

 66 Int. J. Web Science, Vol. 2, Nos. 1/2, 2013

 Copyright © 2013 Inderscience Enterprises Ltd.

Hypergraph-based Wikipedia search with semantics

G. Sudha Sadasivam*, K.G. Saranya and
K.G. Karrthik
Department of Computer Science and Engineering,
PSG College of Technology,
Coimbatore – 641004, India
E-mail: sudhasadhasivam@yahoo.com
E-mail: saranyaa87@gmail.com
E-mail: kgkarrthik@rediffmail.com
*Corresponding author

Abstract: Wikipedia is a free, web-based encyclopaedia. This paper addresses
the knowledge integration issue by computing semantic relatedness over a
graph derived from Wikipedia by treating the articles as nodes and the links
between the articles as the edges. Sentences with highest occurring keywords
are extracted. These complex sentences are split into simple sentences and
triplets with synonyms are extracted. A hypergraph structure is formed using
hypernyms of the keywords to cluster the articles. Hypernyms extracted from
the search query and keyword co-occurrences are used to extract relevant
articles. Mapping the articles under the hypernyms category to an in-memory
structure improves search efficiency and facilitates personalisation. The
proposed work ensures the implied relationships between articles in the graph
structure and maintenance of semantic relatedness between articles. Further,
clustering the articles within the graph structure based on the hypernyms
narrows down the search

Keywords: Wikipedia; hyper graph; semantics; hypernyms; in-memory;
persistent graph.

Reference to this paper should be made as follows: Sadasivam, G.S.,
Saranya, K.G. and Karrthik, K.G. (2013) ‘Hypergraph-based Wikipedia search
with semantics’, Int. J. Web Science, Vol. 2, Nos. 1/2, pp.66–79.

Biographical notes: G. Sudha Sadasivam is working as a Professor at the
Department of Computer Science and Engineering, PSG College of
Technology. She has authored five books and has published 40 papers in
refereed journals. She has coordinated government and industrial projects in the
area of distributed computing.

K.G. Saranya is working as an Assistant Professor in the Department of
Computer Science and Engineering, PSG College of Technology. Her areas of
interest include Semantic Web, personalised information retrieval and web
services.

K.G. Karrthik is a student pursuing his ME in Software Engineering in PSG
College of Technology. His areas of interest include high performance
computing and NoSQL databases.

 Hypergraph-based Wikipedia search with semantics 67

1 Introduction

Social networking sites, tagging systems, content management systems and wikis deal
with inherently hierarchical or graph-shaped data that are deeply associative. Such
recursive data structures are difficult to deal with in a relational database as it is not
suitable to represent, store and manipulate complex dynamic and adhoc information
(Cui et al., 2009). Hence, the need for new graph structures to represent Wikipedia
database. Another issue with existing search structures is that they are either link-based or
content-based. The paper proposes a graph-based persistent structure for Wikipedia
database considering both the content and link relatedness of Wikipedia articles.

A graph database has full support for relationships to represent associative
information. A graph database uses nodes, relationships between nodes and key-value
properties instead of tables to represent information. Graph databases like Neo4j (2010)
and key-value structures like Project Voldemort (2009) can implement graph structures.
One of the problems faced by Wikis and social networks is handling large amounts of
data. Hadoop scales the data grid and the compute grid. Data queries and aggregation can
be carried out flexibly. It is a batch system that is suitable for sequential reads. It is not
suitable for dynamic graph structures that require random write/read. Graph databases
like Neo4j has far lower latencies for complex navigation problems. Hadoop (White,
2009) and other key-value stores are mostly concerned with relatively flat data structures,
whereas Neo4j is concerned with deeper traversals. The proposed work aims at
implementing a graph-based persistent structure for Wikipedia database using graph
database and key-value stores. This aids to consider the implicit relationships between
articles. Natural language processing is used to extract subject-verb-object triplets from
sentences. This helps to maintain the semantic relatedness between the articles.
Hypernyms are used to cluster the articles and thus represent the Wikipedia graph as a
hyper graph. This approach helps to reduce the search space and improve search
efficiency. Movement of the article clusters from persistent structure into an in-memory
structure brings about time efficiency and personalisation.

