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Abstract: Wikipedia is a free, web-based encyclopaedia. This paper addresses 
the knowledge integration issue by computing semantic relatedness over a 
graph derived from Wikipedia by treating the articles as nodes and the links 
between the articles as the edges. Sentences with highest occurring keywords 
are extracted. These complex sentences are split into simple sentences and 
triplets with synonyms are extracted. A hypergraph structure is formed using 
hypernyms of the keywords to cluster the articles. Hypernyms extracted from 
the search query and keyword co-occurrences are used to extract relevant 
articles. Mapping the articles under the hypernyms category to an in-memory 
structure improves search efficiency and facilitates personalisation. The 
proposed work ensures the implied relationships between articles in the graph 
structure and maintenance of semantic relatedness between articles. Further, 
clustering the articles within the graph structure based on the hypernyms 
narrows down the search 
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1 Introduction 

Social networking sites, tagging systems, content management systems and wikis deal 
with inherently hierarchical or graph-shaped data that are deeply associative. Such 
recursive data structures are difficult to deal with in a relational database as it is not 
suitable to represent, store and manipulate complex dynamic and adhoc information  
(Cui et al., 2009). Hence, the need for new graph structures to represent Wikipedia 
database. Another issue with existing search structures is that they are either link-based or 
content-based. The paper proposes a graph-based persistent structure for Wikipedia 
database considering both the content and link relatedness of Wikipedia articles. 

A graph database has full support for relationships to represent associative 
information. A graph database uses nodes, relationships between nodes and key-value 
properties instead of tables to represent information. Graph databases like Neo4j (2010) 
and key-value structures like Project Voldemort (2009) can implement graph structures. 
One of the problems faced by Wikis and social networks is handling large amounts of 
data. Hadoop scales the data grid and the compute grid. Data queries and aggregation can 
be carried out flexibly. It is a batch system that is suitable for sequential reads. It is not 
suitable for dynamic graph structures that require random write/read. Graph databases 
like Neo4j has far lower latencies for complex navigation problems. Hadoop (White, 
2009) and other key-value stores are mostly concerned with relatively flat data structures, 
whereas Neo4j is concerned with deeper traversals. The proposed work aims at 
implementing a graph-based persistent structure for Wikipedia database using graph 
database and key-value stores. This aids to consider the implicit relationships between 
articles. Natural language processing is used to extract subject-verb-object triplets from 
sentences. This helps to maintain the semantic relatedness between the articles. 
Hypernyms are used to cluster the articles and thus represent the Wikipedia graph as a 
hyper graph. This approach helps to reduce the search space and improve search 
efficiency. Movement of the article clusters from persistent structure into an in-memory 
structure brings about time efficiency and personalisation. 

2 Literature survey 

The proposed work deals with parsing complex sentences, ontology construction, 
semantic graph construction, hyper graph construction and N-gram extraction. A 
literature survey was conducted in these areas. Extraction of background knowledge in 
the form of ontology can substantially help the search process (Ou et al., 2008). 
Processing of information in biomedical text to produce in simple syntactic constructs 
(Chidambaram, 2004) is domain specific. Complex sentence structures are broken into 
process able chunks. Information extraction is made easier by the inherent simplicity and 
dependencies between the chunks. In case of Wikipedia, the sentences were too 
complicated and provided more than one SVO pattern. We propose to split up this entries 
into two or more simpler sentences and then extract SVO patterns. Wikipedia articles had 
multiple subject terms and object terms. When multiple subject terms are encountered in 
a sentence, they are clubbed together as one subject term and then compared against a list 
of N-grams to see if this subject term has to be taken as one complete phrase. When 
multiple object terms are seen, each of the extracted SV terms are combined with each 
object term individually to provide multiple SVO patterns. SVO triplets (Rusu et al., 
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2007) can be extracted from English sentences by generating parse trees. SVO 
knowledge can be used to construct a semantic graph. The hyper-graph model (Han et al., 
1997) maps the relationship present in the original data in high dimensional space into a 
hyper-graph. A hyper-edge represents a relationship (affinity) among subsets of data and 
the weight of the hyper edge reflects the strength of this affinity. N-gram weigthtage 
could be done based on their position (Kumar et al., 1997). This method was modified 
from calculating weight values for N-grams to their frequency of occurrence in the given 
document. If they seem to occur more than a specified number of times (threshold value) 
in the document then they can be considered as valid n-grams in the given article. 

