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Abstract: In this paper, we propose a simple approach to for exploiting 
optimally the information provided by technical analysis. Our optimal asset 
allocation strategy is easy to apply in practice and is quite robust to model 
misspecifications. Empirically, we apply the strategy to the US stock market 
from January 1926 to March 2011. In addition, we also examine strategy’s 
performances during the recent financial crisis as well as over all the bear 
markets of the past 85 years. We find that the proposed strategy outperforms 
the usual fixed asset allocation strategy substantially, and does extremely well 
during the recent financial crisis. 
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1 Introduction 

Asset allocation is one of the most important decisions to make in portfolio management. 
One has to determine not only the initial investments across asset classes, but also how 
often to rebalance the allocations over time in respond to new investment needs and 
market conditions. While there is a huge literature of research and practice about asset 
allocation (see e.g., Campbell and Viceira, 2002; Grinold and Kahn, 1999; and references 
therein), little attention has been paid to the use of an important source of information, 
the information implied by technical analysis from the stock market. 

Technical indicators, such as moving averages and price-momentum signals that 
represent market price reactions to news and events, capture potentially important 
economic factors which are relevant for future market returns. The construction, use and 
study of such indicators are known as technical analysis to the investment community. In 
practice, major brokerage firms and newspapers have been publishing technical 
commentary on the market for years. With today’s technology, technical indicators are 
readily available from various trading platforms, and are an important component of the 
real-time information set used by traders and investors (e.g., Billingsley and Chance, 
1996; Covel, 2005; Park and Irwin, 2007; Lo and Hasanhodzic, 2010). However, 
academics have long been sceptical about the usefulness of technical analysis. As a 
result, there are few academic studies on its effectiveness in either predicting the market 
returns or improving portfolio performance. Cowles (1933) and Fama and Blume (1966) 
are examples of earlier empirical studies that find mixed evidence on the investment 
value of technical analysis. However, Brock et al. (1992), and especially Lo et al. (2000), 
do find strong evidence of profitability by using technical strategies in the US stock 
market. Overall, existing studies on technical analysis are mostly about utilising the buy 
or sell signals generated by technical analysis in ad hoc ways without using a utility 
maximisation framework. Averting this trend, Zhu and Zhou (2009) provide a theoretical 
foundation to technical analysis. Emphasising the combination of both investors’ utility 
(investment objective) and the quality of the signals, they show that technical analysis 
adds value to commonly used allocation rules (that invest fixed proportions of wealth into 
stocks), and especially so when there is uncertainty about the model used to fit the stock 
prices. 

This paper provides both the theory and empirical applications of using technical 
analysis optimally in a simple asset allocation model. Theoretically, unlike Zhu and Zhou 
(2009) who use a continuous-time model of the geometric Brownian motion type, we use 
a discrete-time generic model and extend their results to our model, making easy 
applications of the ideas and strategies in practice. Moreover, our proposed optimal 
strategy is quite robust to model misspecifications. Empirically, we apply the theoretical 
allocation results, various investment rules, to the US stock market from January 1926 to 
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March 2011. In addition, we also examine the performances of the rules during the recent 
financial crisis as well as over all the bear markets of the 85 years. 

There are three major empirical findings. First, our proposed generalised moving 
average (GMA) investment rule, based on the signals from the technical analysis, 
outperforms substantially over the standard fixed allocation rule over the entire sample 
period, in terms of both certainty-equivalent (CE) returns and Sharpe ratios. Second, it 
performs extremely well during the recent financial crisis and over all the bear markets. 
For example, an investor with a risk aversion parameter of 4 would have incurred a loss 
of 36.39% CE return during the recent financial crisis, but he would have lost only 8.51% 
had he used the strategy incorporating technical signals. Third, in terms of the drawdown 
measure (the percentage drop from top to bottom), the performances of the GMA are far 
better than standard fixed allocation rule. 

There are two important issues about technical analysis that need to be clarified to 
some practitioners and many academics. First, the profitability of technical analysis 
requires the predictability of the stock market, but it does not imply in any way that the 
market is inefficient. If the stock market is entirely unpredictable, then any evidence on 
the profitability of technical analysis is simply a result of chance because the trading 
signals are random noises and useless. However, the stock market is indeed predictable 
with ample evidence. For example, Pástor and Stambaugh (2001) provide strong  
in-sample evidence of predictability in a predictive system, and Rapach et al. (2010) find 
that the US stock market can even be consistently predicted out-of-sample by combining 
forecasts from the common economic variables. Ang and Bekaert (2007), Hjalmarsson 
(2010), and Henkel et al. (2011) find similar predictability based on macroeconomic 
variables across countries. Cochrane (2011) explains how this predictability literature 
profoundly shifts the emphasis of asset pricing theory from expected cash flows to 
discount rates.1 Theoretically, the profitability of the stock market arises from the change 
of the investment opportunity set. Recent asset pricing models, such as Campbell and 
Cochrane (1999), Bansal and Yaron (2004), and Zhou and Zhu (2011), all imply a 
significant degree of predictability of the stock market. In practice, due to liquidity 
reasons, a large purchase may take days to finish, and the stock market may not 
incorporate all information at once. The bull market takes time to run and to respond to 
long-term expansion cycles of the economy. 