2 Literature survey

The proposed work deals with parsing complex sentences, ontology construction,
semantic graph construction, hyper graph construction and N-gram extraction. A
literature survey was conducted in these areas. Extraction of background knowledge in
the form of ontology can substantially help the search process (Ou et al., 2008).
Processing of information in biomedical text to produce in simple syntactic constructs
(Chidambaram, 2004) is domain specific. Complex sentence structures are broken into
process able chunks. Information extraction is made easier by the inherent simplicity and
dependencies between the chunks. In case of Wikipedia, the sentences were too
complicated and provided more than one SVO pattern. We propose to split up this entries
into two or more simpler sentences and then extract SVO patterns. Wikipedia articles had
multiple subject terms and object terms. When multiple subject terms are encountered in
a sentence, they are clubbed together as one subject term and then compared against a list
of N-grams to see if this subject term has to be taken as one complete phrase. When
multiple object terms are seen, each of the extracted SV terms are combined with each
object term individually to provide multiple SVO patterns. SVO triplets (Rusu et al.,

 68 G.S. Sadasivam et al.

2007) can be extracted from English sentences by generating parse trees. SVO
knowledge can be used to construct a semantic graph. The hyper-graph model (Han et al.,
1997) maps the relationship present in the original data in high dimensional space into a
hyper-graph. A hyper-edge represents a relationship (affinity) among subsets of data and
the weight of the hyper edge reflects the strength of this affinity. N-gram weigthtage
could be done based on their position (Kumar et al., 1997). This method was modified
from calculating weight values for N-grams to their frequency of occurrence in the given
document. If they seem to occur more than a specified number of times (threshold value)
in the document then they can be considered as valid n-grams in the given article.

A search data structure that uses content-based method inside link-based (Sudha and
Karrthik, 2011) can be used to perform statistical search. To frame the graph structure the
articles are considered as nodes and the link between the articles are considered as edges
between the nodes. Each node in the graph has some properties. The name of the graph is
one property, and the set of keywords that occur in it is the other. Every node has an edge
to related articles. Relevance of related articles is also considered. This relevance is
assigned to each edge based on keyword co-occurrence statistical information. The
keyword entered in the search box is used to index into the graph. The articles that
contain this keyword are fetched and taken as starting nodes to be traversed from inside
the graph. Using the article’s node, traversals can be made to neighbouring nodes and the
search can be performed. This work does not include semantics; sentence-based
searching and clustering articles. A similar approach was suggested in WikiWalk
(Yeh et al., 2011).

The proposed work constructs the search graph as a complete hyper-graph with nodes
clustered under certain categories, thereby each category of nodes forming a separate
graph within the entire graph.

3 Proposed system

To construct the search hyper-graph initially a major category of articles is extracted
from Wikipedia. Important keywords from each of the articles are extracted
using Alchemy API (http://www.alchemyapi.com/). For each article, the sentence
corresponding to the keyword that has the highest frequency of occurrence is extracted.
Sentences that consist of a partial keyword are also considered. Complex sentences are
split up into simpler sentences. Sentences which do not contain enough information to
extract triplets are removed. Then for each of the refined sentences, Triplets (SVO) are
extracted. The synonymous words for the subject, predicate and object terms in the
extracted triplet are also fetched using Word net (Rusu et al., 2007) lexical database.
These synonyms are used to generate all possible combinations of triplets. The
hypernyms for the keywords is then used to cluster the articles. There may be more than
one hypernym for the keywords extracted in the article, which means that a given article
can be clustered under more than one hypernym cluster. Finally, the hypergraph is
constructed from the triplets and hypernyms extracted. This resource description
framework (RDF) hyper-graph structure acts as a catalyst for the searching of articles
from the content-based Wikipedia graph structure.