A search data structure that uses content-based method inside link-based (Sudha and 
Karrthik, 2011) can be used to perform statistical search. To frame the graph structure the 
articles are considered as nodes and the link between the articles are considered as edges 
between the nodes. Each node in the graph has some properties. The name of the graph is 
one property, and the set of keywords that occur in it is the other. Every node has an edge 
to related articles. Relevance of related articles is also considered. This relevance is 
assigned to each edge based on keyword co-occurrence statistical information. The 
keyword entered in the search box is used to index into the graph. The articles that 
contain this keyword are fetched and taken as starting nodes to be traversed from inside 
the graph. Using the article’s node, traversals can be made to neighbouring nodes and the 
search can be performed. This work does not include semantics; sentence-based 
searching and clustering articles. A similar approach was suggested in WikiWalk  
(Yeh et al., 2011). 

The proposed work constructs the search graph as a complete hyper-graph with nodes 
clustered under certain categories, thereby each category of nodes forming a separate 
graph within the entire graph. 

3 Proposed system 

To construct the search hyper-graph initially a major category of articles is extracted 
from Wikipedia. Important keywords from each of the articles are extracted  
using Alchemy API (http://www.alchemyapi.com/). For each article, the sentence 
corresponding to the keyword that has the highest frequency of occurrence is extracted. 
Sentences that consist of a partial keyword are also considered. Complex sentences are 
split up into simpler sentences. Sentences which do not contain enough information to 
extract triplets are removed. Then for each of the refined sentences, Triplets (SVO) are 
extracted. The synonymous words for the subject, predicate and object terms in the 
extracted triplet are also fetched using Word net (Rusu et al., 2007) lexical database. 
These synonyms are used to generate all possible combinations of triplets. The 
hypernyms for the keywords is then used to cluster the articles. There may be more than 
one hypernym for the keywords extracted in the article, which means that a given article 
can be clustered under more than one hypernym cluster. Finally, the hypergraph is 
constructed from the triplets and hypernyms extracted. This resource description 
framework (RDF) hyper-graph structure acts as a catalyst for the searching of articles 
from the content-based Wikipedia graph structure. 

During searching, the input sentence is first parsed to extract the triplets out of the 
search text. The hypernyms of the keywords in the sentence is used to fetch the cluster in 
the hyper-graph structure. This acts as a starting point from where the relevant articles are 
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fetched. Articles from all the hypernym clusters are extracted. This narrows down the 
number of articles searched. The retrieved articles are then searched for the SVO pattern 
from the given search sentence. This workflow is shown in Figure 1. 

Figure 1 Proposed system (see online version for colours) 

 

The steps involved in the implementation of the proposed system are as follows: 

3.1 Article extraction 

Articles are extracted from Wikipedia treating ‘computer science’, ‘mechanics’ and 
‘astronomy’ as source pages through the wget command in Redhat Linux with a 
recursion depth of 2. A total of 25,652 articles were initially extracted from the 
Wikipedia site. Three different domains were considered (computer science, mechanics 
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and astronomy). In order to obtain the graph structure of Wikipedia, articles are treated as 
nodes and the links between the articles are considered as the edges. Each node contains 
the article name, keywords and the times at which they were last updated to the node. 
Links to other pages are treated as edges between the nodes. This structure is translated to 
a non-relational graph database in Neo4j. 

3.2 Keyword extraction 

Alchemy API has been used to extract keywords along with their relevance (0 to 1) from 
the Wikipedia articles through sophisticated statistical algorithms and natural language 
processing technology. N-grams of words have also been considered. Only keywords 
with relevance higher than the threshold are considered. The article title is added as a 
keyword to the file with a relevance of 1. 

