events in p.tcn.tps 
6:  no p.events & p.∧(next).events 

Having identified the time phases in our temporal constraint network specification in 
Alloy, the aim of the rest of our tool-chain is to automatically derive the C++ 
implementation of the parallel solution through a number of code transformation 
techniques. Following Rouquette’s (2008) methodology for model transformation 
through the application of the object constraint language (OCL) and the eclipse modelling 
framework (EMF), we are able to automatically derive an intermediary XML and XSD 
representations of the graph’s topology and the TCN semantic notions, respectively. We 
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apply an XML parser (XercesC) and a CodeSynthesis XSD transformation tool to deliver 
the C++ implementation of the goal network and our parallel propagation method. 

Figure 14 A parallel TCN topology with 15 time points and six-time phases (see online version 
for colours) 

 

To achieve higher safety and better performance, our parallel propagation scheme 
employs a number of innovative multi-processor synchronisation techniques. In our 
implementation we have encountered and addressed the following challenges: 

1 Achieving low-overhead parallelisation. Our experiments indicated that the  
wide-spread Pthreads are computationally expensive when applied to the parallel 
propagation algorithm. Given the frequent real-time changes in the graph topology, 
employing a thread per iteration for the computations of each time phase comes at a 
prohibitive cost. To avoid this problem, we have incorporated in our design the 
application of the Intel tasks from the Threading Building Blocks Library (Intel, 
2006). Our experiments indicate that the Intel tasks provide low-cost overhead when 
applied in the concurrent execution of the forward and backward passes of the 
propagation scheme. 

2 Allowing fast and safe access to the shared data. The parallel algorithm requires the 
safe and efficient concurrent synchronisation of its shared data: the propagation 
queue and the vector containing control data (reflecting the updates during an 
iteration). By the definition of our algorithm, the propagation queue is synchronised 
by allowing only disjoint-access writes. While the access to the shared vector is less 
frequent, its concurrent synchronisation is more challenging since we do not have a 
guarantee that the concurrent writes would be disjoint. The application of mutual 
exclusion locks is a possible but likely an ineffective solution due to the risks of 
deadlock, livelock, and priority inversion. Moreover, the interdependency of 
processes implied by the use of locks diminishes the parallelism of a concurrent 
system. A lock-free object guarantees that within a set of contending processes, there 
is at least one process that will make progress within a finite number of steps. We 
have employed the implementation of the lock-free vector described in Chapter 3 in 
order to meet our goals for thread-safe and effective non-blocking synchronization. 
The lock-free vector provides the functionality of the popular STL C++ vector as 
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well as linearisable and safe operations with complexity of O(1) and fast execution 
(outperforming the STL vector protected by a mutex by a factor of 10 or more). 

A number of graph properties, in a particular TCN topology, have a significant impact on 
the application and performance of the parallel propagation scheme. We expect better 
performance (with respect to the sequential propagation scheme) when: 

1 The computational load per time point is high. This is the case of a real-world 
massive-scale goal network. For instance, instructing Mars Curiosity to 
autonomously find its way in a Martian crater, probe the soil, capture images, and 
communicate to Mission Control will result in a goal network containing tens or 
hundreds of thousands of TPs. In a small experimental graph topology with a low 
computational cost per time point (such as a few arithmetic operations), a single 
processor computation will perform best (when we take into account the 
parallelisation overhead). 

2 Time phases with large number of TPs: a topology implying a sequential ordering of 
the planned events will not benefit from a parallel propagation scheme. The parallel 
propagation algorithm is beneficial to goal networks representing a large number of 
highly interactive concurrent system processes. 

7.3 Framework application for accelerated testing 

The presented design and implementation of our parallel propagation technique enable 
the incorporation of the optimized propagation approach described by Lou (2002) in an 
experimental framework for accelerated testing currently still under development at 
NASA. Accelerated testing platforms suggest a paradigm shift in the certification process 
employed by NASA from system testing with the actual flight hardware and software to 
accelerated cost-effective certification using hardware simulators and distributed software 
implementations. Such frameworks aim faster-than-real-time testing and analysis of the 
complex software interactions in JPLs autonomous flight systems. A number of these 
platforms require automated refactoring of previously sequential code into modular 
parallel implementations. Preliminary results reported in academic work (Boehm et al., 
2004) as well as experience reports from a number of commercial tools (such as Simics 
by Virtutech and ADvantage BEACON by Applied Dynamics International) suggest the 
possible speedup of the flight system testing by a significant factor. We have followed 
Rouquette’s methodology (Rouquette, 2008) that suggests the application of formal 
modelling and validation techniques that provide certification evidence for a number of 
functional dependencies in order to compensate for the added hazards in establishing the 
fidelity of the simulators. Due to the incomplete status of the accelerated testing 
framework as well as the lack of the actual flight hardware, it is difficult to measure a 
priori the effect of our parallel propagation scheme in achieving acceleration (with 
respect to the execution on the actual flight hardware) in the process of flight software 
testing. To gain insight of the possible performance gains and the algorithm’s behaviour 
we ran performance tests on a conventional Intel IA-32 SMP machine with two 2.0GHz 
processor cores with 1 GB shared memory and 4 MB L2 shared cache running the MAC 
OS X operating system. In our performance analysis we have measured the execution 
time in seconds of two versions of our parallel propagation algorithm (one applying 
mutually exclusive locks and the other relying on non-blocking synchronisation) and the 
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original sequential scheme presented by Lou (2002). In the experiments (Figure 15), we 
have generated a number of TCN graph topologies (each consisting of 4 to 8 Time 
Phases), in a manner similar to the pseudo-random graph generation methodology 
described in Dick et al. (1998). In the presented results on Figure 15, the x-axis represents 
the average measured execution time (in seconds) of each propagation scheme and the  
y-axis represents the number of TPs in the exponentially increasing graph size (starting 
with a graph of 20,000 TPs and reaching a TCN having 160,000 TPs). In the 
experimental setup we observed that the parallel propagation algorithm offers effective 
execution and a considerable speedup in all scenarios on our dual-core platform. We 
measured performance acceleration reaching 28% in the case of the non-blocking 
implementation and 20% for our algorithm relying on mutually exclusive locks.  
Lock-free algorithms deliver significant speedup in applications utilising shared data 
under high contention (Dechev et al., 2006). In a scenario like our parallel TCN 
propagation scheme with medium or low contention on the shared data, besides safety 
and prevention of priority inversion and deadlock, a lock-free implementation can 
guarantee better scalability. 