The predictability of the stock market is not equal to market inefficiency. This is 
because the predictability is far away from being 100% accurate, and there is a significant 
economic risk associated with it. Hence, there is no guarantee that one can make large 
risk-adjusted returns out of the predictability found by aforementioned studies beyond 
transaction costs. However, it is quite possible that, as the case here in this paper, the 
predictability can help to outperform an investment strategy, on a risk-adjusted basis, that 
completely ignores it. Indeed, in a rational market, the predictability, though exists, must 
be small. Theoretically, given an equilibrium asset pricing model, Ross (2005) and Zhou 
(2010) provide upper bounds on the degree of predictability. 

The second issue about technical analysis that is often misunderstood is about its 
information context. Some researchers believe that technical indicators contain no 
important economic information about the stock market at all. While it is quite possible 
that if one has the true information about an asset or the market, one can profit from it 
without using technical analysis at all which provides no additional useful information in 
this idealised case. But in the real world, no one is sure either he has the true information 
or has all the information. Even if he does have all the true information, there is no 
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guarantee that the market will react the way he expects, as this will depend on also how 
that information is shared in the market and what investment demand the other investors 
have. Indeed, the equilibrium market price every day is an aggregate of all the 
information and reactions of all the participants to this information, and so the result 
depends on, among other factors, their changing investment objectives and wealth. 
Therefore, recent prices, which reflect how others react to the information, should be 
useful for an investor to learn about the market beyond what information he has. Indeed, 
as shown by Neely et al. (2012), technical indicators can help predict the stock market far 
better than using available macroeconomic variables alone. Another example is that, prior 
to the invention of the term systemic risk, technical indicators already capture such a risk 
during the financial crisis, long before economists and practitioners use measures of it to 
predict or explain the market. The point is that technical indicators provide a unique 
source of market information which cannot be replaced by any other well defined 
economic variables. In short, technical analysis reflects how the market reacts not only to 
past information, but also to pending future news and anticipated events. It contains 
unique information about market deriving factors unavailable elsewhere. 

The rest of the paper is organised as follows. Section 2 derives the optimal GMA 
investment rule and discusses its properties. Section 3 studies the performances of the 
GMA rule, the usual MA rule and the standard fixed allocation rule using the 85 years of 
stock market data: over the entire period, during the recent financial crisis and over all the 
bear markets. Section 4 concludes. 

2 The GMA rule 

In this section, we derive our optimal investment rule that uses technical analysis, 
primarily the moving average (MA) indicator. Our rule, called the generalised MA or the 
GMA, is a combination of the standard MA rule and a fixed asset allocation rule. This 
fixed asset allocation rule is in general different from the standard fixed asset allocation 
rule which is obtained under the assumption that the stock returns are unpredictable. 

For simplicity, we consider the case of a single risky asset and a riskless asset, whose 
returns resemble the market and the T-bill returns. Let Rft be riskless rate of continuously 
compounded return, then 

( )1 1log /t t t ftR S S R+ += −  

is the excess return, where St is the price of the risky asset at time t. Assume that 

[ ]1 1 1,t t t t tR E R σ ε+ + += +  (1) 

where 1[ ]t tE R +  is the expected excess return at time t, εt+1 is innovation at time t + 1, and 
σt the conditional volatility at time t. In contrast, Zhu and Zhou (2009) assume that the 
return model is continuous and 1[ ]t tE R +  is mean-reverting. Here we do not make such 
assumptions. In fact, our set-up is much more general. Both σt and εt+1 can follow almost 
any stochastic processes. As shown below, as long as we assume that the excess return 
and the MA signals are correlated, the proposed strategy or the technical analysis will add 
value to investments. 
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Following the standard technical analysis, we define a MA for a given window length 
L as 

1

=0

1( ) ,
L

t t i
i

A L S
L

−

−= ∑  (2) 

which is simply the average price of the past L periods up to time t. If L = 200 and the 
time period is one day, then At(L) is simply the popular 200-day price MA as reported in 
Wall Street Journal and the Investor’s Business Daily. 