3.3 Sentence extraction 

The sentences that contain the keyword with maximum frequency of occurrence are 
extracted from the article. Special characters (above ASCII 127) and text within braces 
that denotes notes from readers are removed. Hyphened (-) sentences and multiple 
sentences with ‘;’ and ‘:’ are split. 

3.4 Handling complex sentences 

Complex sentences contain multiple subject phrases and object phrases. Hence, SVO 
triplets extracted from these sentences become meaningless. Splitting is done by 
considering the tree bank generated by Stanford parser. 

• In this parse tree, split the sentences at places where there is an ‘S’ depicting the start 
of a new sentence. Splitting at the ‘S’ gives two valid sentences in most of the 
problems. 

• Sentences that have a ‘W’ word (like ‘were’, ‘which’, ‘who’, ‘while’, ‘when’, 
‘where’) before ‘S’ should not be split. 

• Sentences that have conjunctive words (like ‘that’, ‘for’, ‘used’, ‘of’, ‘as’, ‘by’, ‘on’, 
‘because’, ‘if’) before the ‘S’ should not be split. 

3.5 Triplet extraction 

Stanford parse tree is used to extract these triplets. A sentence (S) is represented by the 
parser as a tree having three children: a noun phrase (NP), a verbal phrase (VP) and the 
full stop (.). The root of the tree will be S. The steps for triplet extraction are as follows: 

1 The subject of the sentence is found by searching in the NP sub-tree. The subject will 
be found by performing breadth first search and selecting the first descendent of NP 
that is a noun. Nouns are found in the following sub-trees: 
• NN – noun, common, singular or mass 
• NNP – noun, proper, singular 
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• NNPS – noun, proper, singular 
• NNS – noun, common, plural. 

2 The predicate of the sentence is found from the VP sub-tree. The deepest verb 
descendent of the verb phrase will give the verb element of the triplet. Verbs are 
found in the following sub-trees: 
• VB – verb, base form 
• VBD – verb, past tense 
• VBG – verb, present participle or gerund 
• VBN – verb, past participle 
• VBZ – verb, present tense, third person singular 
• VB – verb, present tense, not third person singular. 

 Some subjects or objects might be N-grams in that particular document. The possible 
N-grams of a given document are first extracted and then each of the subjects and 
objects identified are compared with this list of N-grams and kept accordingly. 
Thereby longer looking subject and object terms can be eliminated. 

3 The objects are found in three different sub-trees, all siblings of the VP sub-tree 
containing the predicate. The sub-trees are PP (prepositional phrase), NP and ADJP 
(adjective phrase). In NP and PP the first noun is looked for, while in ADJP the first 
adjective has to be found. 

There are also some special cases while looking for these RDF triplets. Some sentences 
might consist of multiple subject terms in the noun phrase. In such sentences all the 
nouns from the first noun phrase have to be extracted and combined into one complete 
subject phrase. When a sentence has multiple objects all the objects are extracted and 
individually each of these objects will be combined with the SV terms to give multiple 
SVO triplets for the same sentence. 

3.6 Extraction of synonymous triplets 

For each of the subject, predicate and object, their synonymous words from the Word net 
database are taken and all the possible combinations of SVO triplets are generated. 
Thereby we get more semantic interpretation to the search sentence given. 

3.7 Hyper graph construction 

Neo4j graph database is used to construct the hypergraph structure. Here, nodes represent 
the articles and links represent the links between the articles are used to construct the 
graph structure. The following steps are carried out in construction of hypergraph: 

1 Link extraction: It involves identifying three major types of links including infobox, 
categorical and content links. 

2 Generality filter: Links are further factored out according to generality to eliminate 
irrelevant articles. A generality filter is used for this purpose. Articles that are 
irrelevant and too specific to the search are removed using generality filter. 
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Generality filter is based on the number of incoming links. One third of irrelevant 
articles are eliminated using the generality filter. 