Figure 15 Performance analyses (see online version for colours) 

 

Notes: x-axis represents the number of TPs in each experimental TCN topology, y-axis 
represents the execution time in seconds of each of the three propagation 
algorithms. 

The notions of time and concurrency are of critical importance for the design and 
development of autonomous space systems. The current certification methodologies do 
not reach the level of detail of providing guidelines for the development and validation of 
concurrent and real-time software. The increasing number of complex interactions and 
tight coupling of the future autonomous space systems pose significant challenges for 
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their development and man-rated certification. A number of platforms for accelerated 
testing suggest a paradigm shift by applying a combination of modelling and verification 
methods, code generation tools, and software parallelisation for establishing a  
cost-effective and reliable certification process. In the light of the challenges posed by the 
design and development of these highly experimental approaches, we presented in this 
work a first time and concurrency-centred framework for validation and semantic 
parallelization of real-time C++ within JPLs MDS framework. We demonstrated the 
application of our framework in the validation of the semantic invariants of the Temporal 
Constraint Network Library. TCNs are at the core of the mission planning and control 
architecture of the MDS framework. In addition, we presented an approach for automatic 
semantic parallelisation of the propagation scheme establishing the consistency of the 
TCs in a goal network. Our parallel propagation scheme is based on the identification of 
time phases within a goal network and is implemented through the application of model 
transformation and formal analysis techniques to the model specifications of the TCN 
semantics. We have relied on innovative lock-free synchronisation techniques to achieve 
better performance and higher safety of our parallel implementation. Our preliminary 
tests indicate that our parallel propagation approach can support cost-effective and 
reliable flight software certification of control modules based on massive real-world goal 
networks. 

8 Conclusions 

Future robotic space missions are expected to embed a large array of highly complex and 
autonomous processes. Achieving safe and efficient concurrent synchronisation is of 
critical importance to the engineering of future robotic spacecraft software. In this work 
we, studied the state-of-the-art non-blocking semantics and programming techniques and 
their applicability in mission critical code. While difficult to design and implement,  
non-blocking data structures are known to eliminate the hazards of deadlock, livelock, 
and priority inversion (associated with the application of mutual exclusion). The STL 
C++ vector is a widely popular data structure that is also commonly used in the MDS and 
its Data Management Services Module. Its lock-free implementation is challenging due to 
its dynamic memory management, random access operations with complexity of O(1), 
and tail access and update operations with complexity O(1). In this work, we showed the 
first design and implementation of a lock-free shared vector. Our lock-free vector is 
portable (using only single word read, write, and CAS operations), fast (outperforming 
the best optimized lock-based approaches by a factor of 10 or more), and scalable (having 
the ability to efficiently handle heavy contention and demonstrating a significant 
performance and semantic advantage over the application of non-blocking transactions). 
The ABA problem is a fundamental problem to all CAS-based systems. At the present 
moment of time, the literature does not provide a generic and practical ABA solution and 
coping with the hazards of ABA is left to the ingenuity of the software designer. To 
achieve an ABA-free implementation, we introduced the λδ approach, a generic 
methodology for ABA avoidance for lock-free linearisable designs. According to our 
performance evaluation, the λδ approach offers speeds of execution comparable to the 
application of the architecture-specific CAS2 instruction (used for version counting). 
This result indicates that the λδ approach is of particular importance to the application of 
non-blocking synchronisation in embedded robotic missions, where we cannot rely on the 
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hardware support of complex atomic primitives. In a case study, we demonstrated the 
application of our lock-free shared vector that played a pivotal role for the design and 
implementation of a concurrency and time-centred framework for verification and 
semantic parallelisation of MDS goal networks. 
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