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Abstract: In the last two decades, university-industry relationships have played 
an outstanding role in shaping innovation activities in biotechnology and 
pharmaceuticals. Nevertheless, there still is an intensive and open debate 
concerning their short and long term effects on the research system in life 
sciences. This work introduces a new way to analyse university-industry 
relationships (UIRs) which makes use of an agent-based simulation model. We 
analyse knowledge interactions among heterogeneous actors and we show that: 
1) universities tend to shift from a basic to an applied research orientation as a 
consequence of relationships with industry; 2) universities’ innovative 
capabilities benefit from industry financial resources but not so much from 
cognitive resources of the companies; 3) biotech companies’ innovative 
capabilities largely benefit from knowledge interaction with universities;  
4) adequate policies in terms of public basic research funding can counteract 
the negative effects of UIRs on university research orientation. 
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1 Introduction 

In the past 35 years, science-based industries have been strongly influenced by a radical 
scientific breakthrough, namely the development of the recombinant DNA technique by 
Stanley Norman Cohen and Herbert Boyle in 1973 (Cohen et al., 1973), and by a major 
institutional change, namely, the surge in university patenting (see Kortum and Lerner, 
1999; Saragossi and van Pottelsberghe de la Potterie, 2003; Balconi et al., 2004; Breschi 
et al., 2007; Lissoni et al., 2007). Consequently, the way innovation is pursued in the 
biomolecular industries has been crucially affected. On the one hand, the advent of the 
biotechnology paradigm has forced pharmaceutical incumbents to deal with a radically 
different set of capabilities than organic chemistry, upon which pharmaceutical firms’ 
core-knowledge was grounded. This has pushed large diversified firms (LDFs) in the 
pharmaceutical industry to adopt an innovation strategy characterised by interaction with 
both primary generators of new relevant scientific knowledge, namely dedicated biotech 
firms (DBFs) and universities. On the other hand, the spreading of university patenting 
has further increased the importance of universities as a source of new knowledge  
and basic research findings, not to mention the role of universities as biotechnological 
start-up incubators. The joint effects of these two breakthroughs led to a dramatic 
strengthening of university-industry relationships (UIRs). Indeed, both the biotech and 
pharmaceutical industries widely rely on universities, as well as on public research 
institutions, to acquire mainly fundamental, but in part also applied, external knowledge.  
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The growing importance of UIRs in the innovation system of life sciences led to a 
growing awareness of economic and medical literature on this central topic. Nevertheless, 
the costs/benefits debate concerning the short and long run effects of UIRs on the 
innovativeness of the research system in pharmaceuticals and biotech is still open and 
intense. 

Therefore it is of primary importance to understand whether UIRs are a phenomenon 
which intrinsically presents short-term benefits and long-term drawbacks or whether 
there are different and additional effects to be considered. In the former case, UIRs 
should not be furthered at all, because short-run and self-reinforcing effects would induce 
universities to rely more and more on these relationships as source of funding, even 
though this would generate harmful effects for the long run innovativeness of the 
research system as a whole. In the latter case, the two effects are opposed and depending 
on their relative strength, the total effect on the innovativeness of the research system 
could be positive. 

The lack of a generally accepted evaluation of UIRs, despite their long tradition, can 
be traced back to one main shortcoming: the complexity of these relationships makes it 
difficult to analyse their multiple correlated effects. In particular, because of this 
complexity it is more and more important to consider the role of all the actors which are 
engaged in the biotech and pharmaceutical innovation systems and to analyse how  
these relationships affect each of them. When we analyse UIRs in the biotech and 
pharmaceutical sectors, we have to consider that they are embedded into a broad 
innovation system where, besides universities and industry, also the government plays an 
important role (e.g., Niosi, 2010). In particular there is a growing debate in the literature 
and in the media on the nature and role of public funding with respect to academic 
research. Several studies highlight complementarities between public and private R&D 
while others claim a substitutive relationship between these two sources of research 
funding (for a comprehensive literature review, see David et al., 2000). 

In the attempt to contribute to the formation of a more widely accepted perspective  
on UIRs’ total short and long run effects, we apply agent-based modelling (ABM) to 
investigate this phenomenon (for an overview of ABM’s advantages and characteristics 
see Triulzi and Pyka, 2011). Due to their focus on multi-agents’ micro-interactions, 
agent-based models (ABMs) are explicitly suited to analyse UIRs and generate new 
insights to the UIRs debate. Furthermore, this class of models can be meaningfully 
applied to study phenomena where data cannot be easily collected – in our case 
knowledge dynamics – and allows for studying self-reinforcing mechanisms. Therefore, 
by building an agent-based UIRs model, we aim to provide a new dimension for the 
discussion of UIRs long run effects on the production of innovative new drugs based on 
the interaction of the different agents and on the underlying knowledge dynamics. For 
this purpose we draw on an extensive and growing literature about simulation models of 
innovation networks (Gilbert et al., 2001, 2007; Pyka et al., 2002, 2007, 2009; Ahrweiler 
et al., 2004a, 2004b, 2011; Pyka and Scholz, 2008) which guided us in our research and 
lays the foundations of our model. 

The paper is organised as follows: The theoretical framework and the hypotheses to 
be tested are introduced in Section 2. Then a description of the methodology (Section 3) 
and of the agent-based UIRs model follows (Section 4). Finally, the results generated by 
simulation experiments are introduced (Section 5) and discussed (Section 6). 
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2 Theoretical framework and hypotheses 

The biotech and pharmaceuticals’ system of innovation is grounded on complex 
interactions among many different actors. Several studies analysed UIRs focussing only 
on the effects that these relationships have on single classes of actors, generating very 
useful insights but loosing the overview on the systemic nature of these relationships. 
Nevertheless, these detailed and specific insights and concerns are helpful in setting up a 
general model of the biotech and pharmaceuticals system of innovation centred on UIRs. 
In the following, we will very briefly review these studies and their conclusions, whose 
stylised facts underlie the theoretical framework of our model. From these arguments 
some hypotheses are extracted. We grouped them by actors: universities, industry and 
government. 

2.1 UIRs’ effects on universities 

In the life sciences, the generation of new scientific discoveries and the achievement of 
highly innovative and patentable research results strongly depend on a sound 
understanding of a particular disease. In order to have a chance of finding an innovative 
and effective drug for a certain disease, it is critical to study the disease in question in 
depth. Only in this way can one understand how the human body is affected and how to 
‘attack’ the causes and the effects of the disease. This is, generally speaking, what basic 
research deals with (Angell, 2004). Therefore, the generation of innovative medical 
solutions can be attained more easily by those actors which are characterised by having a 
fundamental research orientation, i.e., universities1. 

On the cost side, many authors (e.g., Angell, 2004; Ding, 2004; Geuna, 2001; 
Blumenthal et al., 1996) suggest that UIRs can potentially damage the long run 
innovativeness of the research system in life sciences. Following this literature, UIRs 
have modified the reward system for academic researchers and for universities in general, 
introducing a personal and institutional incentive to do more applied research. From  
this point of view, the possibilities to increase industry funding stemming from the 
commercialisation of academic research potentially push universities away from pure 
basic research in favour of a more applied research, in order to increase the probability of 
ending up with patentable research outcomes. This result might be harmful to the system 
because it could potentially lead to a situation in which fewer scientists and fewer 
academic institutions are engaged in pure basic research, which is a fundamental 
component of the whole system necessary for generating scientific discoveries which 
open new research areas. 

In particular, the most common forms of UIRs are 

1 LDFs sponsorships to universities 

2 university patents licensing 

3 joint research projects between universities and DBFs (Blumenthal, 2003). 

Industry-sponsored research is often focused on achieving the goals of the sponsor rather 
than on the goals of the researcher or the sponsored academic institution (Association of 
University Technology Managers, 2007). Therefore, projects of this nature tend to 
involve applied research instead of fundamental research, as argued by Poyago-Theotoky 
et al. (2002). The considerable financial resources which accompany licensing also 
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strengthen the incentive to focus on applied research. Universities may be induced to put  
stronger emphasis on those research projects which offer a higher probability of 
achieving patentable outputs. Finally, the same shift of the research direction may be 
caused by an increase in the number of joint research projects with DBFs, due to the 
influence of knowledge exchange with actors whose research interests are more  
commercially-oriented (especially in the case of frequent and long interactions). 
Therefore, we postulate: 

H1 University relationships with industry, in terms of sponsored research, university 
licensing and joint research projects, cause a shift from basic to applied research in 
the research direction of universities. 

On the other hand, according to the US National Science Board, the reason why  
UIRs increased tremendously are the potential positive effects of these relationships on 
the availability of university research funding, on the speed of technology transfer  
and on economic development in general (NSF, 1997). Indeed, many studies (e.g.,  
Meyer-Krahmer and Schmoch, 1998; D’Este et al., 2005) showed that access to 
additional financial resources and to industry skills and facilities, as well as the search of 
research applicability are among the reasons why university researchers interact with 
industry. Some authors (Breschi et al., 2007; Fabrizio and Di Minin, 2008; Azoulay  
et al., 2004) postulate the existence of a resource effect: interactions with industry, 
providing larger cognitive and financial resources, increase the productivity of academic 
scholars and university institutions in terms of publishing and patenting, thus increasing 
their visibility, fame and reputation. By this, a self-reinforcing virtuous circle is generated 
which ultimately boosts research productivity. In particular, sponsorships, licensing and 
joint research projects, provide a unique balance of financial support, expertise and 
knowledge exchange which creates a prolific atmosphere for applied research that may 
result in an increase of patentable outputs by the university compared to basic programs 
supported by government or by universities themselves. Following this reasoning, we 
formulate the second hypothesis: 

H2 The access to cognitive and financial resources coming from industry increases 
university productivity in terms of truly innovative outputs. 