3 Prioritising the links: This is done by considering the linkage between two article 
nodes. 

The relevance value between the article nodes are set as properties on the edges 
connecting the respective articles. The edges between the nodes have a weight that 
represents the fraction of keywords the two articles have in common. If article 1 (A1) has 
‘n1’ keywords and article 2 (A2) has ‘n2’ keywords, and if they both have ‘n’ keywords 
in common, the fraction of common keywords between A1 and A2 is given by the 
formula: 

2 nRelatedness
n1 n2

∗
=

+
 

The reciprocal of the fractions are now considered as edges and the Djikstra’s shortest 
path algorithm is applied. Based on the path taken, link’s priority is given as follows: 

n 1
ii 0

1Link priority e i
2

−

=

⎛ ⎞= ∗⎜ ⎟
⎝ ⎠∑  

where ei = 1/Relatedness. 
Now the articles are clustered within the graph structure, by extracting the hypernyms 

of the keywords in each of these articles. These hypernyms are used to cluster the article 
nodes. This hypernym category is set as a property to each of the nodes in the graph, and 
thus querying based on the hypernym would give all the articles in that particular 
category. This means that each of the articles under one hypernym can be seen as a 
separate graph inside this entire graph. 

Each of the articles may belong to more than one hypernym category. Thus there 
might be plenty of linked hypernym-based graphs inside one big Wikipedia article graph. 
The articles contain as properties, the name of the article and the set of triplets that occur 
in them. Link weights are based on the keyword cooccurrence between the articles. A 
simple hyper graph is shown in Figure 2. Article 1 can belong to two categories 
(hypernyms). 

Figure 2 A simple hyper-graph structure (see online version for colours) 
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3.8 In-memory structures for personalisation 

Categories related to the user are moved to in-memory structure. Two such in-memory 
structures have been constructed and evaluated. They are B+ trees and graphs. In B+ tree 
structure, one B+ tree is used to store keywords along with a hash table containing the 
articles in which it occurs and relevance. The keyword is the key and hash table (article, 
relevance) is the value. Wikipedia graph is implemented through another B+ tree  
(Figure 3). Each node in the graph is a leaf node in B+ tree. Each leaf node has an edge to 
related articles. Relevance of related articles will also be considered. Here the article 
name is the key and the node is the value. 

Figure 3 In-memory B+ tree for Wikipedia graph (see online version for colours) 

 

3.9 Search 

Search procedure involves the following: 

• split the complex search sentence into two or more simpler sentences 

• extract the SVO triplets from the search sentence 

• generate synonymous triplets 

• extract the hypernyms of keywords from search sentences 

• query the hyper graph database based on hypernyms 

• fetch relevant articles by traversing the graph and only considering those links that 
have relevance above a particular threshold move into in-memory structure for 
personalisation. 
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4 Experimental results 

The results were taken for different values of link priority threshold and at each threshold 
value. Four evaluation measures were calculated. Finally, the performance of the 
sentence-based search is compared with that of the content-based search. The 
performance of in-memory graph structure was compared to persistent graph structure. 

4.1 In-memory structure 

The in-memory structure consists of the articles under the hypernym category of  
the sentence given for search. All the articles under the hypernym category of the  
search sentence’s hypernym category are taken from the persistent structure and these 
articles along with their links and link relevancies are loaded into the in-memory 
structure. 

4.1.1 Link priority threshold variations 

As shown in Table 1, a link threshold value of 0.8 takes precision to very low values and 
a threshold of 0.4 takes accuracy below 50. But a threshold of 0.6 strikes a balance 
between precision and recall. As seen there is a reasonable value of F-measure which 
shows the balance between precision and recall. Also the accuracy for this threshold is 
good. To get a good F-measure threshold should be maintained between 0.5 and 0.7. 
Table 1 Metrics for different thresholds of link priority 

Link 
priority 
threshold 

Precision Recall Accuracy F measure 

Time taken to 
search for 

triplets in the 
in-memory 
structure  
(in secs) 

Time taken to fetch 
the hypernym-based 

articles from  
the persistent 
hyper-graph  

(in secs) 