During searching, the input sentence is first parsed to extract the triplets out of the
search text. The hypernyms of the keywords in the sentence is used to fetch the cluster in
the hyper-graph structure. This acts as a starting point from where the relevant articles are

 Hypergraph-based Wikipedia search with semantics 69

fetched. Articles from all the hypernym clusters are extracted. This narrows down the
number of articles searched. The retrieved articles are then searched for the SVO pattern
from the given search sentence. This workflow is shown in Figure 1.

Figure 1 Proposed system (see online version for colours)

The steps involved in the implementation of the proposed system are as follows:

3.1 Article extraction

Articles are extracted from Wikipedia treating ‘computer science’, ‘mechanics’ and
‘astronomy’ as source pages through the wget command in Redhat Linux with a
recursion depth of 2. A total of 25,652 articles were initially extracted from the
Wikipedia site. Three different domains were considered (computer science, mechanics

 70 G.S. Sadasivam et al.

and astronomy). In order to obtain the graph structure of Wikipedia, articles are treated as
nodes and the links between the articles are considered as the edges. Each node contains
the article name, keywords and the times at which they were last updated to the node.
Links to other pages are treated as edges between the nodes. This structure is translated to
a non-relational graph database in Neo4j.

3.2 Keyword extraction

Alchemy API has been used to extract keywords along with their relevance (0 to 1) from
the Wikipedia articles through sophisticated statistical algorithms and natural language
processing technology. N-grams of words have also been considered. Only keywords
with relevance higher than the threshold are considered. The article title is added as a
keyword to the file with a relevance of 1.

3.3 Sentence extraction

The sentences that contain the keyword with maximum frequency of occurrence are
extracted from the article. Special characters (above ASCII 127) and text within braces
that denotes notes from readers are removed. Hyphened (-) sentences and multiple
sentences with ‘;’ and ‘:’ are split.

3.4 Handling complex sentences

Complex sentences contain multiple subject phrases and object phrases. Hence, SVO
triplets extracted from these sentences become meaningless. Splitting is done by
considering the tree bank generated by Stanford parser.

• In this parse tree, split the sentences at places where there is an ‘S’ depicting the start
of a new sentence. Splitting at the ‘S’ gives two valid sentences in most of the
problems.

• Sentences that have a ‘W’ word (like ‘were’, ‘which’, ‘who’, ‘while’, ‘when’,
‘where’) before ‘S’ should not be split.

• Sentences that have conjunctive words (like ‘that’, ‘for’, ‘used’, ‘of’, ‘as’, ‘by’, ‘on’,
‘because’, ‘if’) before the ‘S’ should not be split.

3.5 Triplet extraction

Stanford parse tree is used to extract these triplets. A sentence (S) is represented by the
parser as a tree having three children: a noun phrase (NP), a verbal phrase (VP) and the
full stop (.). The root of the tree will be S. The steps for triplet extraction are as follows:

1 The subject of the sentence is found by searching in the NP sub-tree. The subject will
be found by performing breadth first search and selecting the first descendent of NP
that is a noun. Nouns are found in the following sub-trees:
• NN – noun, common, singular or mass
• NNP – noun, proper, singular

 Hypergraph-based Wikipedia search with semantics 71

• NNPS – noun, proper, singular
• NNS – noun, common, plural.

2 The predicate of the sentence is found from the VP sub-tree. The deepest verb
descendent of the verb phrase will give the verb element of the triplet. Verbs are
found in the following sub-trees:
• VB – verb, base form
• VBD – verb, past tense
• VBG – verb, present participle or gerund
• VBN – verb, past participle
• VBZ – verb, present tense, third person singular
• VB – verb, present tense, not third person singular.

 Some subjects or objects might be N-grams in that particular document. The possible
N-grams of a given document are first extracted and then each of the subjects and
objects identified are compared with this list of N-grams and kept accordingly.
Thereby longer looking subject and object terms can be eliminated.

3 The objects are found in three different sub-trees, all siblings of the VP sub-tree
containing the predicate. The sub-trees are PP (prepositional phrase), NP and ADJP
(adjective phrase). In NP and PP the first noun is looked for, while in ADJP the first
adjective has to be found.