2.2 UIRs’ effects on the industry 

In pharmaceuticals and biotech, basic research plays a fundamental role. Of course, in 
order to produce commercially meaningful outputs, basic research needs to be matched 
with adequate applied research. Considering both, the narrowness of resources as well as 
the limited competences of actors, it is easy to understand that no actor is able to manage 
the entire research process, from basic to applied research, and to keep pace with the 
innovation process and the rate of new knowledge production in isolation. Therefore, 
biotech and pharmaceutical firms specialise in one area of research and in selected parts 
of the knowledge space, thus, relying on interaction with other actors in order to complete 
the research process (Arora and Gambardella, 1990, 1994; Powell et al., 1996; Pyka and 
Saviotti, 2005). A halt to relationships with universities would significantly affect the 
expansion of companies’ knowledge base, with a negative effect on firms’ productivity in 
terms of truly innovative patents and drugs. This holds in particular for DBFs because, 
due to their limited financial resources, they have to specialise in a narrower part of the 
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knowledge space (Pyka and Saviotti, 2005) and hence can substantially benefit from 
interaction with universities. From this the third hypothesis follows: 

H3 Interaction with universities increases DBFs’ productivity in terms of truly 
innovative outputs. 

2.3 The role of government and the impact of its research funding policies 

UIRs in biotech and pharmaceuticals have to be placed in the broader context of the 
triple-helix system of research (Leydesdorff and Etzkowitz, 1996; Etzkowitz and 
Leydesdorff, 1997, 2000) which also includes government agencies. In several countries, 
government plays a crucial role in the biotech and pharmaceuticals’ system of innovation, 
as main funders of academic research. Due to the growing importance of industry as an 
additional source of funding for universities, the role of public R&D funding with respect 
to private R&D has increasingly gained attention (see, David et al., 2000). Several 
econometric analyses (Jaffe, 1989; Adams, 1990; Acs et al., 1991; Toole, 1999a, 1999b), 
as well as historical case studies (Link and Scott, 1998; National Research Council, 1999) 
demonstrate that public R&D has positive spillover and stimulating effects on private 
R&D and beneficial effects on the generation and diffusion of new technologies. In 
particular, in the case of UIRs, an increase in public research funding for basic research 
can reduce the pressure on universities to search for external funding from industry, 
thereby reducing the potential negative effects of these relationships. A brief overview on 
the historical evolution of UIRs in the USA seems to confirm this hypothesis. Blumenthal 
(2003) observed that a cut in US Government investments in basic research, as in the 
mid-1970s, led US universities to increasingly search for industry partnerships.  
Vice-versa, when public funding was widely available, such as was the case directly after 
World War II, relationships with industry were considered to be less crucial. Therefore, 
we believe that government funding policies more favourable to basic research allow for 
mitigating the potential negative effects on university research orientation caused by 
interactions with industry. If this hypothesis is proved to be correct, our findings will also 
confirm the idea of complementarities between public and industry research funding. The 
hypothesis is formulated as follows: 

H4 An increase in government basic research funding prevents the shift of university 
research direction from basic to applied research. 

3 Methodology 

To investigate the long-run effects of UIRs on innovative capabilities and to analyse the 
knowledge dynamics among the involved actors, an agent-based model was developed. 
The model is characterised by the interactions among different actors which lead to 
modifications of the agents’ knowledge bases. The model allows for tracing the 
knowledge dynamics for each class of actors as well as their patenting behaviour. 

The methodology used is particularly suitable for providing new insights for the 
costs/benefits debate concerning UIRs. In fact, as Dawid and Fagiolo (2008) pointed out, 
the fundamental characteristic of agent-based computational models is their ability to 
explicitly capture “the relationship between structured interaction of heterogeneous 
individuals and the emerging patterns at the macroeconomic level, and to incorporate 
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different types of boundedly rational individual behaviour”. Furthermore, ABMs allow 
testing hypotheses that could not be analysed with traditional tools, expanding the range 
of situations in which we can study a particular problem. For instance, empirical papers 
cannot study the evolution of a system in situations different from the ones in which it 
actually developed. Conversely, modelling allows to make experiments, for example 
eliminating some classes of actors from the population, which are able to provide insights 
that could not be generate by the solely observation of reality. 

Our hypotheses are tested with simulation experiments in which we make use of a 
standard and various alternative scenarios. Results are then compared and tested for 
statistical significance. In order to reduce the random component of the results and to 
increase their trustworthiness, we ran sets of 20 Monte Carlo simulations for 100 periods 
and then computed the average values for each of the variables under observation. The 
comparison of the results from different simulation experiments proves a fair level of 
stability of the model with respect to those parameters that were not modified 
exogenously. 

4 The model 

The model is a multi-agent simulation which reproduces R&D and knowledge dynamics 
in the biotech and pharmaceutical sectors, with a particular focus on the role of UIRs2. 
We draw on a theoretical model of innovation networks originally developed by Gilbert 
et al. (2001) (see also Pyka et al., 2002). This model is further refined in subsequent 
works in which it has been applied to study knowledge dynamics between innovation 
networks’ agents (Ahrweiler et al., 2004a, 2004b), to investigate the impact of different 
learning activities on agents’ knowledge stocks (Gilbert et al., 2007), to highlight the 
persistency of cooperation activities in knowledge intensive industries (Pyka et al., 2007) 
and to investigate the existence and channels of knowledge spillovers among agents 
(Pyka et al., 2009). Further works have applied a modified version of the model to study 
the governance of EU-funded innovation networks (Pyka and Scholz, 2008) and to 
explore the role of science-technology links for innovation diffusion (Ahrweiler et al., 
2011). We extend the original theoretical model to reproduce the innovation system of 
biotech and pharmaceutical industries, explicitly taking into account different classes of 
agents moved by diverse aims and rewards (universities, biotech and pharmaceutical 
firms), multiple channels of interactions (research collaborations, licensing and sponsored 
research) and different research outputs (three classes of patents and drugs). 

4.1 The agents 

The model’s population is composed of universities (UNIs), LDFs and DBFs. There are 
two further actors, a National Research Agency (NRA) and venture capitalists (VCs). 
These latter agents are, however, funding bodies (of universities and biotech firms 
respectively) which are not actively engaged in research. Agents’ research efforts follow 
different aims. However, a common feature of firms and universities is that they both 
undertake research and want to produce the ‘best’ research outcomes. 

In particular, universities’ main aim is to expand their knowledge and to spread it 
among society. In order to pursue their mission, they are engaged in research and 
licensing, which can be seen as the major form of technology transfer. Their research 
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activities lead universities to get in contact with industry also through joint research 
projects or by performing sponsored research. Universities can also obtain government 
research funds by applying for public funding granted by the NRA. In this case, 
universities set up a research project proposal and send it to the NRA for evaluation. The 
NRA funding criteria are based on the research direction of the proposal (basic projects 
are favoured) and on the variance of the capabilities involved. Additional information on 
these criteria can be found in Appendix A.1. 

LDFs are actors with a large capital stock and a broad specialisation pattern  
(as the name suggests). LDFs’ aim is to produce as many new drugs as possible, filling 
up their pipeline. For this reason, besides own research, LDFs intensively screen the 
market for research, searching for new patents to acquire from other agents through 
licenses. LDFs also rely on sponsorships of university research as an alternative source of 
patents. 

Finally, DBFs are private actors with a small capital stock compared to LDFs. DBFs 
are specialised in a small subset of capabilities and abilities, due to the narrowness of 
their financial resources. In order to survive in the long run, DBFs are forced to apply for 
venture capitalists’ funding. VCs will invest only in those companies who proved to have 
strong research skills, i.e., in those companies that hold a large cumulated number of 
patents. Their efforts to produce innovative outputs also induce biotech companies to 
approach universities, in order to gain access to academic knowledge. Moreover, DBFs 
are engaged in extensive licensing activities with LDFs, which provide large additional 
resources that are crucial for their survival. 

4.2 University-industry relationships 

Interactions among agents lead to the rise of UIRs. In particular, universities interact with 
DBFs through joint research projects in which knowledge is mutually exchanged. Mixed 
teams of university and LDF researchers working on a joint research project are unlikely 
to be observed in reality (Poyago-Theotoky et al., 2002). Therefore, we designed the 
interaction between universities and LDFs in a twofold way as licensing or sponsoring 
relations. In both cases, knowledge is transferred from universities to LDFs which reward 
universities through a corresponding transfer of financial resources. These relationships 
are depicted in Figure 1. 

Figure 1 The design of UIRs in the model (see online version for colours) 
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If a university research project eventually leads to a patent, the university tries to find a 
LDF partner in order to grant an exclusive license that increases the university capital 
stock through periodical royalties. Similarly, through sponsorships universities receive 
funding from LDFs to perform selected research projects. It is important to note that the 
cumulated number of patents held by a university plays a crucial role. The more patents a 
university holds, the easier it is to access industry funding. Indeed, only the most 
productive universities in terms of patents are eligible for LDF sponsorships. 
Furthermore, LDFs only sponsor applied research projects (i.e., projects for which the 
research direction value (RD) is above a certain threshold – see paragraph 4.6 and 
Appendix A.4). Consequently, universities which obtain a sponsorship shift the research 
orientation of the sponsored research project in a more applied direction. This is because 
UNIs know that it could be difficult to receive further funding if they do not prove 
themselves able to produce a patentable outcome. 

In other words, both in the case of licensing and sponsorships, the patent can be 
considered as a powerful tool that is able to produce the so-called resource effect (Breschi 
et al., 2007). Basically, the patent is a signal of the academic researchers’ abilities. A 
strong signal allows for attracting more funds from industry as well as from the NRA 
(whose funding allocation criteria favour universities which are engaged in patenting3). 
The increased amount of financial resources allows the receiving university to undertake 
more research projects, increasing the probability of being able to file new patents and, in 
turn, increasing university resources. 

