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1 Introduction 

These days we use large amounts of data, which are stored in relational or latterly in 
object databases. These data have low information value. That is why we started to talk 
about the process of knowledge discovery in databases in the beginning of the 1990s. 
This process is divided into a number of consequent steps. 

Rough set theory, proposed by Pawlak in the early 1980s (Pawlak, 1982), is an 
extension of set theory for the study of intelligent systems characterised by  
inexact, uncertain or insufficient information. Many proposals have been made for 
generalising and interpreting rough sets (Abu-Donia, 2008; Abu-Donia and Salama, 
2008; Abu-Donia et al., 2007; Chuchro, 1993; Alpigini et al., 2002; Liu and Sai,  
2009; Ouyang et al., 2010). Moreover, this theory may serve as a new mathematical  
tool to soft computing besides fuzzy set theory, and has been successfully applied in 
machine learning, information sciences, expert systems, data reduction, and so on. 
Recently, lots of researchers are interested to generalise this theory in many  
fields of applications (Bonikowski, 1994; Bryniaski, 1998; Cattaneo, 1998). In Pawlak’s 
original rough set theory, partition or equivalence (indiscernibility) relation  
is an important and primitive concept. But, partition or equivalence relation is still 
restrictive for many applications. To study this issue, several interesting and  
meaningful generalisations to equivalence relation have been proposed in the past,  
such as tolerance relations, similarity relations, topological bases and sub-bases  
(Lashin et al., 2005) and others (Bonikowski et al., 1998; Kryszkiewicz, 1998). 
Particularly, some researchers have used coverings of the universe of discourse for 
establishing the generalised rough sets by coverings (Deng et al., 2007). Others  
(Banerjee and Pal, 1995; Biswas, 1992; Degang et al., 2008; Liu, 2008a) combined  
fuzzy sets with rough sets in a fruitful way by defining rough fuzzy sets and fuzzy rough 
sets. Furthermore, another group has characterised a measure of roughness of a fuzzy set 
making use of the concept of rough fuzzy sets (Biswas, 1994; Dubois and Prade,  
1990). They also suggested some possible real world applications of these measures in 
pattern recognition and image analysis problems. Some results of these generalisations 
are obtained about rough sets and fuzzy sets in Chakrabarty et al. (2000), Chen  
and Li (2007), Gong et al. (2008), Li et al. (2008), Liu (2008b), Nakamura (1988)  
and Nanda and Majumda (1992). Rough set theory is a recent approach for reasoning 
about data. This theory depends basically on a certain topological structure and has 
achieved a great success in many fields of real life applications. The concept of a 
topological rough set is one of the most important topological generalisation of rough 
sets. In Abd El-Monsef et al. (1983), the concept of β-open sets is introduced and in Hatir 
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and Noiri (2006) the concept of δβ-open sets is introduced. This paper is organised as 
follows: 

In Section 2, we give some of the topological notions that will generalise to rough 
sets. In Section 3, we discuss the fundamentals of Pawlak’s rough set theory. Section 4 
studies the generalisations of the topological notions to rough sets and introduce new 
rough approximations. Section 5 is devoted to introduce the theoretical results of the 
topological rough approximations. An application to rule induction and data mining in 
information systems using these approximations is introduced in Section 6. The proper 
conclusion is given in Section 7. 

 

2 Topological basic concepts 

A topological space (Banerjee and Pal, 1995) is a pair (U, τ) consisting of a set U and 
family τ of subsets of U satisfying the following conditions: 

1 φ, U ∈ τ 

2 τ is closed under arbitrary union 

3 τ is closed under finite intersection. 

The pair (U, τ) is called a topological space. The elements of U are called points of the 
space and the subsets of U belonging to τ are called the open sets. The complement of the 
open sets are called closed sets. 

For a subset A of a space (U, τ), cl(A), int(A) and C(A) denote closure, interior and 
complement of A in X respectively. 

A subset A of a topological space (U, τ) is called: 

1 semi-open set (Hatir and Noiri, 2006) if A ⊆ cl(int(A)) and it is called a semi-closed 
set if int(cl(A)) ⊆ A 

2 pre-open set (Levine, 1963) if A ⊆ int(cl(A)) and it is called a pre-closed set if 
cl(int(A)) ⊆ A 

3 α-open set (Liu, 2008b) if A ⊆ int(cl(int(A))) and it is called a α-closed set if 
cl(int(cl(A))) ⊆ A 

4 semi-pre-open set (Abu-Donia, 2008) (β-open; Pawlak, 1982) if A ⊆ cl(int(cl(A))) 
and it is called a semi-pre-closed set (Abu-Donia, 2008) (β-closed; Abu-Donia, 
2008) if int(cl(int(A))) ⊆ A 

5 regular-open set if A ⊆ int(cl(A)) and it is called a regular-closed set if cl(int(A)) ⊆ A 

6 semi-regular set (Bryniaski, 1998) if it both semi-open and semi-closed in (U, τ) 

7 δ-closed set (Liu and Sai, 2009) if A ⊆ clδ(A), where clδ(A) = {x ∈ U: int(cl(G)) ∩  
A ≠ φ, x ∈ G, G ∈ τ}. 

The semi-closure (resp. α-closure, semi-pre-closure) of a subset A of (U, τ) is the 
intersection of all semi-closed (resp. α-closed, semi-pre-closed) sets that contains A and 
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is denoted by scl(A) (resp. α – cl(A), spcl(A)). The union of all semi-open subsets of U is 
called the semi-interior of A and is denoted by sin t(A). 

A subset A of a topological space (U, τ) is called: 

1 Generalised closed (briefly g-closed) set if cl(A) ⊆ G whenever A ⊆ G and G ∈ τ. 

2 Semi-generalised closed set (briefly sg-closed) if scl(A) ⊆ G whenever A ⊆ G and G 
is semi-open set in (U, τ). The complement of a sg-closed set is called a sg-open set. 