There are also some special cases while looking for these RDF triplets. Some sentences
might consist of multiple subject terms in the noun phrase. In such sentences all the
nouns from the first noun phrase have to be extracted and combined into one complete
subject phrase. When a sentence has multiple objects all the objects are extracted and
individually each of these objects will be combined with the SV terms to give multiple
SVO triplets for the same sentence.

3.6 Extraction of synonymous triplets

For each of the subject, predicate and object, their synonymous words from the Word net
database are taken and all the possible combinations of SVO triplets are generated.
Thereby we get more semantic interpretation to the search sentence given.

3.7 Hyper graph construction

Neo4j graph database is used to construct the hypergraph structure. Here, nodes represent
the articles and links represent the links between the articles are used to construct the
graph structure. The following steps are carried out in construction of hypergraph:

1 Link extraction: It involves identifying three major types of links including infobox,
categorical and content links.

2 Generality filter: Links are further factored out according to generality to eliminate
irrelevant articles. A generality filter is used for this purpose. Articles that are
irrelevant and too specific to the search are removed using generality filter.

 72 G.S. Sadasivam et al.

Generality filter is based on the number of incoming links. One third of irrelevant
articles are eliminated using the generality filter.

3 Prioritising the links: This is done by considering the linkage between two article
nodes.

The relevance value between the article nodes are set as properties on the edges
connecting the respective articles. The edges between the nodes have a weight that
represents the fraction of keywords the two articles have in common. If article 1 (A1) has
‘n1’ keywords and article 2 (A2) has ‘n2’ keywords, and if they both have ‘n’ keywords
in common, the fraction of common keywords between A1 and A2 is given by the
formula:

2 nRelatedness
n1 n2

∗
=

+

The reciprocal of the fractions are now considered as edges and the Djikstra’s shortest
path algorithm is applied. Based on the path taken, link’s priority is given as follows:

n 1
ii 0

1Link priority e i
2

−

=

⎛ ⎞= ∗⎜ ⎟
⎝ ⎠∑

where ei = 1/Relatedness.
Now the articles are clustered within the graph structure, by extracting the hypernyms

of the keywords in each of these articles. These hypernyms are used to cluster the article
nodes. This hypernym category is set as a property to each of the nodes in the graph, and
thus querying based on the hypernym would give all the articles in that particular
category. This means that each of the articles under one hypernym can be seen as a
separate graph inside this entire graph.

Each of the articles may belong to more than one hypernym category. Thus there
might be plenty of linked hypernym-based graphs inside one big Wikipedia article graph.
The articles contain as properties, the name of the article and the set of triplets that occur
in them. Link weights are based on the keyword cooccurrence between the articles. A
simple hyper graph is shown in Figure 2. Article 1 can belong to two categories
(hypernyms).

Figure 2 A simple hyper-graph structure (see online version for colours)

 Hypergraph-based Wikipedia search with semantics 73

3.8 In-memory structures for personalisation

Categories related to the user are moved to in-memory structure. Two such in-memory
structures have been constructed and evaluated. They are B+ trees and graphs. In B+ tree
structure, one B+ tree is used to store keywords along with a hash table containing the
articles in which it occurs and relevance. The keyword is the key and hash table (article,
relevance) is the value. Wikipedia graph is implemented through another B+ tree
(Figure 3). Each node in the graph is a leaf node in B+ tree. Each leaf node has an edge to
related articles. Relevance of related articles will also be considered. Here the article
name is the key and the node is the value.

Figure 3 In-memory B+ tree for Wikipedia graph (see online version for colours)

3.9 Search

Search procedure involves the following:

• split the complex search sentence into two or more simpler sentences

• extract the SVO triplets from the search sentence

• generate synonymous triplets

• extract the hypernyms of keywords from search sentences

• query the hyper graph database based on hypernyms

• fetch relevant articles by traversing the graph and only considering those links that
have relevance above a particular threshold move into in-memory structure for
personalisation.