4.3 The model’s dynamics 

Figure 2 shows the model flowchart. We distinguish between stock inputs (light gray 
boxes), decisions (white boxes), actions (black boxes) and outcomes (dark grey boxes). 
Each simulation run consists of several iterations, i.e., cycles of research. A cycle starts 
with the agent’s decision on how to allocate their budget (that is the amount of their 
capital stock to finance the starting cycle of research). Agents have different options. 
Universities and DBFs can allocate their budget between own research projects and joint 
research projects4. LDFs can additionally invest part of their budget in sponsoring 
universities’ research projects, acquiring licenses and performing clinical trials. 
Afterwards, those agents which have decided to undertake a joint research project and/or 
a partnership move to the process of partnership and/or sponsorship formation, while the 
others directly jump to the running of the project. Projects last several periods. Agents are 
allowed to refine their project and run it again if the first attempt is not successful. If the 
project is successful a patent is granted (outcome 1). If the patent is granted to a 
university or a DBF, the patent holder searches for possible licensees among LDFs. If a 
license agreement formation (decision 3) is successful, a license is granted (outcome 2) 
and the LDF has to pay the associated royalties to the licensor. Alternatively, if the patent 
is originally granted to a LDF, the firm can directly perform clinical trials (action 2) and 
try to develop a new drug (outcome 3) to earn revenues from it. Eventually the actors  
re-invest the money that they have gained at the end of the research cycle (from the 
license royalties or the sales of the new drug) in new research projects and a new cycle 
begins. 

As Figure 2 shows, agents have to make decisions. In this, they are aided by some 
decision rules which exhibit some elements of adaptive intelligence (i.e., agents learn 
from their past decisions). Since the way cooperation and interactions are built is key for 
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the main hypotheses of the paper, we will focus in the following on the process of budget 
allocation (§4.4), partnership formation (§4.5) and sponsorship formation (§4.6). 

Besides decision rules, agents also follow some rules of the game, which can be 
grouped based on the three outcomes of our model: how to obtain a patent (§4.9 and 
§4.10), how to obtain a license and how to obtain a drug. For the sake of simplicity, we 
will only explain how patents are generated, as our hypotheses and experiments focus on 
this outcome. We leave the role of licenses and commercialisation of drugs for future 
work, and hence do not provide further detail concerning these parts of the model in this 
paper. 

Figure 2 The model’s flowchart 

 

Finally, it is crucial to notice that knowledge drives the dynamics of our model. 
Knowledge has multiple roles throughout all the cycle. It directly affects the process of 
partnership formation (through the characteristics of the knowledge base of the possible 
partners) and indirectly affects sponsorship formation (through the number of 
accumulated patents). Furthermore, the knowledge base of the project determines 
(excluding the influence of random events) whether the project is successful or not. We 
provide details about the knowledge base of the agents in sub-Section 4.7, on how 
knowledge is upgraded through research in paragraph 4.8 and on the process of patent 
generation in sub-Sections 4.9 and 4.10. 

4.4 Budget allocation 

Agents have to decide 

1 how much to invest each period 

2 how to allocate their budget among the different activities. 
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It is evident that no actor can invest his whole capital stock in only one period, so  
agents have to decide the amount of their periodic budget. This decision is initially set 
randomly within the range 10%–30% of their capital stock. In the following periods  
the actors follow a process of adjustment of the size of their investment budget which  
is based on market feedbacks. If they are successful (i.e., between the top 20% of their 
sector ranking – UNIs, LDFs or DBFs) they will maintain the same amount of 
investments in the next period, otherwise they will increase their periodic budget by  
10%. 

Once a periodic budget has been set, actors have to choose how to allocate it through 
the different options. First, budget allocation must respect a constraint which refers to the 
maximum number of projects per period that an actor is able to sustain. This number 
depends on the size of the actor (we use the size of the capital stock as a proxy). The 
larger the capital stock that an actor has, the larger number of projects per period they are 
able to undertake. 

The budget allocation process is slightly different between firms and universities. For 
firms, initially the periodic budget is split among the different activities (‘own research’, 
‘joint research’, ‘sponsoring’, ‘licensing’ and ‘clinical trials’ for LDFs; ‘own research’ 
and ‘joint research’ alone for DBFs) through a random process. Then a particular market 
feedback mechanism is implemented. This mechanism follows Simon’s principle of 
satisficing behaviour (Simon, 1956), rather than optimising behaviour, as applied by 
Nelson and Winter (1982) in their evolutionary model of firms’ behaviour. Periodically 
each firm (both LDFs and DBFs) compares its allocation strategy with the average 
allocation of the most successful firms (top 15%) of its own sector in terms of annual 
profits (total annual earnings of new drugs + total annual royalties of the licensing 
activity – total annual research costs). If the firm is successful (i.e., it is within the top 
15%) it does not change its allocation strategy. If the firm is not successful it will modify 
its strategy as follows. The activity for which the average allocation strategy of the most 
successful firms is highest, will receive 10% more of the budget in the next period. The 
10% increase will be financed by a corresponding 10% reduction of resources allocated 
to the other activities. 

Universities apply a similar budget allocation process to firms except for two 
important differences. First, UNIs are only engaged (as DBFs) in own and joint research 
projects. Second, the budget allocation process does not really decide how much of the 
universities’ capital is invested in own research or in joint research. In fact, through the 
same comparative process with the most successful universities (in terms of patents held), 
a certain university decides how many projects to undertake on their own and how many 
to undertake jointly with other actors; but this does not necessarily imply that the project 
will be financed with university’s own capital. In fact, universities first try to get their 
projects funded by the NRA, then through a LDF’s sponsorship and only if they are not 
successful with these two possibilities they will finance research projects with their own 
capital. 

4.5 Partnership formation 

When an agent decides to enter in a partnership with one or more other agents in order to 
undertake a joint research project, she applies a particular partnership strategy in order to 
select the ‘right’ counterpart. Two partnership strategies exist: 
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1 a conservative strategy in which the actor looks for a similar partner according to its 
knowledge base 

2 a progressive strategy in which the actor looks for a dissimilar partner. 

The actors that choose the former aim to undertake an incremental research project, 
therefore they prefer less risk and a common understanding. In this case the variance 
between the knowledge bases of the partners is small, which increases the probability of 
success but on the other hand reduces the potential magnitude of the project outcome (see 
sub-Section 4.9). Actors that, on the other hand, choose to follow a progressive strategy 
aim to undertake a radical research project. In this case the variance between the 
knowledge bases is high, with a positive effect on the potential innovativeness of the 
project outcome but with a negative effect on the probability of success. Hence, the 
decision rule in the model is grounded on the different aims of the agents and on a 
mechanism based on similarities and complementarities with respect to the agent’s 
knowledge base. This rule of selection is supported by recent literature on partner 
selection in innovation networks (Balconi et al., 2009). 

It is also important to add that, regardless of the partnership strategy, in all cases 
agents first look for partners among the list of agents with which they had a successful 
cooperation in the past. If there are no agents satisfying the requirements of the chosen 
partnership strategy then they extend the search to the other agents. This reflects the aim 
to increase the probability of success of the partnership and is in line with well 
documented evidence that accumulated network resources arising from firm participation 
in the network of prior alliances are influential in firms’ decisions to enter into new 
alliances (Gulati, 1995, 1999). 

4.6 Sponsorship formation 

The sponsorship procedure is introduced in Table 1. The first step is the creation of two 
rankings. In the first one, LDFs are ranked according to their sponsorship budget. In the 
second one all UNIs who have projects that have not been sponsored by the NRA are 
ranked according to their cumulate number of patents. Then, a matching procedure starts. 
The first university of the ranking gets the sponsorship from the first LDF that has 
enough remaining sponsorship budget to finance the research project (all the UNIs’ 
research projects have equal cost, which is exogenously fixed). 
Table 1 The sponsorship mechanism 

Private 
agent 

Sponsorship 
budget 

Remaining 
sponsorship

budget 

Who will the
sponsor be?  Public

agent 
Cumulate 
patents 

Project 
cost 

LDF1 20 0 X  UNI1 10 5 
LDF2 15 0 X  UNI2 6 5 
LDF3 10 5 √ ← UNI3 3 5 
…     …   
LDFN 5 5   UNIM 0 5 

It is important to notice that the accumulated number of patents held by a university, as 
well as the size of the LDF’s sponsorship budget play a crucial role. The more patents a 
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university holds, the easier it is to access industry funding. This is one of the different 
ways in which the so-called resource effect is implemented in the model. Of course, the 
largest firms in terms of sponsorship budget are able to get in contact with the best 
universities (the high number of accumulated patents is considered evidence of the 
research competencies of the agent). Another important aspect of sponsorship is the size 
of LDFs’ sponsorship budget. If a LDF wants to increase the probability of sponsoring a 
successful university, it has to increase its sponsorship budget, which on the other hand 
leads to a reduction in the funds that the budget sets apart for the other activities. This 
choice can be considered profitable by the LDFs only if the probability that the sponsored 
university will develop a patent (whose intellectual property, under the sponsorship 
agreement, is held by the sponsor LDF) is high. For this reason, LDFs sponsor applied 
research projects rather than basic research projects. Furthermore, those universities that 
obtain a sponsorship will shift the research directions of part (2/3) of their innovation 
hypotheses’ quadruples toward a more-applied direction during the running of the 
sponsored project. This is due to the fact that UNIs know that it could be difficult to 
obtain sponsorships in the future if they do not prove themselves able to produce a 
patentable outcome. 

4.7 The agent’s knowledge base 

The model’s representation of the agents’ knowledge builds on the concept of ‘kene’ 
developed by Gilbert (1997) and applied in previous simulations of knowledge dynamics 
in innovation networks (Gilbert et al., 2001, 2007; Pyka et al., 2002, 2007, 2009; 
Ahrweiler et al., 2004a, 2004b). In the model we used the notion of kene, the knowledge 
base of an agent, as it has been developed further by Pyka and Scholz (2008). In this 
version, kene elements also include the research orientation of the actors. Figure 3 shows 
the concept of kene graphically. 