Define now the commonly used MA strategy ,η  called pure MA here, 

1, if > ( );
=

0, otherwise,
t t

t
S A L

η
⎧
⎨
⎩

 (3) 

with L is the window or lag length. tη  corresponds to the usual simple MA investment 
strategy which invests 100% of the wealth into the risky asset when the stock price is 
above the MA, and invests 0% otherwise. This pure MA strategy, which takes an  
all-or-nothing allocation to the risky asset, is a widely used technical trading rule, but is 
suboptimal for two fundamental reasons. First, it does not incorporate investor’s 
objection or utility into consideration. In particular, it ignores investor’s utility and the 
level of risk tolerance in particular. Theoretically, any optimal allocation decision should 
in general be a function of the risk-aversion parameter. Second, the degree of 
predictability must matter. The more reliable the signal, the more it should be followed. 
The all-or-nothing allocation fails to take this into consideration. 

Intuitively, the more reliable the MA rule, the more allocation to the stock when the 
signal is a buy. To quantify this, we define a generalised rule, the GMA rule, as a 
combination of the pure MA rule and a fixed allocation rule, 

f mG ( , ) = ,ix vMA η γ ξ ξ η+ ⋅  (4) 

where ξfix and ξmv are constants, which will be determined by an investor’s utility function 
or investment objective. The intuition is that, if the investor invests an optimal fixed 
proportion of his money into the stock market, say 80% unconditional of the MA signal, 
he should invest more than 80% when the MA signals a buy, and less otherwise. Thus, 
the 100% or 0% allocation of the all-or-nothing strategy is unlikely to be optimal. The fix 
rule ξfix differs from the usual fixed asset allocation rule, which is obtained under the 
assumption that the stock returns are unpredictable, because ξfix is only part of the 
allocation here, while the usual fixed asset allocation rule is the entire fixed allocation to 
the risky asset no matter what the signals are. For the GMA trading rule, the one-period 
mean and variance of the associated portfolio at time t are given as 

( ) [ ]( )f 1 m 1( ) = 1 ,P f ix t t v t t tt R E R E Rμ ξ ξ η+ +⎡ ⎤+ + + ⎣ ⎦  (5) 

( ) ( ) ( )2 2 2
1 m 1 f m 1 1f( ) = V V 2 C , .t t v t t t ix v t t t tP ixt ar R ar R ov R Rσ ξ ξ η ξ ξ η+ + + +⎡ ⎤+ +⎣ ⎦  (6) 

For simplicity, we assume a mean-variance utility 

2= ( ) ( ) .
2t P PV t tγμ σ−  
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Following Ferson and Siegel (2001) and Zhou (2008), among others, we maximise 

[ ] 2( ) ( ) .
2t P PV E V E t tγμ σ⎡ ⎤= = −⎢ ⎥⎣ ⎦

 (7) 

Substituting the mean (5) and variance (6) into (7), we obtain 

( ) ( )2 2
f m 1 f 2 m 1 m 2 f m 12f, 1 2 ,

2ix v f ix v v ix vixV R m m v v vγξ ξ ξ ξ ξ ξ ξ ξ= + + + − + +  (8) 

where 

[ ]1 2 1, ,t t tm E R m E Rη +⎡ ⎤≡ ≡ ⎣ ⎦  (9) 

( ) ( ) ( )1 1 2 1 12 1 1V , V , C , .t t t t t t t t tv E ar R v E ar R v E ov R Rη η+ + + +⎡ ⎤⎡ ⎤ ⎡ ⎤≡ ≡ ≡⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (10) 

Note that m1 and m2 are unconditional means of the excess returns of a 100% fix rule and 
the pure MA rule, v1 and v2 are unconditional means of their conditional variances, and 
v12 is the unconditional mean of conditional covariance between them. Although v1, v2 
and v12 are not exactly in the form of unconditional moments, we show in next section 
that, when time interval is small, they can be well approximated by unconditional 
moments which can be conveniently estimated from sample moments. In comparison 
with Zhu and Zhou (2009) under a multi-period dynamic setting, the optimal GMA 
strategy characterised by ξfix and ξmv through optimising (8) is similar to theirs. It turns 
out that the unconditional mean-variance framework captures the hedging effect to the 
extent that it provides just enough information so that the rule is equivalent to the 
approximate GMA1 rule in Zhu and Zhou (2009). 