 74 G.S. Sadasivam et al.

4 Experimental results

The results were taken for different values of link priority threshold and at each threshold
value. Four evaluation measures were calculated. Finally, the performance of the
sentence-based search is compared with that of the content-based search. The
performance of in-memory graph structure was compared to persistent graph structure.

4.1 In-memory structure

The in-memory structure consists of the articles under the hypernym category of
the sentence given for search. All the articles under the hypernym category of the
search sentence’s hypernym category are taken from the persistent structure and these
articles along with their links and link relevancies are loaded into the in-memory
structure.

4.1.1 Link priority threshold variations

As shown in Table 1, a link threshold value of 0.8 takes precision to very low values and
a threshold of 0.4 takes accuracy below 50. But a threshold of 0.6 strikes a balance
between precision and recall. As seen there is a reasonable value of F-measure which
shows the balance between precision and recall. Also the accuracy for this threshold is
good. To get a good F-measure threshold should be maintained between 0.5 and 0.7.
Table 1 Metrics for different thresholds of link priority

Link
priority
threshold

Precision Recall Accuracy F measure

Time taken to
search for

triplets in the
in-memory
structure
(in secs)

Time taken to fetch
the hypernym-based

articles from
the persistent
hyper-graph

(in secs)

0.8 40.0 76.92 97.12 52.63 5 10

0.7 64.0 72.72 97.60 68.08 5 10

0.6 84.0 70.0 97.92 76.36 6 10

0.5 70.0 55.0 93.13 49.41 6 10

0.4 52.94 37.5 82.23 43.90 6 10

4.1.2 Comparing in-memory structures

Table 2 depicts that the in-memory graph structure has a better accuracy and F-measure
for similar values of link threshold. Although the graph structure has a delay in the search
time, it provides better results. This marginal delay in search time may be because not all
the nodes in the graph are at the same level whereas in a B+ tree all the article carrying
nodes are at the same level (leaf). It is clear from the above comparison that the
hypernym-based approach has a better performance in terms of accuracy, recall and
precision. However, on the other side, it is slow in terms of time efficiency. This can take
up to 5 seconds at the worst for graph structure containing some 800 article node.

 Hypergraph-based Wikipedia search with semantics 75

Table 2 Comparing in-memory structures – B+ tree and graph

Methods
Link

priority
threshold

Keyword
threshold Precision Recall Accuracy F measure Time

(in sec)

B+ tree
(content-based)

0.55 0.5 32.0 26.0 73.0 28.6 1

Graph
(content-based)

0.5 0.5 52.94 37.5 82.23 43.90 7.5

Graph
(hypernym-based)

0.6 0.5 84.0 70.0 97.92 76.36 5

4.2 Using persistent structure

The results using persistent structure reveals that the accuracy is much higher than the
accuracy values obtained using in-memory structure as the search space has been
increased.

4.2.1 Link priority threshold comparison

As shown in Table 3, the optimal threshold that can be set for the links is 0.6 since only
for that value we get a good F-measure.
Table 3 Metrics for persistent structure’s use

Link priority
threshold Precision Recall Accuracy F measure Time (in sec)

0.8 40.0 76.92 97.12 52.63 25
0.7 64.0 72.72 97.60 68.08 27
0.6 84.0 70.0 97.92 76.36 27
0.5 84.0 35.0 93.13 49.41 30
0.4 52.94 37.5 82.23 43.90 35

4.2.2 Generality filter threshold variations

The generality filter plays a vital role in determining how many articles will be present in
the graph structure. Table 4 provides a comparison of how the in-links and link threshold
affects the performance of the persistent graph structure.
Table 4 Behaviour change of persistent structure depending on the in-links threshold

Generality filter
threshold (in-links) # of files left Link threshold Search time in persistent

structure (in sec)

10 2171 0.7 75
20 1566 0.5 45
30 1281 0.4 40
45 980 0.3 30
60 815 0.2 30
100 430 0.2 25
150 258 0.5 25

 76 G.S. Sadasivam et al.

4.2.3 Comparing persistent structures

This persistent structures’ comparison shows better accuracy and F-measure at the cost of
search time. But in information retrieval, the F-measure and accuracy give a competitive
edge over the optimal search time. Also it is seen that the hypernym-based approach is
more productive in terms of search accuracy and precision, thereby ignoring the search
time (Table 5). Figure 4 shows the precision recall curve for the persistent structures. It
can be seen that Hypergraphs using hypernyms perform better when compared to the
content-based key value and graph structures.