3 Generalised semi-closed set (briefly gs-closed) if scl(A) ⊆ U whenever A ⊆ G and  
G ∈ τ. 

4 α-generalised closed set (briefly αg-closed) if αcl(A) ⊆ G whenever A ⊆ G and  
G ∈ τ. 

5 Generalised α-closed set (briefly gα-closed) if αcl(A) ⊆ G whenever A ⊆ G and G is 
α-open in (U, τ). 

6 gα**-closed set if cl(A) ⊆ int(cl(G)) whenever A ⊆ G and G is α-open in (U, τ). 

7 Generalised semi-pre-closed (briefly gsp-closed) set if spcl(A) ⊆ G whenever A ⊆ G 
and G ∈ τ. 

8 δ-generalised closed (briefly δg-closed) set if clδ(A) ⊆ U whenever A ⊆ G and G ∈ τ. 

9 Q-set if int(cl(A)) = cl(int(A)). 

3 Fundamentals of rough sets 

This section presents a review of some fundamental notions of rough sets. We refer to 
Abu-Donia et al. (2007), Bonikowski (1994), Chuchro (1993), Cattaneo (1998), Deng  
et al. (2007), Dubois and Prade (1990), Chakrabarty et al. (2000) and Chen and Li (2007) 
for details. 

Motivation for rough set theory has come from the need to represent subsets of a 
universe in terms of equivalence classes of a partition of that universe. The partition 
characterises a topological space, called approximation space A = (U, R), where U is a set 
called the universe and R is an equivalence relation (Biswas, 1994; Chen and Li, 2007). 
The equivalence classes of R are also known as the granules, elementary sets or blocks; 
we will use [x]R ⊆ U to denote the equivalence class containing x ∈ U. In the 
approximation space, we consider two operators ( ) { :[ ] }RR X x U x X= ∈ ⊆  and ( )R X =  
{ : [ ] },Rx U x X∈ ∩ ≠ φ  called the lower approximation and upper approximation of  
X ⊆ U respectively. Also let ( ) ( )POSR X R X=  denote the positive region of X, 

( ) ( )RNEG X U R X= −  denote the negative region of X and ( ) ( ) ( )RBN X R X R X= −  
denote the borderline region of X. 

The degree of completeness can also be characterised by the accuracy measure, in 
which X represents the cardinality of set X as follows: 

( ) ( ) ( ) , ( ) .R X R X R X R X= ≠α φ  
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Accuracy measures try to express the degree of completeness of knowledge. They are 
able to capture how large the boundary region of the datasets is; however, we cannot 
easily capture the structure of the knowledge. A fundamental advantage of rough set 
theory is the ability to handle a category that cannot be sharply defined given a 
knowledge base. Characteristics of the potential datasets can be measured through  
the rough sets framework. We can measure inexactness and express topological 
characterisation of imprecision with: 

1 if ( )  and ( ) ,R X R X U≠ ≠φ  then X is roughly R-definable 

2 if ( )  and ( ) ,R X R X U= ≠φ  then X is internally R-undefinable 

3 if ( )  and ( ) ,R X R X U≠ =φ  then X is externally R-undefinable 

4 if ( )  and ( ) ,R X R X U= =φ  then X is totally R-undefinable. 

We denote the set of all roughly R-definable (resp. internally R-undefinable, externally  
R-undefinable and totally R-undefinable) sets by RD(U) [resp. REUD(U), RUD(U) and 
RTUD(U)]. 

With αR(X) and classifications above we can characterise rough sets by the size of 
the boundary region and structure. Rough sets are treated as a special case of relative sets 
and integrated with the notion of Belmar’s logic (Bonikowski, 1994). 

4 Topological approximation spaces and topological rough classifications 

The approximation space K = (U, R) with an equivalence relation R defines a uniquely 
topological space (U, τR) where τR is the quasi-discrete topology with base U / R. 
Moreover, the lower (resp. upper) approximation of any subset A ⊆ U is exactly the 
interior (resp. closure) of the subset A ⊆ U. In this section, we shall generalise  
Pawlak’s concepts in the case of general relations. Also, we will define a new rough 
approximations using all above topological notions. Hence, the approximation space  
K = (U, R) with the general relation R defines a uniquely topological space (U, τR). 

Let K = (U, R) be an approximation space with general relation R and τR is the 
topology associated with K = (U, R). Then the triple Kτ = (U, R, τR) is called a topological 
approximation space. 

Let Kτ = (U, R, τR) be a topological approximation space. If X ⊆ U, then the 
topological lower approximations of X are defined as follows: 

1 semi-lower approximation of X, ( ) { : ( ), }semiR X G G SEMI U G X= ∪ ∈ ⊆  where 
SEMI(U) is the set of all semi-open sets in Kτ = (U, R, τR) 

2 pre-lower approximation of X, ( ) { : ( ), }preR X G G PRE U G X= ∪ ∈ ⊆  where 
PRE(U) is the set of all pre-open sets in Kτ = (U, R, τR) 

3 α-lower approximation of X, ( ) { : ( ), }R X G G U G X= ∪ ∈ ⊆α β  whereα(U) is the 
set of all α-open sets in Kτ = (U, R, τR) 

4 β-lower approximation of X, ( ) { : ( ), }R X G G U G X= ∪ ∈ ⊆β β  where β(U) is the 
set of all β-open sets in Kτ = (U, R, τR) 
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5 regular-lower approximation of X, ( ) { : ( ), }regularR X G G REG U G X= ∪ ∈ ⊆  where 
REG(U) is the set of all regular open sets in Kτ = (U, R, τR) 