0.8 40.0 76.92 97.12 52.63 5 10 

0.7 64.0 72.72 97.60 68.08 5 10 

0.6 84.0 70.0 97.92 76.36 6 10 

0.5 70.0 55.0 93.13 49.41 6 10 

0.4 52.94 37.5 82.23 43.90 6 10 

4.1.2 Comparing in-memory structures 

Table 2 depicts that the in-memory graph structure has a better accuracy and F-measure 
for similar values of link threshold. Although the graph structure has a delay in the search 
time, it provides better results. This marginal delay in search time may be because not all 
the nodes in the graph are at the same level whereas in a B+ tree all the article carrying 
nodes are at the same level (leaf). It is clear from the above comparison that the 
hypernym-based approach has a better performance in terms of accuracy, recall and 
precision. However, on the other side, it is slow in terms of time efficiency. This can take 
up to 5 seconds at the worst for graph structure containing some 800 article node. 
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Table 2 Comparing in-memory structures – B+ tree and graph 

Methods 
Link 

priority 
threshold 

Keyword
threshold Precision Recall Accuracy F measure Time 

(in sec) 

B+ tree 
(content-based) 

0.55 0.5 32.0 26.0 73.0 28.6 1 

Graph  
(content-based) 

0.5 0.5 52.94 37.5 82.23 43.90 7.5 

Graph 
(hypernym-based) 

0.6 0.5 84.0 70.0 97.92 76.36 5 

4.2 Using persistent structure 

The results using persistent structure reveals that the accuracy is much higher than the 
accuracy values obtained using in-memory structure as the search space has been 
increased. 

4.2.1 Link priority threshold comparison 

As shown in Table 3, the optimal threshold that can be set for the links is 0.6 since only 
for that value we get a good F-measure. 
Table 3 Metrics for persistent structure’s use 

Link priority 
threshold Precision Recall Accuracy F measure Time (in sec) 

0.8 40.0 76.92 97.12 52.63 25 
0.7 64.0 72.72 97.60 68.08 27 
0.6 84.0 70.0 97.92 76.36 27 
0.5 84.0 35.0 93.13 49.41 30 
0.4 52.94 37.5 82.23 43.90 35 

4.2.2 Generality filter threshold variations 

The generality filter plays a vital role in determining how many articles will be present in 
the graph structure. Table 4 provides a comparison of how the in-links and link threshold 
affects the performance of the persistent graph structure. 
Table 4 Behaviour change of persistent structure depending on the in-links threshold 

Generality filter 
threshold (in-links) # of files left Link threshold Search time in persistent 

structure (in sec) 

10 2171 0.7 75 
20 1566 0.5 45 
30 1281 0.4 40 
45 980 0.3 30 
60 815 0.2 30 
100 430 0.2 25 
150 258 0.5 25 



   

 

   

   
 

   

   

 

   

   76 G.S. Sadasivam et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

4.2.3 Comparing persistent structures 

This persistent structures’ comparison shows better accuracy and F-measure at the cost of 
search time. But in information retrieval, the F-measure and accuracy give a competitive 
edge over the optimal search time. Also it is seen that the hypernym-based approach is 
more productive in terms of search accuracy and precision, thereby ignoring the search 
time (Table 5). Figure 4 shows the precision recall curve for the persistent structures. It 
can be seen that Hypergraphs using hypernyms perform better when compared to the 
content-based key value and graph structures. 

Table 5 Comparison of performance of persistent structures – Hbase and Neo4j 

Methods 
Link 

priority 
threshold 

Keyword
threshold Precision Recall Accuracy F measure Time 

(in sec) 

Hbase 
(content-based) 

0.55 0.5 30.0 21.0 79.0 24.7 1.5 

Neo4j 
(content-based) 

0.4 0.5 52.94 37.5 82.23 43.90 2.0 

Neo4j 
(hypernym-based) 

0.6 0.5 84.0 70.0 97.92 76.36 25.0 

Figure 4 Recall vs. precision for persistent structures (see online version for colours) 

 

4.3 Comparison between in memory and persistent structures 

It is clear from Table 6 that the in-memory search structure can perform better than the 
persistent structure in terms of search time. But this in-memory structure has space 
limitations. The time taken to move a category from persistent to in-memory is also 
shown. It can be seen that the time for search is minimised in spite of the time taken to 
move from persistent to in-memory structure. 
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Table 6 Comparison of performance of persistent and in-memory graph structures 