To derive the optimal GMA rule under (8), we have the first order conditions for 
optimising V(ξfix, ξmv) in (8) as 

1 f 1 m 12
f

0,ix v
ix

dV m v v
d

γξ γξ
ξ

= − − =  

2 m 2 f 12
m

0.v ix
v

dV m v v
d

γξ γξ
ξ

= − − =  

Solving the above equations, we obtain the optimal GMA rule as 

1 2 2 12
f 2

1 2 12

2 1 1 12
m 2

1 2 12

1 ,

1= .

ix

v

m v m v
v v v

m v m v
v v v

ξ
γ

ξ
γ

−
=

−
−
−

 (11) 

It will be useful to make several remarks. First, the optimal GMA rule depends on the 
risk aversion parameter γ, which points to the fact that the MA strategy, or technical 
analysis in general, should be optimised according to investor’s risk preference to be 
optimal. 

Second, the GMA is useful to improve asset allocation performance as long as the 
MA signal is predictive to the conditional expected return. To see this, let us assume that 
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the MA signal tη  is unconditionally independent of the conditional expected return, 

1[ ],t tE R +  then we have 

( )
( ) ( )

( )

12 1 1

2
1 11

22
11

1

C ,

[ ]

t t t t

t t t t t t tt

t t t t tt

v E ov R R

E E R E R E R

E E R E R

E v

η

η η

η η

η

+ +

+ ++

++

⎡ ⎤= ⎣ ⎦
⎡ ⎤= −⎣ ⎦
⎡ ⎤⎡ ⎤= −⎣ ⎦⎣ ⎦

= ⋅

 

and 

2 1 1[ ] [ ] .t tm E R E mη η+= = ⋅  

In this case, we must have the standard Markowitz allocation rule, 

1
f m

1

1 , 0.ix v
m
v

ξ ξ
γ

= =  (12) 

Third, as apparent from (11), as long as the MA signal tη  and the excess stock return tR  
are not independent, the optimal ξmv will not be zero, that is, the MA must add value to 
the fixed strategy. In particular, when the autocorrelation of the returns is non-zero, tη  

and tR  will not be independent because tη  contains past price information. 
Fourth, to further assess how the MA adds value to the unconditional value function, 

we assume that the conditional volatility, σt, is non-stochastic and constant, that is, 

( )2 2
1V ,t t tar Rσ σ+= =   

where σ is a constant. Then the moments can be simplified as 

( ) 2
1 1V ,t tv E ar R σ+⎡ ⎤= =⎣ ⎦  

( ) 2 2
2 1V ,t t t tv E ar R E pη η σ σ+⎡ ⎤= = ⋅ =⎣ ⎦  

( ) ( ) 2 2
12 1 1 1 1C , C , ,t t t t t t t t tv E ov R R E ov R R E pη η η σ σ+ + + +⎡ ⎤= = = ⋅ =⎣ ⎦  (13) 

where 

[ ]tp E η≡  

is the probability that the MA signals a ‘buy’. In this case, the portfolio holding of the 
GMA rule (11) are 

1 2
f

1

2 1
m

1

1= ,
(1 )

1= ,
(1 )

ix

v

m m
p v

m p m
p p v

ξ
γ

ξ
γ

−
− ⋅
− ⋅

⋅ − ⋅

 (14) 



   

 

   

   
 

   

   

 

   

   50 G. Zhou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

where m1, m2, v1 are defined in (9) and (10). Note that m1 is the unconditional expectation 
of the daily excess return, and m2 is the unconditional expectation of the excess return on 
the pure MA strategy. Intuitively, the great the deviation of ξmv from 0, the more the 
value added by the MA rule. In this case, note that the numerator of ξmv in equation (14) 
coincides with the unconditional covariance of the MA signal and the expected excess 
return, i.e., 

( )1 1 1 2 1C , .t t t t t t tov E R E R ER E m p mη η η+ + +⎡ ⎤= − = − ⋅⎣ ⎦  

This confirms our intuition that the more correlated is the MA signal with the expected 
excess return, the more value added by MA rule. Also note that, the optimal GMA rule of 
(14) with constant conditional variance implies that the average portfolio holding over 
time is 

[ ] 1
f f f m

1

1 ,ix ix ix v
mE p
v

ξ ξ η ξ ξ
γ

+ = + ⋅ =  

which is the same as that of the usual fix allocation rule.2 
Moreover, consider the value function under constant conditional variance with 

optimal GMA given in (14). It is easy to verify that the value function, defined in (8), of 
the optimal GMA is 

2 2
1 21 2

G
1

211 ,
2 (1 )MA f

pm pm m mV R
p p vγ
− +

= + +
−

 (15) 

and the value function of the usual fixed rule is 

2
1

F
1

11 .
2ix f

mV R
vγ

= + +  (16) 

Their difference is thus 

2
1 2

G F
1

1 ( ) .
2 (1 )MA ix

pm mV V
p p vγ

−
− =

−
 (17) 

It is clear from this equation that the GMA rule can always improve upon the usual  
fixed rule, except when the MA signal tη  is independent from expected excess return 

,t tE R  that is, when pm1 = m2, then the optimal GMA rule coincides with the usual fixed 
rule. 