Table 5 Comparison of performance of persistent structures – Hbase and Neo4j

Methods
Link

priority
threshold

Keyword
threshold Precision Recall Accuracy F measure Time

(in sec)

Hbase
(content-based)

0.55 0.5 30.0 21.0 79.0 24.7 1.5

Neo4j
(content-based)

0.4 0.5 52.94 37.5 82.23 43.90 2.0

Neo4j
(hypernym-based)

0.6 0.5 84.0 70.0 97.92 76.36 25.0

Figure 4 Recall vs. precision for persistent structures (see online version for colours)

4.3 Comparison between in memory and persistent structures

It is clear from Table 6 that the in-memory search structure can perform better than the
persistent structure in terms of search time. But this in-memory structure has space
limitations. The time taken to move a category from persistent to in-memory is also
shown. It can be seen that the time for search is minimised in spite of the time taken to
move from persistent to in-memory structure.

 Hypergraph-based Wikipedia search with semantics 77

Table 6 Comparison of performance of persistent and in-memory graph structures

Search time in seconds
files # files moved

to in-memory In-memory
search time

Time for
movement

Total search
time

Search time in
persistent
structure

258 118 4 26 30 39
430 179 5 29 34 41
815 328 8 35 43 47
930 345 8 38 46 51
1,281 409 9 42 51 57
1,566 594 9 45 54 61
2,171 685 11 52 63 69

4.4 Comparison of content-based and hypernym-based search

The search results for the three methods namely, content-based, triplet-based, and triplet
with hypernym are compared in Table 7. The results show that even at a higher value of
link threshold taken, the triplet-based method performs better than the content-based
method (F-measure value score). In the triplet-based method, the articles are not clustered
according to their hypernym and so while searching for articles with the extracted triplets,
we have to search in each article for the particular triplet. Thus, the search time increases
to much as 10 minutes.
Table 7 Comparison of performance of content-based, triplet-based and hypernym-based

persistent structure searches

Methods
Link

priority
threshold

Keyword
threshold Precision Recall Accuracy F measure Time

(in sec)

Neo4j
(content-based)

0.4 0.5 52.94 37.5 82.23 43.90 2.0

Neo4j
(triplet-based)

0.6 0.5 74.0 35.0 73.13 52.32 600.0

Neo4j
(hypernym-based)

0.6 0.5 84.0 70.0 97.92 76.36 25.0

When articles are clustered by hypernym category, the search time is greatly reduced
because we retrieve a set of articles that belong to the category of hypernym to which the
search sentence belongs, and in those articles we look for the ones which contain the
triplets in the search sentence. Thus, we eliminate unnecessary search through the other
documents in the graph.

The search time for the content-based method is low. It is based on retrieving articles
for particular keyword and then traversing the article graph based on the articles
retrieved. Whereas in both the triplet-based and hypernym-based search methods, we
need to extract the triplets from the given search sentence, find out the hypernym to
which the search sentence belongs to and then retrieve all the articles from the graph
which belong to the corresponding hypernym category. Then these articles are searched
for the triplets that are extracted from the sentence. After the articles in which the triplets

 78 G.S. Sadasivam et al.

occur are found out, the articles are taken as starting nodes and the graph is traversed to
fetch the relevant articles. Thus, semantic interpretation to the search term increases in
the search time of the hypernym-based method. Figure 5 compares the performance of
the proposed approaches with existing search engines. It can be seen that due to
semantics, precision recall and accuracy is improved, but search time also increases. This
can be reduced using hypergraph-based approach. Thus, hypergraph-based approach not
only improves precision, recall and accuracy, but also reduced search time.