6 semi-regular lower approximation of X, - ( ) { : ( ) orsemi regularR X G G SEMI U= ∪ ∈   
G ∈ CSEMI(U), G ⊆ X} where SEMI(U) and CSEMI(U) are the set of all  
semi-closed sets in Kτ = (U, R, τR) respectively 

7 δ-lower approximation of X, ( ) { : ( ), }δR X G G δ U G X= ∪ ∈ ⊆  where δ(U) is the 
set of all δ-closed sets in Kτ = (U, R, τR) 

8 g-lower approximation of X, ( ) { : ( ), }gR X G G g U G X= ∪ ∈ ⊆  where g(U) is the 
set of all g-closed sets in Kτ = (U, R, τR) 

9 sg-lower approximation of X, ( ) { : ( ), }sgR X G G sg U G X= ∪ ∈ ⊆  where sg(U) is 
the set of all sg-open sets in Kτ = (U, R, τR) 

10 gs-lower approximation of X, ( ) { : ( ), }gsR X G G gs U G X= ∪ ∈ ⊆  where gs(U) is 
the set of all gs-open sets in Kτ = (U, R, τR) 

11 αg-lower approximation of X, ( ) { : ( ), }gR X G G g U G X= ∪ ∈ ⊆α α  whereαg(U) is 
the set of all αg-closed sets in Kτ = (U, R, τR) 

12 gα-lower approximation of X, ( ) { : ( ), }gR X G G g U G X= ∪ ∈ ⊆α α  where gα(U) is 
the set of all gα-closed sets in Kτ = (U, R, τR) 

13 gα**-lower approximation of X, **
**( ) { : ( ),gR X G G g U G X= ∪ ∈ ⊆α α  where 

gα**(U) is the set of all gα**-closed sets in Kτ = (U, R, τR) 

14 gsp-lower approximation of X, ( ) { : ( ), }gspR X G G gsp U G X= ∪ ∈ ⊆  where gsp(U) 
is the set of all gsp-closed sets in Kτ = (U, R, τR) 

15 δg-lower approximation of X, ( ) { : ( ), }δgR X G G δg U G X= ∪ ∈ ⊆  where δg(U) is 
the set of all δg-closed sets in Kτ = (U, R, τR) 

16 Q-lower approximation of X, ( ) { : ( ), }QR X G G Q U G X= ∪ ∈ ⊆  where Q(U) is the 
set of all Q-sets in Kτ = (U, R, τR). 

All the above topological lower approximations coincide with Pawlak’s lower 
approximation when R is an equivalence relation. 

Let Kτ = (U, R, τR) be a topological approximation space. If X ⊆ U, then the 
topological upper approximations of X are defined as follows: 

1 semi-upper approximation of X, ( ) { : ( ), }semiR X F F CSEMI U F X φ= ∪ ∈ ∩ ≠  
where CSEMI(U) is the set of all semi-closed sets in Kτ = (U, R, τR) 

2 pre-upper approximation of X, ( ) { : ( ), }preR X F F CPRE U F X φ= ∪ ∈ ∩ ≠  where 
CPRE(U) is the set of all pre-closed sets in Kτ = (U, R, τR) 

3 α-upper approximation of X, ( ) { : ( ), }R X F F C U F X φ= ∪ ∈ ∩ ≠α α  where Cα(U) 
is the set of all α-closed sets in Kτ = (U, R, τR) 
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4 β-upper approximation of X, ( ) { : ( ), }R X F F C U F X φ= ∪ ∈ ∩ ≠β β  where Cβ(U) 
is the set of all β-closed sets in Kτ = (U, R, τR) 

5 regular-upper approximation of X, ( ) { : ( ), }regularR X F F CREG U F X φ= ∪ ∈ ∩ ≠  
where CREG(U) is the set of all regular closed sets in Kτ = (U, R, τR) 

6 semi-regular upper approximation of X, - ( ) { : ( ),semi regularR X F F CSEMI U= ∪ ∈   
F ∩ X ≠ φ} where CSEMI(U) is the set of all semi-closed sets in Kτ = (U, R, τR) 

7 δ-upper approximation of X, ( ) { : ( ), }δR X F F δ U F X φ= ∪ ∈ ∩ ≠  where δ(U) is 
the set of all δ-closed sets in Kτ = (U, R, τR) 

8 G-upper approximation of X, ( ) { : ( ), }gR X F F g U F X φ= ∪ ∈ ∩ ≠  where g(U) is 
the set of all g-closed sets in Kτ = (U, R, τR) 

9 sg-upper approximation of X, ( ) { : ( ), }sgR X F F Csg U F X φ= ∪ ∈ ∩ ≠  where 
Csg(U) is the set of all sg-closed sets in Kτ = (U, R, τR) 

10 gs-upper approximation of X, ( ) { : ( ), }gsR X F F Cgs U F X φ= ∪ ∈ ∩ ≠  where 
Cgs(U) is the set of all gs-closed sets in Kτ = (U, R, τR) 

11 αg-upper approximation of X, ( ) { : ( ), }gR X F F g U F X φ= ∪ ∈ ∩ ≠α α  where 
αg(U) is the set of all αg-closed sets in Kτ = (U, R, τR) 

12 gα-upper approximation of X, ( ) { : ( ), }gR X F F g U F X φ= ∪ ∈ ∩ ≠α α  where 
gα(U) is the set of all gα-closed sets in Kτ = (U, R, τR) 

13 gα**-upper approximation of X, **
**( ) { : ( ), }gR X F F g U F X φ= ∪ ∈ ∩ ≠α α  where 

gα**(U) is the set of all gα**-closed sets in Kτ = (U, R, τR) 

14 gsp-upper approximation of X, ( ) { : ( ), }gspR X F F gsp U F X φ= ∪ ∈ ∩ ≠  where 
gsp(U) is the set of all gsp-closed sets in Kτ = (U, R, τR) 

15 δg-upper approximation of X, ( ) { : ( ), }δgR X F F δg U F X φ= ∪ ∈ ∩ ≠  where δg(U) 
is the set of all δg-closed sets in Kτ = (U, R, τR) 

16 Q-upper approximation of X, ( ) { : ( ), }QR X F F Q U F X φ= ∪ ∈ ∩ ≠  where Q(U) is 
the set of all Q-sets in Kτ = (U, R, τR). 