Finally, the pure MA rule is clearly suboptimal in comparison with the  
GMA. However, due to its popularity in practice, we examine the conditions  
under which the pure MA rule (ξfix = 0 and ξmv = 1) is a good rule of thumb. Based on 
(14), the condition for ξfix = 0 is clearly m1 = m2; and the condition for ξmv = 1 is  
γ = 4, assuming an annualised risk premium of 6% and a market of volatility 18%,  
which are in general agreement with the S&P 500 data. It turns out that, as shown  
in the next section, the pure MA is indeed a good rule of thumb when the investor’s risk 
aversion is 4. 
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3 Empirical applications 

In this section, we compare the performances of the three investment rules, the GMA, the 
pure MA and the usual fixed asset allocation rules in three applications. The first is to 
apply them to the US stock market from January 1926 to March 2011. The second is to 
apply them to during the recent financial crisis period, the third is to all the bear markets 
of the past 85 years. 

In the spirit of the common use of asset allocation models, we use the long-term 
moments of the data to estimate the unconditional parameters and rules. These values 
correspond to those stylised numbers used in calibration studies. For simplicity, we use 
all the data to estimate the fundamental moment parameters since they should be  
roughly the same over any reasonable long periods. For example, we use μ = 9.06%  
and σ = 15.25%. For conditional volatilities, we use GARCH (1,1) model for rolling 
estimates. In addition, the MA signals must vary over time as the prices change when we 
apply the rules to the real data. Moreover, following the usual practice, the MA signals 
are computed using daily prices that do not include the dividends, but all returns on the 
investment rules are computed realistically as the total return including dividends. 
Treasury bill rates are used as proxy for risk-free rates over time. To avoid real world 
constraints, for all the rules, both leverage and short-sells are not allowed, and so the 
allocations to the stock index are always between 0 and 100%. 

How do we assess the performances over time? We view the rules an ex ante 
investment strategies, which are invariant across data or markets, with the obvious 
exception that the signals must be updated with the prices. Hence, the rule that has the 
best performance over time or datasets is the best one. The question is how to measure 
the performance over time. Following many studies (e.g., Tu and Zhou, 2011), we use the 
CE return as the risk-adjusted performance measure, 

2ˆ ˆC ,
2P PE return γμ σ= −  (18) 

where ˆPμ  and 2ˆPσ  are the annualised sample mean and variance, respectively, of the 
realised portfolio returns of an investment strategy. The CE return can be perceived as the 
rate of return of the risk-free investment to which the investor is indifferent to when 
comparing with the risky portfolio. It can also be interpreted as the realised utility of a 
mean-variance investor when he uses the strategy repeatedly over time. 

Note that the trading signals are computed daily, but the duration of a buy or sell 
signal is typically longer so that there are only a few trading days in a year to decide 
whether to include the MA component or not into the fixed allocation rule. Hence, the 
rebalance frequency of the portfolio can be set at a longer frequency, say monthly or 
quarterly, with little effect on the comparison between the GMA and the usual fixed 
strategy since the rebalancing transaction costs of the two should be close. For simplicity, 
we ignore transaction costs in this paper, and hence, without loss of generality, we can 
simply rebalance the portfolio daily as if we are working in a continuous-time model.3 

Table 1 provides the CE returns and other performance measures for the GMA, the 
pure MA and the usual fixed allocation rules, which are denoted in the table as ‘GMA’, 
‘pure MA’ and ‘fix’, respectively. Consider first the case of γ = 4. Across the MA 
windows or lags, the popular 200-day MA works the best for both the GMA and the pure 
MA, both of them earned annually 2% CE returns over the fix rule. This is economically 
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significant. Given that this is so for over 80 years, the economic significance is even 
greater. However, in terms of sample returns, the GMA is only about 80 basis points 
higher, but the risk is much lower. As a result, the Sharpe ratio is 0.63, much greater than 
0.46 of the fix rule. The pure MA behaves similarly, in line with early studies of  
Siegel (1998). Theoretically, the GMA should always outperform the pure MA. But when 
γ = 4, they are close for the theoretical reason pointed out earlier in the previous section. 
In fact, sample errors can play a role too. Hence, the close performance of the GPA and 
pure MA when γ = 4 should not be surprising. As expected, when the degree of risk 
aversion increases from 4 to 7 or 10, the GMA outperforms the pure MA, and outperform 
the fix too. 
Table 1 Performances over the entire sample period 