Search time in seconds 
# files # files moved 

to in-memory In-memory 
search time 

Time for 
movement 

Total search 
time 

Search time in 
persistent 
structure 

258 118 4 26 30 39 
430 179 5 29 34 41 
815 328 8 35 43 47 
930 345 8 38 46 51 
1,281 409 9 42 51 57 
1,566 594 9 45 54 61 
2,171 685 11 52 63 69 

4.4 Comparison of content-based and hypernym-based search 

The search results for the three methods namely, content-based, triplet-based, and triplet 
with hypernym are compared in Table 7. The results show that even at a higher value of 
link threshold taken, the triplet-based method performs better than the content-based 
method (F-measure value score). In the triplet-based method, the articles are not clustered 
according to their hypernym and so while searching for articles with the extracted triplets, 
we have to search in each article for the particular triplet. Thus, the search time increases 
to much as 10 minutes. 
Table 7 Comparison of performance of content-based, triplet-based and hypernym-based 

persistent structure searches 

Methods 
Link 

priority 
threshold 

Keyword
threshold Precision Recall Accuracy F measure Time 

(in sec) 

Neo4j 
(content-based) 

0.4 0.5 52.94 37.5 82.23 43.90 2.0 

Neo4j 
(triplet-based) 

0.6 0.5 74.0 35.0 73.13 52.32 600.0 

Neo4j 
(hypernym-based) 

0.6 0.5 84.0 70.0 97.92 76.36 25.0 

When articles are clustered by hypernym category, the search time is greatly reduced 
because we retrieve a set of articles that belong to the category of hypernym to which the 
search sentence belongs, and in those articles we look for the ones which contain the 
triplets in the search sentence. Thus, we eliminate unnecessary search through the other 
documents in the graph. 

The search time for the content-based method is low. It is based on retrieving articles 
for particular keyword and then traversing the article graph based on the articles 
retrieved. Whereas in both the triplet-based and hypernym-based search methods, we 
need to extract the triplets from the given search sentence, find out the hypernym to 
which the search sentence belongs to and then retrieve all the articles from the graph 
which belong to the corresponding hypernym category. Then these articles are searched 
for the triplets that are extracted from the sentence. After the articles in which the triplets 
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occur are found out, the articles are taken as starting nodes and the graph is traversed to 
fetch the relevant articles. Thus, semantic interpretation to the search term increases in 
the search time of the hypernym-based method. Figure 5 compares the performance of 
the proposed approaches with existing search engines. It can be seen that due to 
semantics, precision recall and accuracy is improved, but search time also increases. This 
can be reduced using hypergraph-based approach. Thus, hypergraph-based approach not 
only improves precision, recall and accuracy, but also reduced search time. 

Figure 5 Comparison of performance of existing and proposed approaches (see online version  
for colours) 

 

5 Conclusions 

Through the use of co-occurrence statistical information, it is concluded that the search 
yields statistically related results in addition to the regular search results with high 
accuracy. By using Neo4j, extension to the search space was provided increasing the 
level of accuracy. But searching directly from the persistent structure increases the search 
time as large number of nodes had to be traversed. Searching the articles based on the 
extracted SVO patterns ensures that sentences can be searched in an efficient way with 
semantics. The persistent hyper graph structure constructed using the hypernyms of the 
article ensures that only the relevant articles are fetched from the persistent graph 
structure. These articles can also be mapped to an in-memory structure to make sure the 
search is done even faster. The search system based on hypernym clusters in the graph 
structure has a better precision and recall than that of the content-based system. Querying 
using sentences is also facilitated in the proposed system. The search time was measured 
for both the in-memory hyper-graph structure and the persistent (Neo4j) hyper-graph 
structure. The in-memory structure yields better search time with the same precision and 
recall values for given set of article nodes as persistent hyper-graph structure. Hence a 
combination of both can be used to move personalised search information from the 
persistent structure to in-memory structure. This can improve search efficiency. 
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