All the above topological upper approximations coincide with Pawlak’s upper 
approximation when R is an equivalence relation. 

Motivation for topological rough set theory has come from the need to represent 
subsets of a universe in terms of topological classes of the topological base generated by 
the general binary relation defined on the universe. That base characterises a topological 
space, called topological approximation space Kτ = (U, R, τR). The topological classes of 
R are also known as the topological granules, topological elementary sets or topological 
blocks; we will use Gxm ∈ τ, m ∈ {semi, pre, α, β, regular, semi-regular, δ, g, sg,  
αg, gα, gα**, gsp, δg, Q} to denote the topological class containing x ∈ U. In the 
topological approximation space, we consider two operators ( ) { : }m xmR X x U G X= ∈ ⊆  
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and ( ) { : }m xmR X x U G X= ∈ ∩ ≠ φ  called the topological lower approximation and 
topological upper approximation of X ⊆ U respectively. Also let ( ) ( )m mPOS X R X=  
denotes the topological positive denotes region of X, ( ) ( )m mNEG X U R X= −  denote the 
topological negative region of X and ( ) ( ) ( )m m mBND X R X R X= −  denote the topological 
borderline region of X. 

The degree of topological completeness can also be characterised by the topological 
accuracy measure, in which | X | represents the cardinality of set X as follows: 

( )
( ) ,

( )
m

m
m

R X
X

R X
=α  

where X ≠ φ. 
Topological accuracy measures try to express the degree of completeness of 

knowledge. 

Example 4.1: Let U = {a, b, c, d} be a universe and a relation R defined by R = {(a, a), 
(a, c), (a, d), (b, b), (b, d), (c, a), (c, b), (c, d), (d, a)}, thus aR = {a, c, d}, bR = {b, d},  
cR = {a, b, d} and dR = {a}. Then the topology associated with this relation R is  
τR = {U, φ, {a}, {d}, {a, d}, {b, d}, {a, b, d}, {a, c, d}} and β(U) = {U, φ, {a}, {d},  
{a, c}, {a, d}, {b, d}, {c, d}, {a, b, d}, {a, c, d}, {b, c, d}}. So (U, R, τR) is a topological 
approximation space using β-open sets. 

Let (U, R, τR) be a topological approximation space. The universe U can be divided 
into many regions with respect to any X ⊆ U and with respect to any m ∈ {semi, pre, α, 
β, regular, semi-regular, δ, g, sg, αg, gα, gα**, gsp, δg, Q} as follows: 

1 internal edge of X, - ( ) ( )in Edge X X R X= −  

2 m-internal edge of X, - ( ) ( )mm Edge X X R X= −  

3 external edge of X, - ( ) ( )mex Edge X R X X= −  

4 m-external edge of X, - ( ) ( )mm Edge X R X X= −  

5 boundary of X, ( ) ( ) ( )BN X R X R X= −  

6 m-boundary of X, ( ) ( ) ( )m m mBN X R X R X= −  

7 exterior of X, ( ) ( )EX X X R X= −  

8 m-exterior of X, ( ) ( )mm EX X X R X− = −  

9 the region ( ) ( )mR X R X−  

10 the region ( ) ( )mR X R X−  

11 the region ( ) ( )mR X R X−  

12 the region ( ) ( ).mR X R X−  



   

 

   

   
 

   

   

 

   

    Multi topological approximations of rough set theory 9    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 m-regions of the universe U (see online version for colours) 

 

As shown in Figure 1, the study of topological approximation spaces is a generalisation 
for the study of approximation spaces. Because of the elements of the regions 

( ) ( )m mR X R X−  will be defined well in X, while this region was indefinable in Pawlak’s 
approximation spaces. Also, the elements of the region ( ) ( )m mR X R X−  do not be belong 
to X, while these elements was not well defined in Pawlak’s approximation spaces. 

Our aim is to reduce the boundary region of X in Pawlak’s approximation space by 
using m-boundary region of X. Also, we aim to extend the exterior region of X which 
contains the elements did not belong to X by m-exterior region of X. 

Proposition 4.1: For any topological approximation space (U, R, τR), the following hold 
of any X ⊆ U: 

1 ( ) - ( ) - ( )BN X in Edge X ex Edge X= ∪  

2 ( ) - ( ) - ( )mBN X m Edge X m Edge X= ∪  

3 ( ) ( ) - ( ) - ( )mR X R X ex Edge X m Edge X− = ∪  

4 ( ) ( ) - ( ) - ( )mR X R X m Edge X in Edge X− = ∪  

5 - ( ) - ( ) ( ( ) ( ) ( ) ( ))m min Edge X m Edge X R X R X R X R X= ∪ − −  

6 - ( ) - ( ) ( ( ) ( )).mex Edge X m Edge X R X R X= ∪ −  

Proof: See Figure 1. 
Let (U, R, τR) be a topological approximation space. For any m ∈ {semi, pre, α, β, 

regular, semi-regular, δ, g, sg, αg, gα, gα**, gsp, δg, Q} and for any subset X ⊆ U we 
define the following memberships: 

1 x belongs strong to X if ( )x R X∈  

2 x belongs weak to X if ( )x R X∈  
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3 x belongs m-strong to X if ( )mx R X∈  

4 x belongs m-weak to X if ( ).mx R X∈  

Example 4.2: Let U = {a, b, c, d} be a universe and a relation R defined by R = {(a, a), 
(d, c), (d, d), (c, a), (c, d), (c, c)}, thus aR = {a}, bR = φ, cR = {a, c, d} and dR = {c, d}. 
Then the topology associated with this relation is τR = {U, φ, {a}, {c, d}, {a, c, d}}. So 
(U, R, τR) is a topological approximation space. Let X = {b, c, d}, we have b is m-strong 
belongs to X but b is not strong belongs to X. Also, let Y = {c} be another subset of U. 
Then we have d is weak belongs to Y but d is not m-weak belongs to Y. 