Figure 3 The kene concept 

 

The knowledge base of each agent consists of a vector containing different ‘units of 
knowledge’ consists of a vector containing different ‘units of knowledge’ between 
universities (mainly engaged in basic research) and firms (mainly engaged in applied 
research), a capability (C) which stands for the particular technological discipline in 
which actors are engaged (pharmaceutical or biotechnology), an ability (A) which reveals 
the actor’s specialisation in his/her capability field and an experience level (E) which 
shows for how long an agent has been active in a certain ability. The research direction is 
represented by an integer. It can take values from 0 (pure basic research) to 9 (pure 
applied research). In the model biotechnology covers the array of capabilities from 1 to 
60, whereas the range from 61 to 100 stands for pharmaceutical capabilities. The range of 
abilities, instead, spans from 1 to 10. Finally, the experience level depends on the use of 
knowledge in research projects: if the knowledge is applied in a certain research project 
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(individually or jointly with other actors) the experience level of the respective actor’s 
kenes increases by 1 each period; if the knowledge is not used, the experience level 
reduces each period, if it reaches 0 the respective knowledge is forgotten. The initial 
distribution of the kene variables for the different agents is provided in Appendix A.5. 

4.8 Learning and cooperation 

The actors choose whether to conduct research on their own, to collaborate with other 
actors or both, according to the budget allocation explained in sub-Section 4.4. As in 
Gilbert et al. (2001) (see also Gilbert et al., 2007; Pyka et al., 2002, 2007, 2009; 
Ahrweiler et al., 2004a, 2004b) the process of own and collaborative research endeavours 
is based on the combination of selected elements of agent’s knowledge base which form 
so-called innovation hypotheses (IH). 

When agents choose to undertake research on their own they focus on some selected 
research interests which are designed as a subset of their kenes. Project innovation 
hypotheses are periodically derived from these research activities. Once the project is 
completed, the experience level of the abilities involved in the IH are increased by  
1 while the experience level of those quadruples of the kenes that are not involved in the 
IH are reduced by 1. This represents learning by doing and forgetting. 

In the case of joint research, the project knowledge base is a combination of parts of 
the knowledge bases of the involved agents. Some quadruples of the agents’ kenes are 
randomly recombined to form a project innovation hypothesis. If the project is successful, 
the actors with an absorptive capacity (Cohen and Levinthal, 1990)5 above a critical 
threshold acquire the knowledge of the joint innovation hypothesis which has been 
contributed by the project partner(s) with a reduced experience level. 

4.9 Transforming knowledge inputs into project outcomes 

Whether a research project is successful or not and which outcome is eventually 
produced is decided by two equations which determine the ‘value of success’ and 
‘probability of success’. The former decides on the type of potential outcomes, the latter 
decides if the outcome is actually generated or not. These two equations are different for 
own and joint research projects. Furthermore, joint research projects are evaluated in two 
different ways following the partnerships strategy that actors have applied. This way, we 
are able to consider different aims which drive the partnership. A detailed description of 
these formulas can be found in the appendix. 

Basically the ‘value of success’ and the ‘probability of success’ functions are based 
on four variables: 

1 the knowledge distance among the IH’s quadruples, used as a measure of 
heterogeneity of the knowledge applied in the project 

2 a research direction factor, which accounts for the IH’s quadruples average research 
direction 

3 the experience of the actor(s) 

4 a so-called technical factor (only for own research projects), which take into 
consideration the quality of the physical capital available to the project runner. 
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The ‘value of success’ is affected by the research orientation of the agents and by the 
heterogeneity of knowledge. A basic research direction increases the potential magnitude 
of the innovation. This is due to the fact that it is mandatory to deeply understand the 
causes and effects of a disease in order to discover a new molecular entity which 
produces a significant improvement in the treatment (as will be explained in the next 
subsection, this is how we define the most innovative patents). Therefore such a result is 
more likely to be achieved by an actor whose research focus is the study of the disease, 
i.e., by an actor who is predominantly engaged in basic research. On the other hand, an 
applied research direction reduces the potential magnitude of the innovation. In fact, in 
this context, for an agent who is engaged only in applied research it is harder to generate 
an output with a very high innovative potential. As argued by Angell (2004), the 
discovery of a new application for an already known molecule, or minor modifications of 
an already existing drug are more likely outcomes. The ‘value of success’ also depends 
on the variance in the capabilities involved: the higher (the lower) the variance, the 
higher (the lower) the potential magnitude of the innovation. The underlying idea is that 
the potential novelty is higher if many different capabilities are involved, as discussed by 
Nooteboom et al. (2007) and Wuyts et al. (2005). The effects of the research orientation 
and of the heterogeneity of knowledge in terms of capabilities on the value of success are 
shown in Figure 4. 

Figure 4 The relation between the ‘value of success’ and the kene-related variables 

  

The relation between the ‘probability of success’ and the kene-related variables ‘research 
direction’, ‘knowledge distance’ and ‘experience’ are graphically depicted in Figure 5. 

The ‘value of success’ function predicts which kind of innovations can be potentially 
generated. Whether this innovation is actually successfully generated or not, is decided 
by the ‘probability of success’ equation. This equation depends on the same variables as 
the ‘value of success’ but in an opposite way. A basic research direction decreases the 
possibilities of a project being successful (i.e., to end up with a patent). The same holds 
for a high maximum distance between the kene elements of the project’s innovation 
hypothesis, which is used as a proxy for the heterogeneity of involved capabilities and 
abilities. This definition of the probability of success reflects two difficulties: Basic 
research is truly uncertain by definition, therefore an applied research direction provides 
a higher probability of ending up with concrete results than a basic research one does. 
The other obstacle on the road to success depends on the difficulties combining 
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heterogeneous knowledge in a single project. This surely increases the novelty of a 
potential outcome but, at the same time, reduces the possibility of achieving the desired 
result6. Finally, the ‘probability of success’ is also influenced by the experience level of 
the actors, which obviously positively affects the likelihood of generating a patent. The 
experience level does not affect the ‘value of success’ because the novelty value of a 
project can be high even if the participants are not experts. Indeed new comers are keener 
to think out-of-the-box and to overcome what the literature calls learning traps 
(Levinthall and March, 1993, see also Christensen, 1997) which are due to a certain 
rigidity of thinking coming from overembeddedness in a particular field and path 
dependency of the learning process. On the other hand, experienced agents can also 
contribute much to the novelty of a project due to their larger endowment of knowledge. 
Hence the experience level has no direct impact on the value of success but rather a 
strong influence on the probability of success. 

Figure 5 The relation between the ‘probability of success’ and the kene-related variables 

  

 

4.10 Research outcomes 

In this work we focus on a single research outcome: patents. Although in the ‘real world’ 
universities are obviously widely engaged in publishing, tracing the publication activities 
is beyond the scope of our model. However, patents are not a uniform category. Even if 
they are identical from a legal point of view, huge differences exist with respect to their 
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economic value. In the case of drugs, the differences are related to the newness of the 
related molecule and to the effectiveness of the treatment. In the model we distinguish 
between three kinds of patents (from the most to the least innovative): 

1 A-class patent 

2 B-class patent 

3 C-class patent. 

We define our three patent classes drawing on the US Food and Drug Administration 
(FDA) classification of new drugs as introduced in Angell (2004). The FDA is the US 
federal agency which decides whether a new drug can be commercialised or not. Once 
the FDA receives the request for commercialisation based on a certain patent, the agency 
classifies the potential drug (thus, implicitly, the related patent too) according to two 
criteria: 

1 the newness of the molecular entity 

2 the improvement in the treatment of the particular disease. 

The drug can be characterised by a molecular entity which is completely new (in this case 
the drug is assigned with a ‘1’) or already discovered in the past (in this case FDA 
assigns the drug with a ‘0’). Moreover the new drug can provide a significant 
improvement in the treatment (in this case FDA proceeds with a privileged analysis – ‘P’) 
or a similar treatment as an old drug (in this case the agency proceeds with a standard 
analysis – ‘S’). It is important to notice that the discovery of a new molecular entity does 
not necessarily imply that the related drug provides a significant improvement in the 
treatment. On the other hand, a molecular entity already discovered in the past could be 
successfully used to treat another disease. For these reasons we propose the following 
patent classification: 

• A-class patent: combination (1)-(P) 

• B-class patent: combinations (0)-(P) and (1)-(S) 

• C-class patent: combination (0)-(S). 

In our view only the combination (1)-(P) deserves to be labelled as a truly innovative 
patent (A class) because it is both new-to-the-world and meaningful for the final users. 
Combinations (0)-(P) and (1)-(S) can be considered having a semi-innovative value 
because they lack one of the two characteristics of truly innovative patents. Finally, 
combination (0)-(S) is surely the least innovative, since it is little more than an imitation 
(so-called me-too drugs and generics) of an already existing drug which, moreover, does 
not provide any significant improvement in the treatment. Table 2 shows the ‘value of 
success’ thresholds which generate the different patents. The calibration of these values 
has been carried out relying on empirical evidence on the classification of ‘real-world’ 
production of drugs (see Appendix A.6) combined with insights gained through a 
sensitivity analysis of the model itself. As can be noticed from the table, a research 
project is not successful if it does not generate a value larger than 0.5. One can interpret 
this as a threshold below which a research project may produce publications or working 
papers (which we do not take into consideration in the model) without being able to 
generate any patentable outcome. 
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Table 2 ‘Value of success’ and patent classes 

0.5 ≤ v < 0.63 v = C 

0.63 ≤ v < 0.71 v = B 

0.71 ≤ v v = A 

As explained in sub-Section 4.9, the probability to generate A-class patents is not the 
same for all actors. Besides the element of luck element (the random components of the 
equations – see Appendices A.2 and A.3), necessary conditions in order to discover a 
new molecular entity which is also effective are: a fairly basic research orientation, a 
sufficiently high variance of the capabilities involved and a good level of experience. 