 GMA  Pure MA  Fix 

MA lags (days)  20 200 250  20 200 250   
γ = 4          
 CE return 6.25 6.85 6.76  4.41 7.47 6.83  4.70 
 Mean 8.10 8.57 8.44  6.94 10.16 9.66  7.32 
 Std 9.61 9.28 9.18  11.26 11.58 11.90  11.44 
 Sharpe ratio 0.63 0.70 0.69  0.43 0.70 0.64  0.46 
 Drawdown  42.53 32.29 25.37  47.02 40.85 56.32  67.13 
γ = 7          
 CE return 5.00 5.57 5.48  2.50 5.46 4.71  3.58 
 Mean 7.06 7.84 7.67  6.94 10.16 9.66  5.08 
 Std 7.67 8.05 7.90  11.26 11.58 11.90  6.54 
 Sharpe ratio 0.65 0.71 0.71  0.43 0.70 0.64  0.46 
 Drawdown 29.06 24.36 18.93  47.02 40.85 56.32  44.33 
γ = 10          
 CE return 4.29 4.68 4.59  0.60 3.45 2.59  3.13 
 Mean 6.29 7.12 6.89  6.94 10.16 9.66  4.18 
 Std 6.33 6.99 6.78  11.26 11.58 11.90  4.58 
 Sharpe ratio 0.66 0.72 0.71  0.43 0.70 0.64  0.46 
 Drawdown 20.29 17.94 14.90  47.02 40.85 56.32  31.87 

Notes: The table reports the performances of the GMA rule, the pure MA rules, and the 
usual fix rule from January 1926 to March 2011. The CE returns, means and 
standard deviations, of the portfolios associated with the investment rules, are 
annualised and in percentage points. 

Today, risk management is becoming increasingly important and the control of the 
drawdown of a portfolio, defined as the percentage drop from the top to bottom, is the 
objective of many portfolio managers. In terms of the drawdown, the GMA does in 
general the best across all lags and risk aversions. Over the entire period, the fix rule 
suffers a drawdown of 67.13%. In contrast, the GMA has only 32.29% when L = 200 and 
γ = 4, losing less than half of the money. The drawdown of the pure MA is close to that 
of the GMA when γ = 4, but much lager and even greater than the fix when γ = 7 or  
γ = 10. The reason is that, as the risk aversion increases, both the GMA and the fix will 



   

 

   

   
 

   

   

 

   

    Asset allocation: can technical analysis add value? 53    
 

    
 
 

   

   
 

   

   

 

   

       
 

cut their stock allocations, while the pure MA, which is γ independent, invests the same 
way as before. So the sample statistics of the pure MA remain as large as before, though 
the ex post risk-adjusted returns vary with the risk version. 
Table 2 Market return statistics conditional on ‘buy’ and ‘sell’ signals 

 ‘Buy’ ‘Sell’ Unconditional 

MA lags (days) L = 20  
Mean 8.29 8.44 8.33 
Std 14.70 22.23 18.19 
Skewness –0.12 0.04 –0.01 
Kurtosis 13.46 18.06 20.01 

MA lags (days) L = 200  
Mean 12.27 0.72 8.33 
Std 14.27 24.09 18.19 
Skewness –0.27 0.13 –0.01 
Kurtosis 15.28 15.59 20.01 

MA lags (days) L = 250  
Mean 11.36 2.31 8.33 
Std 14.55 24.01 18.19 
Skewness –0.99 0.46 –0.01 
Kurtosis 27.66 12.60 20.01 

Notes: This table reports the sample statistics of market returns conditional on the MA 
signal is a ‘buy’ or ‘sell’, with a lag length, L, of 20-, 200- and 250-days, 
respectively. The second and third columns report the sample statistics of the 
returns on ‘buy’ and ‘sell’ days, and the fourth column reports the same sample 
statistics of the unconditional returns. The results are based on the S&P500 data 
from January 1926 to March 2011. The means and standard deviations are 
annualised and in percentage points. 