The degree of topological completeness can also be characterised by the topological 
accuracy measure (m-accuracy), in which | X | represents the cardinality of set X as 
follows: ( ) | ( ) | / | ( ) |,m m mX R X R X=α  where X ≠ φ. 

According to Example 4.1, Table 1 showing the differences among the degree of 
Pawlak’s accuracy measure α(X) and β-accuracy measure αβ(X) for some subsets of U if 
we take m = β. 

Table 1 Comparison between Pawlak’s accuracy measure and β-accuracy measure 

X α(X) (Pawlak) αβ(X) 

{a} 50% 100% 
{a, c} 50% 100% 
{b, d} 33.3% 100% 
{b, c, d} 66.6% 100% 

The β-accuracy measure of the class of all β-open sets is accurate than the other measures 
and the following example and its followed diagram illustrate this fact. 

Example 4.3: Let U = {a, b, c, d} be a universe and for some relations we have the 
topology τR = {U, φ, {d}, {a, b}, {a, b, d}}. So (U, R, τR) is a topological approximation 
space. Then we have the following knowledge bases: 

{ }( ) , , { }, { , } ,REG U U φ d a b=  

{ }( ) , , { }, { , }, { , }, { , , }, { , , } ,SEMI U U φ d a b c d a b c a b d=  

{ }( ) , , { }, { }, { }, { , }, { , }, { , }, { , , }, { , , }, { , , } ,PRE U U φ a b d a d a b b d a c d a b d b c d=  

{ }( ) , , { }, { , }, { , , } ,U U φ d a b a b d=α  

, , { }, { }, { }, { , }, { , }, { , }, { , },
( ) .

{ , }, { , }, { , , }, { , , }, { , , }, { , , }
U φ a b d a d a b a c b d

U
b c c d a b c a c d a b d b c d

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

β  

Figure 2 illustrated the relationships among these knowledge bases. 
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Figure 2 Some knowledge bases of the universe U (see online version for colours) 

 

Proposition 4.2: For any topological approximation space Kτ = (U, R, τR), the following 
are hold for any X, Y ⊆ U: 

1 ( ) ( ) ( )m m mR X Y R X R Y∪ ⊇ ∪  

2 ( ) ( ) ( )m m mR X Y R X R Y∪ ⊇ ∪  

 

3 ( ) ( ) ( )m m mR X Y R X R Y∩ ⊆ ∩  

4 ( ) ( ) ( ).m m mR X Y R X R Y∩ ⊆ ∩  

Proof: We prove Part 1 and other parts are similar to it. 
Since we have X ⊆ X ∪ Y and Y ⊆ X ∪ Y. Then ( ) ( )m mR X R X Y⊆ ∪  and 
( ) ( )m mR Y R X Y⊆ ∪  then ( ) ( ) ( ).m m mR X Y R X R Y∪ ⊇ ∪  The equality of all parts in the 

above proposition is not holding as shown in the following example. 

Example 4.3: According to Example 4.1 we have: 

• If X = {d}, Y = {a, b}, then we have ( ) { , , }, ( ) { },m mR X Y a b d R X d∪ = =  
( ) { }.mR Y a=  Therefore, ( ) ( ) ( ).m m mR X Y R X R Y∪ ≠ ∪  

• If X = {d}, Y = {a, b}, then we have ( ) { , , , }, ( ) { , },m mR X Y a b c d R X b d∪ = =  
( ) { , }.mR Y a b=  Therefore, ( ) ( ) ( ).m m mR X Y R X R Y∪ ≠ ∪  

• If X = {a, b, c}, Y = {b, c, d}, then we have ( ) , ( ) { , }m mR X Y φ R X a c∩ = =  
( ) { , , }.mR Y b c d=  Therefore, ( ) ( ) ( ).m m mR X Y R X R Y∩ ≠ ∩  

• If X = {b}, Y = {c, d}, then we have ( ) , ( ) { }, ( ) { , , }.m m mR X Y φ R X b R Y b c d∩ = = =  
Therefore, ( ) ( ) ( ).m m mR X Y R X R Y∩ ≠ ∩  
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5 Many m-topological approximations 

We will give the deviation to four concepts namely, membership, equality, inclusion and 
power set of our approach using any m-open set. 

Definition 5.1: Let Kτ = (U, R, τR) be a topological approximation space and X ⊆ U. Then 
we say that: 

1 x is τR-surely belongs to X, written ,τx X∈  if ( )mx R X∈  

2 x is τR-possibly belongs to X, written ,τx X∈  if ( ).mx R X∈  

These two membership relations andτ τ∈ ∈  are called τR-strong and τR-weak membership 
relations respectively and it is clear that τx X∈  implies to x ∈ X and x ∈ X implies to 

.τx X∈  
The converse is not true as we illustrate with the following example: 

Example 5.1: Let U = {a, b, c, d} be the universe of discourse and R is a binary relation 
on U such that: aR = {a}, bR = {b}, cR = {b, c, d} and dR = {a}, then τR = {U, φ, {a}, 
{b}, {a, b}, {a, d}, {a, b, d}}, let X = {a, c}, then ( ) { }mR X a=  and ( ) { , , }mR X a c d=  it 
is clear that c ∈ X but ( ),mc R X∉  i.e., non- τc X∈  and also ( ),md R X∈  i.e., τd X∈  but 
d ∉ X. 