5 Results 

For testing the hypotheses introduced in Section 2, we first develop a standard scenario. 
In the following steps, we run different experiments with alternative scenarios for each 
hypothesis and compare the results with the standard scenario. 

5.1 UIRs’ effects on universities 

The first hypothesis postulates that university relationships with industry, which are 
reproduced in the model through joint research projects, sponsorships and licensing, 
cause a shift of university research orientation from basic to applied. To test this effect of 
UIRs, we compare the results in terms of university average RD (for both the kenes and 
the current research interests quadruples) from the standard scenario with those generated 
by a scenario whose population is composed solely of universities. Figure 6 shows the 
comparison of the UNIs’ RD mean values in the different scenarios. 

Figure 6 Scenario comparison (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    R&D and knowledge dynamics in university-industry relationships 155    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 7 Differences in the evolution of the average research direction between the standard 
scenario and the ‘only UNIs’ scenario, (a) kene (b) current research 

 
(a) 

 
(b) 

The t-test confirms the statistical significance of the differences in the mean values  
(p < 0.001). Accordingly, the presence of university interactions with industry increases 
the university focus on applied research. In particular, the average research direction of 
the kene elements increases by 8.93%, whereas the current research orientation increases 
by 7.12%. Additionally, the standard deviation for the mean values of the university 
research direction is higher in the standard scenario than in the ‘only UNIs’ case (0.09 vs. 
0.008 for the kenes and 0.105 vs. 0.005 for the current research). This confirms that the 
interaction with industry increases the heterogeneity of universities’ knowledge bases and 



   

 

   

   
 

   

   

 

   

   156 G. Triulzi et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

research interests. In Section 4.9, we argued that this has a positive effect on the 
magnitude of the university research outcomes, though contrasted by an increase of the 
RD factor, but, on the other hand, also reduces the probability of success (this issue will 
be considered below). 

Furthermore, the differences in the evolution of the average research direction 
between the standard scenario and the ‘only UNIs’ scenario, shown in Figure 7, 
demonstrates that the average university RD is not only higher in the case of interaction 
with industry but also continuously increasing, whereas in the ‘only UNIs’ scenario the 
university research orientation stays almost constant. Therefore, these findings fully 
confirm H2. 

The second hypothesis deals with the potential positive effects that interaction with 
industry generates for universities in terms of a higher access to cognitive (i.e., higher 
degree of knowledge heterogeneity) and financial (i.e., larger capital stock) resources. In 
particular, the third hypothesis can be split in two parts. First, according to H2, joint 
research projects with DBFs are expected to increase the heterogeneity of universities’ 
knowledge bases due to the underlying knowledge exchange processes. A larger 
innovativeness of university research outputs is expected if the positive effect on the 
‘value of success’ stemming from an increase in the variance of universities’ knowledge 
is stronger than the negative effects caused by the decrease of the RD factor (due to a 
shift to more-applied research, as confirmed by H1) and by a reduced probability of 
success. To test this first part of H2 related to the increase in university cognitive 
resources, we compare the standard scenario with the results of a scenario in which DBFs 
are excluded from the population. The second part of H2 claims that university patenting 
benefits from the availability of extra financial resources coming from LDFs’ research 
sponsorships and from license agreements. To test this aspect of H2, we compare the 
standard scenario with an alternative scenario in which LDFs are excluded from the 
population. 

The results from the comparisons between the standard and the ‘without DBFs’ 
scenarios are shown in Figure 8. The differences in the percentages of A-B-C classes 
between the two scenarios are statistically significant (p < 0.005). 

The results suggest a rejection of the first part of H2. The ‘without DBFs’ scenario 
generates better results in terms of the percentage of university A and B-class patents 
compared to the standard scenario. Accordingly, university productivity in terms of  
truly innovative patents is negatively affected by extensive interactions with DBFs. 
Furthermore, this test of H2 has revealed another important aspect: As shown in Figure 9 
joint research projects with DBFs reduce the total number of patents produced by 
universities for each class. 

This finding is in line with the insights provided by the tests of H1. As explained 
above, the knowledge exchange between UNIs and DBFs leads to an increase in the 
heterogeneity of the university knowledge base, due to a higher variance of university 
capabilities and abilities, but these positive effects on the ´value of success´ seem to be 
overcompensated by the negative effects given by the decrease of the research direction 
factor, the increase in the knowledge distance and the decrease in the experience level, 
which reduce the probability as well as the value of success (see Section 4.9). 
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Figure 8 Scenario comparison in terms of relative number of A-B-C patents (see online version 
for colours) 

 

Figure 9 Scenario comparison concerning the total number of A-B-C patents (see online version 
for colours) 

 

The comparison between the evolution of the relative production of A-class patents in the 
two scenarios, which is shown in Figure 10, further confirms the rejection of the first  
sub-part of H3. 
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Figure 10 The evolution of the relative production of A-class university patents in the two 
scenarios 

 

The second sub-part of H3 is partially rejected as well. The differences in the relative 
number of AB-C university patents between the ‘without LDFs’ scenario and the 
standard scenario, are not statistically significant (p > 0.005). Nevertheless, the difference 
in the total number of university patents generated by the two simulations was proven to 
be significant (p < 0.05). In particular, as Figure 11 shows, the total number of A-B-C 
university patents is always higher in the standard scenario than in the ‘without LDFs’ 
one. 

Figure 11 Scenario comparison in terms of total number of A-B-C patents (see online version  
for colours) 
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The exclusion of the possibility for universities to rely on sponsorships and on licensing 
revenues, reduces significantly the number of projects that universities are able to 
undertake, thus, generally reducing the number of patentable research outputs. Therefore, 
a financial resource effect seems to emerge, but this has a general influence on the 
number of university patents without specifically affecting the most innovative ones. On 
the one hand, this is due to the fact that there is no direct knowledge exchange between 
universities and LDFs, hence the ‘value of success’ is not directly affected by this 
interaction. On the other hand, as we have explained in sub-Section 4.6, sponsorships 
provide incentives to universities to shift their research direction, hence the relative 
number of A-class patents should decrease. Our results suggest that the former effect is 
stronger than the latter. In other words partnerships with LDFs increase universities’ 
capital stocks, leaving their knowledge stock substantially unchanged. The larger 
availability of financial resources allows universities to increase the number of projects 
that can be undertaken, thus, increasing the total number of patentable outcomes. 

5.2 UIRs’ effect on industry 

The third hypothesis focuses on the industry side of the relationship. In particular  
a positive influence of UIRs on DBFs’ knowledge base and patent production is 
hypothesised. To test this hypothesis we compare the results coming from an alternative 
scenario in which universities were excluded from the population (thus, impeding 
interactions with DBFs) with the results of the standard scenario. 

The difference in the percentages is statistically significant (p < 0.005). DBFs widely 
benefit from knowledge exchange with universities. The percentage of A and B-class 
patents generated by DBFs own research and in cooperation with other DBFs in the 
standard scenario is about 4.6% higher than in the ‘without UNIs’ scenario (see  
Figure 12). The same results hold for the total number of A and B-class patents (see 
Figure 13). These findings confirm H3 and show that interactions with universities in 
terms of two-way knowledge exchanges sharply increase DBFs’ innovative potential. 

Figure 12 Scenario comparison in terms of relative number of A-B-C patents (see online version 
for colours) 
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Figure 13 Scenario comparison in terms of total number of A-B-C patents (see online version  
for colours) 

 

Finally, Figure 14 shows the evolution of the relative production of A-class patents by 
DBFs in the two scenarios. 

Figure 14 The evolution of the relative production of A-class patents by DBFs in the two 
scenarios 

 

Until about period 15, the percentages of DBFs’ A-class patents are very similar. The 
first periods are usually considered as an initial adjustment time of the simulation in  
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which actors increase their experience and build their network of collaborators. The 
following surge in A-class patents in the standard scenario is interpreted as a signal that 
once DBFs have developed an adequate experience in collaboration, interactions with 
universities start to achieve their true potential on the industry side. In fact, DBFs,  
thanks to their high experience level, are able to apply the new kene elements, gained 
through joint research projects with universities and characterised by a basic research 
orientation, in their own innovation hypothesis in more fruitful and productive ways. As 
the figure shows, after the adjustment time, the trend of DBFs’ A-class patents is 
constantly about two percentage points higher in the standard scenario than in the 
‘without UNIs’ scenario. 

5.3 The government’s role and the impact of research funding policies 

The test of the first two hypotheses shows that UIRs negatively affect university research 
orientation. The fourth hypothesis theorises that government funding policies more 
favourable to basic research (through a larger public funding budget) might be able to 
prevent this shift. We test this hypothesis by comparing the standard scenario with three 
alternative scenarios in which NRA’s funding policies were progressively shifted toward 
a larger basic research funding budget and a reduction of the RD threshold to be eligible 
for NRA’s funds (MAX_NRA_rd5/4/3). As no further changes are implemented in the 
alternative scenarios, the impact of relationships with industry on universities’ research 
direction and patent production is exactly the same as in the standard scenario. A 
comparison of the scenarios in terms of mean values of the average university research 
direction and of the relative number of A-B-C patents are shown in Figures 15 and 16, 
respectively. 

Figure 15 Scenario comparison in terms of average RD 
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Figure 16 Scenario comparison in terms of relative number of A-B-C patents 

 

The differences between the RD (Figure 15) and patents variables (Figure 16) among the 
different scenarios (statistically significant at the 1% level) confirm H4. An increase in 
government basic research funding prevents the shift of university research orientation 
from basic to applied research. This also causes an increase in the relative number of A 
and B-class patents which academic research is able to generate. It is important to notice 
that even a small reduction in the mean value of RD leads to a considerable increase in 
the percentage of A and B-class patents. Between the standard scenario and the most 
favourable scenario for basic research funds (MAX_NRA_rd3) the mean value of the 
average RD is reduced by 0.19 which, nevertheless, leads to an increase of about 3% in 
the relative number of A and B class patents. 