Why do the MA rules work? While leaving the economic explanations elsewhere (see, 
e.g., Han et al., 2011, and references therein), we provide here the statistical intuition. We 
compute the mean, standard deviation, skewness and kurtosis of the market returns 
conditional on MA ‘buy’ and ‘sell’ signals (when tη  is 1 or 0). Table 2 presents the 
results. When L = 20, the sample standard deviation of the ‘buy’ days are much smaller 
than that of the ‘sell’ days. But the striking results occur when the lag is  
long-term. Let us focus on L = 200. The mean of the returns on days with the ‘buy’ 
signals is 12.27%, which is about 17 times as large as 0.72%, the sample mean of the 
return on days with ‘sell’ signals. In addition, the standard deviation is only about half of 
the ‘sell’ signals, while the kurtosis values are similar. Clearly, the signals are quite 
informative about the ups and downs of the stock market returns, and hence, no matter 
how one uses the signals, it is likely to be much more profitable compared with a strategy 
of not using such information at all. For example, one can potentially use them to predict 
future density of stock returns and then uses it to maximise whatever objective function 
of an investor with whatever practical constraints. 
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Table 3 Performances in the recent financial crisis 

 GMA  Pure MA  Fix 

MA lags (days) 20 200 250  20 200 250   
γ = 4          
 CE return –18.43 –8.51 –11.18  –23.54 –8.46 –10.38  –36.39 
 Mean –16.28 –7.95 –10.50  –18.77 –7.83 –9.63  –24.92 
 Std 10.38 5.31 5.86  15.45 5.64 6.10  23.95 
 Sharpe ratio –1.77 –1.90 –2.15  –1.35 –1.76 –1.92  –1.13 
 Drawdown 22.64 11.34 14.59  26.30 11.47 14.01  37.20 
γ = 7          
 CE return –10.78 –6.11 –7.32  –27.12 –8.94 –10.93  –20.51 
 Mean –9.46 –5.55 –6.73  –18.77 –7.83 –9.63  –13.95 
 Std 6.13 4.03 4.10  15.45 5.64 6.10  13.68 
 Sharpe ratio –1.89 –1.90 –2.16  –1.35 –1.76 –1.92  –1.17 
 Drawdown 13.75 8.18 9.71  26.30 11.47 14.01  22.30 
γ = 10          
 CE return –7.34 –4.46 –5.14  –30.70 –9.42 –11.49  –14.16 
 Mean –6.42 –4.00 –4.69  –18.77 –7.83 –9.63  –9.57 
 Std 4.29 3.02 2.98  15.45 5.64 6.10  9.58 
 Sharpe ratio –1.99 –2.02 –2.28  –1.35 –1.76 –1.92  –1.22 
 Drawdown 9.52 5.99 6.86  26.30 11.47 14.01  15.74 

Notes: The table reports the performances of the GMA rule, the pure MA rules, and the 
usual fix rule during the recent financial crisis. The results are for the time period 
from October 10, 2007 to March 10, 2009, during which the market dropped 
56.21% from the top to bottom. The lag length, L, of the MA is 20-day, 200-day 
and 250-day, respectively. The means and standard deviations are annualised and 
in percentage points. 

Consider now the performances of the rules during the recent financial crisis. We focus 
on the period from July 10, 2007 to March 10, 2009, during which the market dropped 
56.21% from the top to bottom. Table 3 provides the results. When γ = 4, the usual fix 
rule loses 36.39%, the GMA and MA lose only 18.43% and 23.54% when L = 20, and 
much smaller, 8.51% and 8.47% when L = 200. In contrast to the case over the entire 
sample period, the results here when L = 200 is remarkable. It lost only 1/4 of the value. 
Since the wealth or consumption is more valuable when there is scarcity, the low loss of 
the GMA and MA strategies should be extremely important and appealing to those real 
world investors who have disappointment aversion preferences, such as loss limits on 
their wealth or portfolios. The much better CE returns are also reflected in the 
drawdowns. While the fix has a drawdown of 37.20%, both the GMA and MA have only 
11.34% and 11.47%. The results are similar qualitatively when the risk aversion 
increases, but the magnitudes of the relative performances of the GMA and pure MA 
over the fix have come down, though still substantially better. Overall, technical analysis 
is of great value in reducing the risk during the recent financial crisis. To those who use 
it, they would have been able to reduce their losses a few times smaller than those who 
completely ignore it by following the standard fixed asset allocation rule. 
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Table 4 Performances in bear markets 