Proposition 5.1: Let Kτ = (U, R, τR) be a topological approximation space and X, Y ⊆ U. 
Then by using the properties of approximations we can prove the following facts: 

1 if X ⊆ Y, then ( τx X∈  implies to  and τ τx Y x X∈ ∈  implies to )τx Y∈  

2 ( )τx X Y∈ ∪  if and only if  or τ τx X x Y∈ ∈  

3 ( )τx X Y∈ ∩  if and only if  and τ τx X x Y∈ ∈  

4 if  or ,τ τx X x Y∈ ∈  then ( )τx X Y∈ ∪  

5 if ( )τx X Y∈ ∩  then  and τ τx X x Y∈ ∈  

6 ( )τx X∈ −  if and only if non- τx X∈  

7 ( )τx X∈ −  if and only if non- .τx X∈  

Remark 5.1: In the case of R is an equality relation, all these memberships relations τ∈  
and τ∈  are the same and coincides with ordinary membership relation ∈. We can 
redefine the topological rough approximations by using τ∈  and τ∈  as follow: For any  
X ⊆ U, ( ) { : }τR X x U x X= ∈ ∈  and ( ) { : }.τR X x U x X= ∈ ∈  

Definition 5.2: Let Kτ = (U, R, τR) be a topological approximation space. Then the two 
subset X, Y ⊆ U are called: 

1 τR-roughly bottom-equal in Kτ = (U, R, τR), written ~ ,τX Y  if ( ) ( )m mR X R Y=  

2 τR-roughly top-equal in Kτ = (U, R, τR), written ~ ,τX Y  if ( ) ( )m mR X R Y=  
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3 τR-roughly equal in Kτ = (U, R, τR), written ,τX Y≈  if ~τX Y  and ~ .τX Y  

Definition 5.3: Let Kτ = (U, R, τR) be a topological approximation space. Then the subset 
X ⊆ U is said to be: 

1 τR-dense in Kτ = (U, R, τR) if ~ τX U  

2 τR-co-dense in Kτ = (U, R, τR) if ~ τX φ  

3 τR-dispersed in Kτ = (U, R, τR) if ~ τX U  and ~ .τX φ  

Two different sets which are not equal in ordinary set theory, can be equal 
(approximately) in our generalised topological rough sets as the following example 
illustrates: 

Example 5.2: Consider U = {a, b, c, d, e} be the universe of discourse and R is a binary 
relation on U where aR = {a}, bR = {c, d}, cR = {e, d}, dR = {d, d} and eR ={e}. Then  
τR ={U, φ, {a}, {e}, {a, d}, {a, e}, {a, c, e}, {a, d, e}, {a, c, d, e}}. 

Let X1 = {a, c, d}, Y1 = {a, b, d}, X2 = {b, c, d} and Y2 = {a, b, d, e}. Then 
1 1 1 1( ) { , } ( ), i.e., ~m m τR X a b R Y X Y= =  and 1 1 1 1( ) { , , , } ( ), i.e., ~ .m m τR X a b c d R Y X Y= =  

Thus, 1 1τX Y≈  although X1 ≠ Y1. Also 2 2( )= and ( ) ,m mR X R Y U=φ  then 2 ~τX φ  and 
2 ~ τY U  that is Y2 is τR-dense and X2 is τR-co-dense in Kτ = (U, R, τR). 

Proposition 5.2: Let Kτ = (U, R, τR) be a topological approximation space and X, Y, X′,  
Y′ ⊆ U. Then: 

1 if ~ ,τX Y  then ( ) ~ ~τ τX Y X Y∪  

2 if ~ ,τX Y  then ( ) ~ ~τ τX Y X Y∩  

3 if ~τX X ′  and ~ ,τY Y ′  then ( ) ~ ( )τX Y X Y′ ′∪ ∪  

4 if ~τX X ′  and ~ ,τY Y ′  then ( ) ~ ( ).τX Y X Y′ ′∩ ∩  

Proof: 

1 Let ~ ,τX Y  then ( ) ( ).m mR X R Y=  But ( ) ( ) ( ).m m mR X Y R X R Y=∪ ∪  Then 
( ) ( ) ( ) ( ),m m m mR X Y R X R X R X= =∪ ∪  and ( ) ( ) ( ) ( ),m m m mR X Y R Y R Y R Y= =∪ ∪  

hence ( ) ~ ~ .τ τX Y X Y∪  

2 Similarly as (1). 

3 Let ~τX X ′  and ~ ,τY Y ′  then ( ) ( )m mR X R X ′=  and ( ) ( ).m mR Y R Y ′=  Thus, 
( ) ( ) ( ) ( ),m m m mR X R Y R X R Y′ ′=∪ ∪  which implies that ( ) ( ).m mR X Y R X Y′ ′=∪ ∪  

Thus, ( ) ~ ( ).X Y X Y′ ′∪ ∪  

4 By similar way as in (3).  

Proposition 5.3: Let Kτ = (U, R, τR) be a topological approximation space and X, Y ⊆ U. 
Then: 
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1 X is τR-dense if and only if (–X) is τR-co-dense 

2 X is τR-dispersed if and only if (–X) is τR-dispersed 

3 any superset of τR-dense set is also τR-dense 

4 any subset of τR-co-dense set is also τR-co-dense. 

Proof: 

1 Let X is dense in Kτ = (U, R, τR) if and only if ~τX U  iff ( ) ( ).m mR X R U=  But 
( ) ( ),m mR X R X= − −  hence X is τR-dense iff ( ) ( ) ( )m m mR X R U R− − = − − = − φ  iff  
(– ) ( )m mR X R= φ  iff (–X) is τR-co-dense. 