Figures 17 and 18 illustrate the comparison of the evolution of the average university 
RD for both kenes and current research among the alternative scenarios. 

The figures visually support what the analysis of the mean values in Figure 15 
suggests. An increase in the government research funding budget avoids a shift of 
universities towards more applied research, thus, increasing the relative number of truly 
innovative patents. Therefore, hypothesis 4 is confirmed by the results. 

6 Discussion and conclusions 

Today innovation activities are undertaken in extremely complex systems which are 
characterised by heterogeneous actors, multi-dimensional interactions and multiple 
knowledge flows. This increasing complexity is creating new challenges for scholars. In 
order to understand multifaceted phenomena such as UIRs, and to capture their overall, 
global effect, it is no longer possible to solely rely on traditional methods of analysis. The 
application of the agent-based simulation methodology allows for analysing and 
generating new insights of such complex phenomena. 
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Figure 17 Scenario comparison in terms of evolution of the average RD – kenes 

 

Figure 18 Scenario comparison in terms of evolution of the average RD – current research 

 

First, according to our simulation experiments, relationships with industry modify the 
reward and incentive schemes for universities, as Stephan (1996) and Nelson (1959) 
argued, thus affecting the research orientation of universities (H1). In order to generate 
highly innovative pharmaceutical solutions, a strong understanding of scientific 
knowledge is necessary. Therefore, universities have to keep a basic research direction, 
alongside more applied-oriented joint research projects with industry. The ‘traditional’ 
division of scientific labour (universities engaged in basic research and industry devoted 
to applied research) should not be radically broken. Besides interacting with each other 
and building a mutual understanding, university and industry should still keep their own 
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identities. Otherwise, we may face an unpleasant slowdown in the growth of scientific 
knowledge and in the improvement of the treatments of known and less-known diseases, 
which can only be realised through the development of new innovative drugs, for which 
truly innovative patents are a crucial input. 

Second, our experiments reject the hypothesis of a positive influence of a cognitive 
resource effect on university innovative patents productivity and partially reduce the 
influence of the financial resource effect (H2). Nevertheless, knowledge exchange 
processes are still a crucial characteristic of UIRs. Intensive interactions between 
universities and DBFs do not produce an increase in universities’ innovative capabilities. 
Instead, they reduce the total number of patents coming from academic research. The 
reduction of the amount of university patents that is observed when universities interact 
with DBFs (H2) and consequently shift to applied research (H1), is due to the fact that 
when the average research orientation becomes more applied. This is because there are 
fewer universities that are eligible for NRA research funding, because the research 
projects of many universities in this case no longer fulfil the agency’s requirements 
concerning the basic research orientation. Consequently there is a reduction of patents 
stemming from NRA-funded projects which generates a vicious circle. A decrease in the 
amount of patents affects the reputation of universities in terms of their research 
productivity, decreasing the flow of industry funds generated by sponsorships, thus, 
further reducing the number of university patents. 

Even if universities do not take advantage, from a cognitive point of view, of 
interactions with DBFs, this does not mean that the relevance of these partnerships for 
universities should be disregarded. Joint research projects between universities and 
biotech firms allow for an exchange of the successful innovation hypotheses’ quadruples. 
The newly acquired capabilities and abilities expand university knowledge bases, thereby 
increasing heterogeneity, yet this is not sufficient for increasing universities’ patent 
productivity. Universities also need to be able to effectively combine the new knowledge 
in their research projects. As Ahrweiler et al. (2011) explain, the relation between 
knowledge inputs and technology outputs is not linear. Different actors follow different 
scientific and technological trajectories, and for universities, as for any other actor, there 
is no guaranteed success. For instance, many universities might very simply not have the 
right skills for dealing with applied research. As we show in Section 4.9, the probability 
of success positively depends on the average experience level of the innovation 
hypothesis and negatively on the heterogeneity of the knowledge base. The capabilities 
and abilities which biotech firms transfer to universities when they work together  
are related to an applied research orientation. On the one hand, this increases the 
heterogeneity of the university knowledge base, augmenting the potential magnitude of 
the research outcomes. On the other hand, universities are not experienced7 enough to 
successfully deal with these new capabilities. This dynamic is confirmed by the insights 
provided by the test of the second hypothesis, which shows that new knowledge acquired 
from interactions with DBFs is not effectively applied by universities. 

Our findings also show that when a complex phenomenon like UIRs involving 
heterogeneous actors is analysed, one has to consider all of its multi-facetted aspects. 
Even if we found that the existence of a ‘resource effect’, generated by UIRs, is limited to 
financial resources and excludes cognitive resources, the importance of the knowledge 
transfer between university and industry is not reduced. Instead, our results show that 
UIRs cause a significant increase in the innovative potential of biotech firms. This is due 
to a threefold effect. First, interactions with universities expand DBFs’ knowledge bases, 
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allowing biotech firms to absorb new kene elements focusing on fundamental research. 
Second, they also increase the variance in their capabilities and, third, they have a 
positive effect on DBFs’ networking experience. Therefore, our results highlight the 
importance of UIRs concerning technology and knowledge flows. Moreover, from 
society’s point of view, it is not important who develops an innovative new drug, but 
whether this drug is developed or not. Our findings suggest that, besides universities, new 
scientific knowledge (symbolised by A-class patents) is increasingly generated by biotech 
firms. The creation and diffusion of this knowledge could be seen as a sort of second 
mission of biotech firms (the first one being, obviously, achieving commercial success), 
which complements the so-called third mission of universities, defined as the 
commercialisation of academic knowledge (Etzkowitz and Leydesdorff, 1997). We  
argue that biotech firms’ second mission cannot be accomplished without close 
interactions with universities, which, as a matter of fact, have characterised 
biotechnology since its early days. Indeed, although our model has an explorative nature 
and not an history-friendly one (see Malerba and Orsenigo, 2002; Malerba et al., 1999), 
its results in terms of UIRs’ effects on DBFs’ innovative potential seem to reproduce the 
historical development of biotechnology. In fact, during the first periods of the simulation 
made with the standard scenario, universities play the leading role in the production of 
new scientific knowledge (A-class patents). Then, after some periods of collaboration 
with universities, DBFs have expanded their knowledge base sufficiently, including also 
basic research interests, to be able to widely generate truly innovative science-based 
research outputs. This shows that what Gibbons et al. (1994) called ‘the Mode2’ of 
knowledge creation, namely a co-production of scientific knowledge between different 
agents, emerges from our simulation. 

Finally, the application of a systemic perspective on innovation in biotech and 
pharmaceuticals shows that the negative effects of such an environment to universities 
can be mitigated by public policies in favour of basic research. David et al. (2000) argue 
that the rational for government support to (academic) research is “the correction of the 
market failures in the production of scientific and technological knowledge, arising from 
the incomplete private appropriability problems identified by Nelson (1959) and Arrow 
(1962)” [David et al., (2000), p.501]. Our results show that government grants for basic 
research are crucially important in counterbalancing the different aims and incentives 
provided by industry which further contribute to market failure, especially in the long 
run. Accordingly, government research policies should be oriented toward increasing the 
public research funding budget with the aim of ensuring that an adequate amount of 
fundamental research is undertaken by universities. This counteracts the harmful effects 
of UIRs and while still relying on the positive effects. 

These findings are in line with the results of econometric analysis (Jaffe, 1989; 
Adams, 1990; Acs et al., 1991; Toole, 1999a, 1999b) and historical case studies (Link 
and Scott, 1998; National Research Council, 1999; Angell, 2004), surveyed by David  
et al. (2000), which show that government funded R&D generates beneficial spillover 
effects and stimulates commercial innovations. More specifically, in our model 
government funding has a twofold role. First, it creates and strengthen capabilities in the 
universities. These capabilities allow for the creation of new scientific knowledge which, 
in the long run, spread in the system through interactions with other agents. Second, 
government grants increase the amount of innovative patents which circulate in the 
system. As a consequence, the ultimate number of innovative drugs is positively affected. 
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A summary of our findings suggests that, if properly complemented by an increase in 
government basic research funds, UIRs in the biotech and pharmaceutical sector have a 
positive total effect for society through the development of new innovative patentable 
outcomes. If not matched with applied research, basic research is not valuable for society. 
However, there is nothing left to be applied if basic research does not constantly generate 
new scientific discoveries. Therefore, it is of essential importance that the different actors 
engaged in research cooperate to produce new scientific discoveries as well as new 
innovative drugs. Our results show that joint research projects with universities are an 
important source of knowledge for industry. Possibilities to prevent harmful effects of  
the interactions between universities and firms exist and are relatively easy to be 
implemented for governments. Accordingly, policy makers should not legitimise a 
reduction in public support to academic basic research as a consequence of an increase in 
industry funding to universities, as frequently happens (e.g., see Blumenthal, 2003). Our 
results suggest that these two sources of university funding have different but 
complementary aims and address different needs. This strongly highlights the importance 
of a coordinated and harmonious innovation system as a platform which sustains 
innovation both in the short and long run. 