Bear market  CE return 

Begin End ΔP/P  GMA Pure MA Fix 

1929/09/09 1932/06/02 –86.99  –4.50 –8.22 –15.14 
1932/09/08 1933/02/28 –40.81  –6.97 –35.03 –23.93 
1933/07/18 1935/03/15 –34.68  –4.71 –40.34 –4.45 
1937/03/11 1942/04/29 –60.39  –3.53 –8.45 –2.04 
1946/05/31 1949/06/14 –30.84  –2.44 –3.62 –0.27 
1956/08/03 1957/10/23 –22.22  –4.19 –4.65 –1.87 
1961/12/13 1962/06/27 –28.00  –10.39 –10.39 –13.21 
1966/02/10 1966/10/10 –22.38  –8.44 –8.44 –6.99 
1968/12/02 1970/05/27 –35.85  –4.46 –4.48 –4.20 
1973/01/12 1974/10/04 –48.35  –3.82 –4.95 –7.06 
1980/12/01 1982/08/13 –27.02  –1.00 –3.55 0.42 
1987/08/26 1987/12/07 –33.67  –19.26 –66.02 –36.22 
1990/07/17 1990/10/12 –20.04  –23.75 –34.78 –18.47 
2000/03/27 2002/10/10 –49.01  –3.43 –7.41 –5.87 
2007/10/10 2009/03/10 –56.21  –4.46 –9.42 –14.16 

Notes: The table reports the performances of the GMA rule, the pure MA rules, and the 
usual fix rule in all the 15 bear markets over 1926 to 2011, which are defined as 
those periods in which the S&P500 dropped for more than 20% from peak to 
trough. The first two columns are the starting (peak) and ending (trough) dates. 
The third column is the percentage of the price change, denoted as ΔP/P. The 
fourth to sixth columns are the CE Returns of the three rules, respectively. The 
results are for the conservative case where L = 200 and γ = 10. The CE returns are 
annualised and in percentage points. 

Finally, we examine the performances of the rules over all the bear markets over the 
January 1926 to March 2011 time period. The bear markets often defined as those periods 
for the market (the S&P500 index here) to drop more than 20% from peak to trough. 
Following this definition, the first two columns of Table 4 identify all the bear markets of 
the past 85 years. The last bear market coincides with the recent financial crisis examined 
earlier. As we discussed before, a higher risk aversion parameter generally narrows the 
performances of the GMA and the fix. For brevity, the table reports only the most 
conservative case when γ = 10. However, we still use L = 200 because of its popularity 
and being relatively longer-term. Even in this most conservative case, the GMA 
outperforms the fix most of the time. In general, the greater the drop of the market, the 
more the GMA outperforms. Note that sometimes there is a large difference between the 
bear market drops and the CE returns of the fix rule. The reason is that the percentage 
price changes in the bear market are the returns of the buy-and-hold strategy without the 
dividends for the entire bear market period. In contrast, the CE return of the fix is the 
annualised risk-adjusted portfolio return with dividends. Moreover, when γ = 10, the fix 
rule has only a small portion of the wealth in the risky asset. Overall, the message of the 
applications to the bear markets is the same as before that technical analysis adds value to 
asset allocation, and especially so during a great downturn of the market. In the bear 
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markets, the GMA outperforms the fix most of the time, and it achieves at least similar 
performances in the few cases with certain large risk aversion parameters when it does 
not outperform the fix. 

4 Conclusions 

Technical analysis provides a unique and important source of information about future 
stock returns, but this information is largely ignored in asset allocation decisions. 
Extending Zhu and Zhou’s (2009) geometric Brownian motion type model, we propose a 
simple approach for exploiting optimally the technical analysis information in a generic 
discrete-time model of the stock returns. Our proposed optimal portfolio strategy is easy 
to apply in practice and is quite robust to model misspecifications. Empirically, we apply 
the strategy to the US stock market from January 1926 to March 2011. In addition, we 
also examine the strategy’s performance during the recent financial crisis as well as over 
all the bear markets of the past 85 years. We find that the proposed strategy outperforms 
the usual fixed allocation strategy substantially, especially so during the recent financial 
crisis. 

For simplicity, our exploratory study assumes a simple mean-variance utility, while 
allowing for a generic discrete-time process of the market returns. As long as the MA has 
predictive power on the stock market, certain structures on the data-generating process 
may be imposed to solve a general utility maximisation problem, say, a utility of up to the 
fourth moments, under desired portfolio constraints. On the other hand, the MA is only 
one of the dozens or more technical indicators. Hence, this paper provides just a lower 
bound on the value of using technical analysis. Future studies are called for to examine 
the value of other technical indicators and the value of using them in other markets and 
asset classes. Theoretically, is technical analysis a tool of learning or a mechanism for 
herding or both? What equilibrium asset pricing models can one propose that allow for a 
role of technical analysis? All of these are interesting topics for future research. 
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Notes 
1 See Rapach and Zhou (2012) for a recent survey on the vast literature about stock market 

predictability. 
2 Note that Zhu and Zhou (2009) obtain the same result for log utility in a continuous-time 

model. 
3 See Han et al. (2011) for an example of incorporating transaction costs into technical trading 

strategies. 