2 Let X is τR-dispersed in Kτ = (U, R, τR) iff X is τR-dense and τR-co-dense iff (–X) is  
τR-co-dense and τR-dense iff (–X) is τR-dispersed 

3 Let Y is a superset of X and X is τR-dense. Then X ⊆ Y and ~ ,τX U  hence 
( ) ( )m mR X R Y⊆  and ( ) ( ) ,m mR X R U U= =  which means that ( ),mU R Y⊆  but 
( )mR Y U⊆  then ( ) ( ),m mR Y U R U= =  that is ~τY U  and Y is τR-dense. 

4 By similar way as in (3).  
 

Proposition 5.4: Let Kτ = (U, R, τR) be a topological approximation space, then the lower 
(resp. the upper) approximation of any subset X ⊆ U, ( )mR X  (resp. ( ))mR X  is the 
intersection (resp. the union) of all sets Y such that ~τX Y  (resp. ~ ).τX Y  

Proof: First, let Y ⊆ U such that ~ ,τX Y  then ( ) ( ).m mR X R Y=  But ( ) ,mR Y Y⊆   
∀Y ⊆ U, hence ( ) { : ~ }.m τR X Y U X Y⊆ ⊆∩  Now, since ( ( )) ( ),m m mR R X R X=  then 

( ) ~ ,m τR X Y  thus { : ~ } ( ).τ mY U X Y R X⊆ ⊆∩  Then we have ( ) { :mR X Y U= ⊆∩  
~ }.τX Y  The last part of the proof is by similar way.  

Proposition 5.5: Let Kτ = (U, R, τR) be a topological approximation space and X, Y ⊆ U. 
Then: 

1 ~τX Y  if and only if ( ) ~ ( )τX Y− −  

2 if ~  or ~ ,τ τX Yφ φ  then ( ) ~τX Y∩ φ  

3 if ~  or ~ ,τ τX U Y U  then ( ) ~ .τX Y U∪  

Proof: 

1 Is obvious. 

2 Let ~  or ~ ,τ τX Yφ φ  then ( ) ( )m mR X R= =φ φ  or ( ) ( ) .m mR Y R= =φ φ  Thus, 
( ) ( ) ( ) ( ),m m m mR X Y R X R Y R= = =∩ ∩ φ φ  that is ( ) ~ .τX Y∩ φ  

3 By similar way as in 2.  
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Proposition 5.6: The rough equalities ~ , ~ andτ τ τ≈  are equivalence relations on the 
power set P(U) in Kτ = (U, R, τR). 

Proof: Clearly, for any X ⊆ U, ( ) ( )m mR X R X=  and ( ) ( ),m mR X R X=  thus ~ ,τX X  
~ τX X  and ,τX X≈  and thus ~ , ~ andτ τ τ≈  are reflexive relations. Let ~ ,τX Y  
~  and ,τ τX Y X Y≈  then ( ) ( ) and ( ) ( ),m m m mR X R Y R X R Y= =  then ~ , ~τ τY X Y X  

and ,τY X≈  that is ~ , ~ andτ τ τ≈  are symmetric relations. If ~ and ~ ,τ τX Y Y Z  then 
( ) ( ) and ( ) ( ),m m m mR X R Y R Y R Z= =  and thus ( ) ( )m mR X R Z=  and ~ ,τX Z  that is 

~ , ~ andτ τ τ≈  are transitive relations. Thus, ~ , ~ andτ τ τ≈  are equivalence relations.  

Definition 5.4: Let Kτ = (U, R, τR) be a topological approximation space and X, Y ⊆ U. 
We say that: 

1 X is ‘τR-rough lower subset’ in Y, written ,τX Y⊂  if ( ) ( )m mR X R Y⊆  

2 X is ‘τR-rough upper subset’ in Y, written ,τX Y⊂  if ( ) ( )m mR X R Y⊆  

3 X is ‘τR-rough subset’ in Y, written ,τX Y⊂  if τX Y⊂  and .τY X⊂  

The rough inclusion of sets does not imply the inclusion of sets as the following example 
illustrates. 

Example 5.3: Consider U = {a, b, c, d} be the universe of discourse and R is a binary 
relation to U, where aR = {a}, bR = {b}, cR = {b, c} and dR = {a}. Then τR = {U, φ, {a}, 
{b}, {a, b}, {a, d}, {b, c}, {a, b, c}, {a, b, d}} and let X = {b, c} and Y = {a, b, d}, 
clearly X ⊄ Y and we have ( ) { }, ( ) { , , }, ( ) { , , }m m mR X b R X a b d R X b c d= = =  and 

( ) .mR Y U=  Then τX Y⊂  and τX Y⊂  which implies that τX Y⊂  although X ⊄ Y. 

Proposition 5.7: Let Kτ = (U, R, τR) be a topological approximation space and X, Y ⊆ U. 
Then 

1 If X ⊆ Y, then ,τ τX Y X Y⊂ ⊂  and τX Y⊂  

2 τX Y⊂  and τY X⊂  if and only if ~τX Y  

3 τX Y⊂  and τY X⊂  if and only if ~τX Y  

4 τX Y⊂  and τY X⊂  if and only if .τX Y≈  

Proof: 

1 Is obvious. 

2 Let τX Y⊂  and τY X⊂  iff ( ) ( )m mR X R Y⊆  and ( ) ( )m mR Y R X⊆  iff 
( ) ( )m mR X R Y=  iff ~ .τX Y  

The proof of Parts 3 and 4 are similar as Part 2.  