Although data on drugs production, R&D investments, university patenting and 
licensing revenues have been used as a benchmark in obtaining orders of magnitudes in 
calibrating, our model is not specifically grounded on empirical evidence. Since our aim 
was not to develop a history-friendly model (see, for instance, Malerba et al., 1999) but 
rather a theoretical model applicable to the analysis of hypothetical scenarios, a detailed 
process of empirical validation would have been unnecessary and irrelevant, if not 
impossible given the complexity of the model (which includes 17 parameters in the 
equations and 23 initial conditions, as listed in Appendices A.3, A.4 and A.5). 
Nevertheless, as our analysis focused on the comparison of several scenarios in terms of 
production of A, B and C-class patents, it is important that the standard scenario of our 
model is able to reproduce the stylised facts concerning the trends and the relative 
numbers of the three classes of innovative outcomes. As shown in Appendix A.6, the 
difference in the relative number of A, B and C patents in the model resembles those that 
we observe when looking at the distribution of A, B and C-class drugs in the real world. 
The trends also appear similar, even though those from the real world fluctuate much 
more than the artificial ones. This is unavoidable as random events have a stronger 
importance in reality. Therefore, the model is able to replicate the distribution of 
innovative outcomes that we observe in the biotech and pharmaceuticals innovation 
system. The comparative nature of our experiments, which was limited to the 
investigation of the effects of alternative scenarios on the generation of innovative 
outcomes, makes this relatively simple calibration strategy sufficient to provide reliable 
insights. 

Besides the calibration of the equation parameters and initial conditions, there are 
other possible aspects which can influence the results. These are: the assumptions made 
about the particular functional forms of the equations governing the production of patents 
and about the nature of the budget allocation process and the mechanisms of partnership 
and sponsoring formation. It is crucially important to notice that these assumptions were 
not expression of the particular tastes of the authors but solidly grounded on theories and 
empirical evidences which can be found in the literature, as we have argued in different 
subsections of the paper. This is a fruitful area of complementarity between ABMs and 
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‘traditional’ research tools which have to be exploited more heavily in the future of the 
discipline. 

What has been left over from our analysis are the micro-processes whose aggregation 
lead to the emergence of macro phenomenon. Despite the micro-foundation of our model 
we preferred to focus on the aggregate variables, even though we can differentiate 
between the single agents whose interactions are responsible for the generation of the 
macro-based evidence we observed. We made this choice because we believe that this 
kind of analysis would have required a much larger amount of data to validate the results 
of the model at the micro-level. These data are not at our disposal. Furthermore, several 
modifications to the principles of the model would need to be made to accomplish this 
task. However, we are aware of the importance of closely looking at the micromacro 
interactions in this context. Additional and extremely interesting results could be 
provided, concerning for instance the distinction and the characterisation of successful 
and un-successful agents. Efforts to collect sufficient data to calibrate and validate future 
versions of the model at a micro-level will be carried out and such analyses will be 
performed in future endeavours. 

Finally, there are other features of the model which have not been exploited in this 
work. For instance, the analysis of the functioning of the market for research in terms of 
university licensing and its effect on the innovation system are also other interesting 
notes on the agenda for future avenues of research. 
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Appendix 

A.1 The NRA 

The behaviour of the NRA in the model aims to reproduce, in a simplified version, the 
role played by the US National Institutes of Health (NIH), and by some smaller European 
national agencies, in the real world. The NIH is the largest life sciences research funding 
body in the world (Angell, 2004). Although the NIH also invests a minor part of its 
annual budget in research programmes designed for industry (small business innovation 
research and small business and technology transfer programmes), the larger part (more 
than 83%) of the NIH’s funding is granted to universities, medical schools and other 
research institutions, whereas about 10% of NIH’s budget supports projects conducted in 
the institute’s laboratories (NIH Grants Policy Statement, 2003). In the model, the NRA 
is purely a funding body which does not conduct research on its own. Furthermore we 
only allow the NRA to finance universities; LDFs and DBFs have others source of 
funding (production of new drugs and licensing). 

Figure A.1 NRA’s annual budget allocation (see online version for colours) 

 

The allocation process of the NRA’s funding is designed as follows. Universities can 
apply for funding both for own research projects and for joint research projects with other 
universities. If they want to undertake a joint research project, universities will start to 
look for partners according to their partnership strategies. Afterwards (or as a first step in 
the case of own research projects) a project proposal has to be set up. The project 
proposal is constructing by mixing part of the agents’ kenes constituting the project 
knowledge base. Then all the proposals are sent to the NRA. The agency has an 
exogenously fixed annual budget, which is divided in two parts. The largest one is 
designated to finance basic research projects (whose average research direction value is 
equal or less than an exogenously set threshold), and the smallest one is set aside for 
applied research projects. The former is bigger than the latter due to the specific aim of 
the NRA to support and provide incentives for basic research. Within the two budgets, 
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not all the proposals are accepted and financed. First the proposals are assigned to their 
respective budget category (either basic or applied), then they are ranked according to the 
number of different capabilities each proposal contains. In this way, incremental and 
radical research projects can be distinguished. For each of the budget categories, only a 
selected number of incremental and radical (basic or applied) research projects are 
financed. Figure A.1 illustrates on this process. 

A.2 ‘Value of success’ and ‘probability of success’ for own research projects 

The ‘value of success’ and ‘probability of success’ for own research projects depend on 
four knowledge variables: 

1 the knowledge distance among the IH’s quadruples, used as a measure of the  
un-relatedness of the knowledge applied in the project 

2 a ‘research direction factor’, which accounts for the IH’s quadruples average 
research direction 

3 a so-called ‘technical factor’ 

4 the experience of the actor. 

Before we introduce to the ‘value of success’, and ‘probability of success’ functions, we 
briefly explain these four variables. 

The distance between two kene elements is calculated as follow: 

1 2 1 2  d C C A Aα β= ⋅ − + ⋅ −  (1) 

where d is the distance and α and β are used to weight the single distances between the 
kene elements. The average of all the distances d between all kene elements can be 
interpreted as a measure of the un-relatedness in the components of project’s knowledge 
base, i.e., of the heterogeneity of project’s innovation hypothesis quadruples. 

The research direction factor, to be included in the ‘value of success’ and in the 
‘probability of success’ formulas is calculated as: 

10 1RD
3 2RD

av
fac e

⎛ ⎞− ⋅ +⎜ ⎟
⎝ ⎠=  (2) 

where ‘avRD’ is the average research direction of the project’s kene elements. Figure A.2 
graphically shows the relationships between ‘avRD’ and ‘RDfac’. 

Figure A.2 The research direction factor (see online version for colours) 

 



   

 

   

   
 

   

   

 

   

    R&D and knowledge dynamics in university-industry relationships 173    
 

    
 
 

   

   
 

   

   

 

   

       
 

The figure shows that the higher the average research direction of a project is, the higher 
the RD factor becomes, which leads to a higher value of success [see (3)]. 

For the evaluation of own research projects, we also account for a technological 
factor. When actors decide to go-it-alone, they can only rely on their own resources. 
Although some exceptions exist, in general, universities have less valuable and 
sophisticated technical instruments and machinery than firms. Furthermore, they do not 
have the competencies to improve the research devices on their own. Due to their larger 
amount of financial resources, LDFs have more powerful and accurate research 
instruments. Therefore, we introduced a technological factor in the ‘value of success’ 
function for own research projects, in order to account for the differences in the technical 
equipment of actors. In particular, the relationship is as follows: the higher the 
technological factor, the higher the value of success. It has to be noticed that differences 
in the technical equipment no longer matter once actors decide to undertake research in 
cooperation with other agents. The technological factors (TF) for each agent class were 
calibrated relying on a sensitivity analysis and can be found in Table A.1. 
Table A.1 The technological factors 

Agents TF 

UNIs 0.9 
DBFs 1.1 
LDFs 1.2 

The effects of the knowledge distance, the research direction factor and the technological 
factor are combined together in the ‘value of success’ function for own research projects, 
which is introduced in (3): 

1 2 1
1 1 2

(min max ) av RDd d d facv TF a a σ
τ δ τ
+ ⋅

= ⋅ ⋅ + ⋅ +
⋅

 (3) 

‘TF’ is the technological factor, ‘mind’ is the minimum distance in the knowledge-space 
between the kene elements of the innovation hypothesis, ‘maxd’ is the maximum distance 
and ‘avd’ is the average distance among the kene elements of the actor’s current work8. 
RD factor is the research direction factor. ‘τ1’ and ‘τ2’ standardise the output within the 
expected knowledge space depending on the research orientation. ‘a1’ and ‘a2’ weight the 
contribution of the knowledge distance and the research direction factors, with a1 < a2. 
Finally, δ1 is a scaling factor and σ1 is a randomly distributed variable. 

Whether the potential outcome from the value of success formula is generated or not 
is decided by the ‘probability of success’ formula (4). The project is successful – i.e., the 
output from (3) is generated – if: 

2 2
3 1 2 2

max RD and 0.5E d facσ σ v
a τ δ τ
∅

> + ⋅ ⋅ >
⋅

 (4) 

On the left side of the first condition we find the weighted average experience of the 
contributed quadruples (∅E / a3). In order to have a successful project, the experience 
factor must be higher than the right side of the equation. On the right side we have σ2, 
which is a Poisson-distributed random variable, 2σ  which is a normal-distributed random 
variable, the knowledge distance factor, standardised with τ1 and weighted with δ2, and 
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the standardised research direction factor. The second condition to be respected, v > 0.5, 
has been added in order to specify that some projects can be successful but nevertheless 
do not generate a patentable output (see § 4.7). 

A.3 ‘Value of success’ and ‘probability of success’ for joint research projects 

The process through which a joint research project innovation hypothesis is transformed 
into an outcome is equivalent to that for the own research projects and is based on the 
two functions, ‘value of success’ and ‘probability of success’. Nevertheless there are 
significant modifications to these functions. Moreover, joint research projects are 
evaluated in two different ways according to the chosen partnerships strategies. Another 
main difference is that the quadruples of the project innovation hypothesis come from 
different agents’ kenes. This means that there is a greater array of possibilities for 
improving the project’s IH if the project is not successful, because the new quadruples 
can come from different actors, i.e., the project knowledge base is larger. This is the main 
advantage of a joint research project compared to a research project in isolation, together 
with the opportunity to link complementary competences and research directions and to 
the expansion of actors’ knowledge bases. If the project is successful, in fact, each 
participating actor will acquire the quadruples of the IH which have been contributed by 
the project partner(s) in his own kene. The functions for the ‘value of success’ and the 
‘probability of success’, for both the conservative and progressive strategies, are 
introduced in the following paragraphs. 