Figure 5 Comparison of performance of existing and proposed approaches (see online version
for colours)

5 Conclusions

Through the use of co-occurrence statistical information, it is concluded that the search
yields statistically related results in addition to the regular search results with high
accuracy. By using Neo4j, extension to the search space was provided increasing the
level of accuracy. But searching directly from the persistent structure increases the search
time as large number of nodes had to be traversed. Searching the articles based on the
extracted SVO patterns ensures that sentences can be searched in an efficient way with
semantics. The persistent hyper graph structure constructed using the hypernyms of the
article ensures that only the relevant articles are fetched from the persistent graph
structure. These articles can also be mapped to an in-memory structure to make sure the
search is done even faster. The search system based on hypernym clusters in the graph
structure has a better precision and recall than that of the content-based system. Querying
using sentences is also facilitated in the proposed system. The search time was measured
for both the in-memory hyper-graph structure and the persistent (Neo4j) hyper-graph
structure. The in-memory structure yields better search time with the same precision and
recall values for given set of article nodes as persistent hyper-graph structure. Hence a
combination of both can be used to move personalised search information from the
persistent structure to in-memory structure. This can improve search efficiency.

 Hypergraph-based Wikipedia search with semantics 79

Acknowledgements

The authors acknowledge the support given by Dr. Sujatha Uppadhyaya, Director, Xurmo
Technologies and Mr. Chidambaran Kollengode, Director, Cloud Computing and Big
Data Analytics, Nokia R&D, Bangalore. This project is carried out as a consequence of
PSG-Nokia Research collaborations on Big Data Analytics and PSG-Xurmo Research on
Social Networking.

References

Alchemy API [online] available at http://www.alchemyapi.com/ (accessed 20/11/2011).
Chidambaram, D. (2004) Processing Complex Sentences for Information Extraction, December,

MSc thesis, Arizona State University,
Cui, G., Lu, Q., Li, W. and Chen, Y. (2009) ‘Mining concepts from Wikipedia for ontology

construction’, Paper presented in IEEE International Conference on Web Intelligence and
Intelligent Agent Technology, 15–18 September 2009, Milano, Italy.

Han, E-H. (Sam), Karypis, G. and Kumar, V. (1997) ‘Clustering in a high-dimensional space using
hypergraph models’, International Journal of Scientometrics, Informetrics and Bibliometrics,
Vol. 2, No. 4, pp.370–376.

Kumar, N., Vemula, V.V.B., Srinathan, K. and Varma, V. (1997) ‘Exploiting n-gram importance
and wikipedia based additional knowledge for improvements in gaac based document
clustering’, Paper presented in International conference on Research Issues on Data Mining
and Knowledge Discovery – DMKD, August 1997, California.

Neo4j (2010) Neo4j: NOSQL for the Enterprise – Neo4j Manual [online] http://docs.neo4j.org/
chunked/milestone/ (accessed 15/12/2010).

Ou, S., Pekar, V., Orasan, C., Spurk, C. and Negri, M. (2008) ‘Development and alignment of a
domain-specific ontology for question answering’, Paper presented in 6th International
Conference on Language Resources and Evaluation, May 2008, Morroco.

Project Voldemort (2009) [online] http://project-voldemort.com/ (accessed 25/03/2010).
Rusu, D., Dali, L., Fortuna, B., Grobelnik, M. and Mladenić, D. (2007) ‘Triplet extraction from

sentences’, Journal of Knowledge Creation Diffusion Utilization, October 2007, pp.8–12.
Sudha, G. and Karrthik, K.G. (2011) ‘Persistent graph structures for Wikipedia search’, Paper

presented in IBM ICARE 2011, Next Generation Systems, October 2011, Delhi, India.
White, T. (2009) Hadoop: The Definitive Guide, 2nd ed., O’Reilly Media, USA.
Yeh, E., Ramage, D., Manning, C.D., Agirre, E. and Soroa, A. (2011) ‘WikiWalk: random walks

on Wikipedia for semantic relatedness – TextGraphs-4’, Paper presented in Workshop on
Graph-based Methods for Natural Language Processing, 2011, Portland, Oregan.