Proposition 5.8: Let Kτ = (U, R, τR) be a topological approximation space and X, Y, X′, Y′ 
⊆ U. Then: 
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1 τX Y⊂  if and only if ( ) ~ τX Y X∩  

2 τX Y⊂  if and only if ( ) ~ τX Y Y∪  

3 ( ) ( )τ τX Y X X Y⊂ ⊂∩ ∪  

4 if X ⊆ Y, ~τX X ′  and ~ ,τY Y ′  then τX Y′ ′⊂  

5 if X ⊆ Y, ~τX X ′  and ~ ,τY Y ′  then τX Y′ ′⊂  

6 if X ⊆ Y, τX X ′≈  and ,τY Y ′≈  then τX Y′ ′⊂  

7 if τX X′ ⊂  and ,τY Y′ ⊂  then ( ) ( )τX Y X Y′ ′ ⊂∪ ∪  

8 if τX X′ ⊂  and ,τY Y′ ⊂  then ( ) ( ).τX Y X Y′ ′ ⊂∩ ∩  

Proof: 

1 Let τX Y⊂  iff ( ) ( )m mR X R Y⊆  iff ( ) ( ) ( )m m mR X R Y R X∩ =  iff 
( ) ( )m mR X Y R X=∩  iff ( ) ~ .τX Y X∩  

2 By similar way as in 1. 

 

3 Since ( ) ( ) ( )m m mR X Y R X R Y=∩ ∩  and ( ) ( ) ( ).m m mR X Y R X R Y=∪ ∪  Then 
( ) ( )m mR X Y R X⊆∩  and ( ) ( ),mR X X Y⊆ ∪  and hence ( ) ( ).τ τX Y X X Y⊂ ⊂∩ ∪  

4 Let X ⊆ Y, ~τX X ′  and ~ ,τY Y ′  then ( ) ( ), ( ) ( )m m m mR X R Y R X R X ′⊆ =  and 
( ) ( ).m mR Y R Y ′=  Thus, ( ) ( )m mR X R Y′ ′⊆  and then .τX Y′ ′⊂  

5 and 6 by similar way as in 4. 

7 Let τX X′ ⊂  and ,τY Y′ ⊂  then ( ) ( )m mR X R X′ ⊆  and ( ) ( ),m mR Y R X′ ⊆  hence 
( ) ( ) ( ) ( ),m m m mR X R Y R X R Y′ ′ ⊆∪ ∪  and ( ) ( ).m mR X Y R X Y′ ′ ⊆∪ ∪  That is 

( ) ( ).τX Y X Y′ ′ ⊂∪ ∪  

8 By similar way as in (7).  

Proposition 5.9: Let Kτ = (U, R, τR) be a topological approximation space and X, Y, Z ⊆ 
U. Then 

1 if τX Y⊂  and ~ ,τX Z  then τZ Y⊂  

2 if τX Y⊂  and ~ ,τX Z  then τZ Y⊂  

3 if τX Y⊂  and ,τX Z≈  then .τZ Y⊂  

Proof: Obvious. 

Proposition 5.10: The rough inclusion relations , andτ τ τ⊂ ⊂ ⊂  are represented ordering 
relations on P(U). 

Proof: Obvious. 
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The following theorems study the properties and relationships among boundary, positive 
and negative regions in Pawlak’s approach and in our topological approximation space. 

Theorem 5.1: Let Kτ = (U, R, τR) be a topological approximation space and for any subset 
X ⊂ U we have: 

1 ( ) ( )m mBND X R X φ∩ =  

2 ( ) ( )m mBND X NEG X φ∩ =  

3 ( ) ( ) ( )m m mBND X R X R X∪ =  

4 ( ), ( ) and ( )m m mR X NEG X BND X  form a partition of U. 

Proof: You can make use of Figure 1. 

Theorem 5.2: Let Kτ = (U, R, τR) be a topological approximation space and for any 
subsets X, Y ⊂ U we have: 

1 BNDm(U) = φ 

2 BNDm(X) = BNDm(U – X) 

 

3 BNDm(BNDm(X)) ⊂ BNDm(X) 

4 BNDm(X ∩ Y) ⊂ BNDm(X) ∪ BNDm(Y). 

Proof: 1 and 2 are obvious, by the definitions. 

3 ( ( )) ( ( ) ( ))
( ( ) ( )

 ( ( ( ) ( ))
( ) ( )

( ).

m m m m m

m m m

m m m

m m

m

BND BND X BND R X R U X
R R X R U X

R U R X R U X
R X R U X
BND X

= ∩ −

= ∩ −

∩ − ∩ −

⊂ ∩ −
=

 

4 ( ) ( ) ( ).m m mBND X Y R X Y R U X Y∩ = ∩ ∩ − ∩   

Theorem 5.3: Let Kτ = (U, R, τR) be a topological approximation space and for any subset 
X, Y ⊂ U we have: 

1 U = NEGm(φ) 

2 ( ) ( )m mNEG X R U X= −  

3 X ∩ NEGm(X) = φ 

4 NEGm (U – NEGm(X)) = NEGm(X) 

5 NEGm(X ∪ Y) ⊂ NEGm(X) ∪ NEGm(Y) 

6 NEGm(X ∩ Y) ⊃ NEGm(X) ∩ NEGm(Y). 

Proof: 1, 2, 3 and 4 are obvious. 
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5 ( ) ( ) ( ( ) ( ))
( ( )) ( ( )) ( ) ( ).

m m m m

m m m m

NEG X Y U R X Y U R X R Y
U R X U R Y NEG X NEG Y

∪ = − ∪ ⊂ − ∪

= − ∩ − ⊂ ∪

 

6 ( ) ( ) ( ( )) ( ( )),
( ( ) ( )) ( )

( ).

m m m m

m m m

m

NEG X NEG Y U R X U R Y
U R X R Y U R X Y
NEG X Y

∩ = − ∩ −

= − ∪ ⊂ − ∩
= ∩

 

6 Conclusions 

The objectives of this work are to study a new alternative method of data mining. It is 
about the rough set theory and its generalisations to topological notions used for the 
mining of decision rules. The advantage of these generalisations is a mathematical base 
of rough sets and the possibility of mathematical description of this problem. Rough sets 
seem to be advantageous for mining of incomplete information as well as for other 
algorithms. 
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