Conservative strategy 

In the case of conservative strategy the ‘value of success’ function has been designed as 
follows: 

4 5 6 1 7
3 4 2

min maxd d RDfacv a a a σ a
τ τ τ

= ⋅ + ⋅ + ⋅ + ⋅  (5) 

As usual, τ2, τ3 and τ4 are used to standardise the output within the knowledge space,  
a4, a5, a6 and a7 weight the contributions of the different elements and σ1 is a  
Poisson-distributed random variable. The variable ‘mind’ is the minimum distance 
between the innovation hypothesis kene elements of the joint research project, whereas 
‘maxd’ is the maximum distance. Finally RDfac is as in (2). Compared to own research 
projects, here the interpretation and the importance of the minimum and the maximum 
distance is different, because the project involves many actors. The ‘shortest’ distance is 
the distance between the two most related quadruples of two actors and can be interpreted 
as a proxy of the absorptive capacity. Instead, the ‘longest’ distance is the largest 
distance between two quadruples in the knowledge space of two actors and can be 
interpreted as a measure of the knowledge un-relatedness. As Pyka and Scholz (2008) 
argue, if two actors have very related knowledge in parts of their kenes, the shortest 
distance is small. Thus, the absorptive capacity is high and, accordingly, they should be 
able to communicate easily with each other. Consequently, the ‘value of success’ is 
likewise high. On the other hand, combining un-related knowledge (i.e., high ‘longest’ 
distance) also increases the potential magnitude of the project output. If the agents select 
their partners following the conservative strategy, they try to minimise the knowledge 
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distance between them, therefore we can assume that they consider absorptive capacity to 
be more important than knowledge heterogeneity. Consequently in the ‘value of success’ 
functions for the conservative strategy the contribution of the ‘mind’ term is larger than 
that of ‘maxd’ (a4 > a5). 

The ‘probability of success’ for the conservative strategy is as follows: 

2 2
3 3

min and 0.5.E dnet σ σ v
a τ
∅

⋅ ∅ > + ⋅ >  (6) 

The standardisation factor (a3) and the random variables (σ2 and 2 )σ  are the same as in 
(4). The most interesting difference with the research project in isolation is the presence 
of ‘∅net’, which stands for the average value of the networking experience of the 
cooperating agents. It is important to notice that this term is always larger than 1, 
therefore if agents decide to cooperate, they always have a higher probability of success 
than if they would have undertaken the same research project alone. In fact, the left side 
of the equation in (6) is always greater than in (3), ceteris paribus. Furthermore, the right 
side of (6) is smaller than in (3) because in the ‘probability of success’ for the joint 
research project we do not account for the RD factor. In fact, we assume that, when it 
comes to collaborate with other agents, the knowledge distance between partners is much 
more important than the research direction to decide whether a project is successful or not 
(nevertheless the research direction is still crucial for the value of success). 

Progressive strategy 

The ‘value of success’ and ‘probability of success’ functions for the progressive strategy 
have been designed as follows: 

8 9 10 1 11
5 6 5 6 2

min max RDd d facv a a a σ a
τ τ τ τ τ

= ⋅ + ⋅ + ⋅ + ⋅
− −

 (7) 

2 2
3 5 6

min and 0.5.E dnet σ σ v
a τ τ
∅

⋅ ∅ > + ⋅ >
−

 (8) 

Besides minor changes in the standardisation factors, the most important difference 
between (5) and (6) is that the contribution of maxd is larger than that of mind (a8 > a7). 
In fact, when agents apply a progressive strategy, they aim to collaborate with very 
dissimilar partners. Consequently, we assume that they consider un-relatedness of the 
knowledge (maxd) to be more important than absorptive capacity (mind). 
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A.3 List of (exogeneous) parameters and standard scenario’s settings 

Parameter Equation Meaning Range Standard 
scenario 

α Distance between  
kene elements (1) 

Weight the distances  
between the kene elements 

0–1 0.5 

β Distance between  
kene elements (1) 

Weight the distances  
between the kene elements 

0–1 0.5 

TF Value of success for own 
research project (3) 

Technological factor 0.5–1.5 UNIs = 0.9; 
DBFs = 1.1; 
LDFs = 1.2 

a1 Value of success for own 
research project (3) 

Weight the contribution  
of the knowledge distance 

0–1 0.4 

a2 Value of success for own 
research project (3) 

Weight the contribution  
of the research direction 

0–1 0.6 

a3 Probability of success for 
own research project (4) 

Weight the contribution  
of the experience level 

0–1 0.25 

a4 Value of success for 
joint research project – 

conservative strategy (5) 

Weight the contribution  
of the minimum distance 

0–1 0.3 

a5 Value of success for 
joint research project – 

conservative strategy (5) 

Weight the contribution  
of the maximum distance 

0–1 0.2 

a6 Value of success for 
joint research project – 

conservative strategy (5) 

Weight the contribution  
of the research direction 

0–1 0.3 

a7 Value of success for 
joint research project – 

conservative strategy (5) 

Weight the contribution  
of the random variable 

0–1 0.2 

a8 Value of success for 
joint research project – 
progressive strategy (7) 

Weight the contribution  
of the minimum distance 

0–1 0.2 

a9 Value of success for 
joint research project – 
progressive strategy (7) 

Weight the contribution  
of the maximum distance 

0–1 0.3 

a10 Value of success for 
joint research project – 
progressive strategy (7) 

Weight the contribution  
of the research direction 

0–1 0.3 

a11 Value of success for 
joint research project – 
progressive strategy (7) 

Weight the contribution  
of the random variable 

0–1 0.2 

vA Value of success Threshold for A-class patents 0–1 0.71 

vB Value of success Threshold for B-class patents 0–1 0.63 

vC Value of success Threshold for C-class patents 0–1 0.5 
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A.4 List of initial conditions 

Initial condition Parameter Standard scenario 
Population Number of UNIs 150 
 Number of DBFs 400 
 Number of LDFs 14 
NRA settings Research direction basic/applied threshold 5 
 Number of incremental basic research  

project financed by the NRA per period 
3 

 Number of radical basic research project  
financed by the NRA per period 

3 

 Number of incremental applied research  
project financed by the NRA per period 

1 

 Number of radical applied research project 
financed by the NRA per period 

1 

Sponsorship settings University research direction  
required by LDF to sponsor 

≥ 4 

A.5 Initial distribution of agent’s kene elements 

Agents Kene quadruple’s 
element Distribution 

70% of UNIs’ kene quadruples have a research direction randomly 
distributed within the range 1 and 3; 

UNIs RD 

30% of UNIs’ kene quadruples have a research direction randomly 
distributed within the range 2 and 7. 

 C 80% of UNIs’ kene quadruples are distributed around 3 to 5 
capabilities focal points, the rest is randomly spread. 
10% of DBFs’ kene quadruples have a research direction randomly 
distributed within the range 1 and 4;  
80% of DBFs’ kene quadruples have a research direction randomly 
distributed within the range 3 and 6; 

DBFs RD 

10% of DBFs’ kene quadruples have a research direction randomly 
distributed within the range 5 and 9. 
90% of DBFs’ kene quadruples are randomly distributed within the 
range of capabilities from 1 to 60; 
80% of this 90% is distributed around a +/–5% range of the first 
capability; 

 C 

10% of DBFs’ kene quadruples are randomly distributed over the 
whole range of capabilities (1-100) 
20% of LDFs’ kene quadruples have a research direction randomly 
distributed within the range 1 and 9;  
10% of LDFs’ kene quadruples have a research direction randomly 
distributed within the range 2 and 4; 

LDFs RD 

70% of LDFs’ kene quadruples have a research direction randomly 
distributed within the range 5 and 9. 
60% of LDFs’ kene quadruples are distributed within the range of 
capabilities from 61 to 100 with focal points with group 3–5 kene 
elements;  

 C 

40% are distributed over the whole range of capabilities (1–100) 
with focal points with group 3–5 kene elements. 
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A.6 Empirical validation of the results 

Figure A.3 Classification of A/B/C drugs from the Food and Drugs Administration 

 

Source: Own elaboration of FDA’s data available at http://www.fda.gov 

Figure A.4 Generation of A/B/C patents in the model’s standard scenario 
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Notes 
1 This is what we assume in our model, along with the empirical evidence showed by Angell 

(2004). 
2 The NetLogo code of the model is available upon request to the first author. 
3 This is a common trend in many countries, as the allocation of government funds has been 

increasingly driven by criteria of competition (Clark, 1998; Vincent-Lancrin, 2004). 
4 As mentioned in sub-Section 4.1, universities’ own and joint research projects with other 

universities can also obtain funding from the NRA. In this case universities do not have to use 
their capital stock to finance their research projects. 

5 As a proxy of the agents’ absorptive capacities we apply a measure of un-relatedness (i.e., the 
variance) of their knowledge base, which is calculated as the average distance between all own 
kene elements. 

6 Therefore, the relation between the innovative output and the knowledge distance, which is 
jointly determined by the combination of the two equations for the ‘value of success’ and the 
‘probability of success’, has the shape of an inverted U. This is in line with the recent 
literature on knowledge distances and innovation (Nooteboom, 1992, 1999; Nooteboom et al., 
2007; Wuyts et al., 2005). 

7 The low expertise level of the newly acquired capabilities reduces ‘∅E’, the average agent’s 
experience related to the IH’s quadruples – see (4), (6) and (8) in Appendices A.2 and A.3 – 
thus decreasing the probability of success. 

8 For actor’s current work, we mean the sum of all the innovation hypothesis applied in all the 
research project that the actor is simultaneously running in a certain period. 


