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Abstract: This paper examines the possibility of classifying characters viewed 
by subjects using single-trial Electroencephalogram (EEG) waveforms from 
the frontal and occipital areas of the brain. As a training data set, Event-Related 
Potentials (ERPs) were calculated for each character from the first 20 trials and 
the remainder were assigned to a test data set. To extract features of 
waveforms, the regression relationship between the EEG and ERP waveforms 
was calculated from the training data set using the Support Vector Regression 
(SVR) technique. As a measure of classification performance, cross-validation 
rates were calculated for the test data set and they incrementally increased with 
the number of channels when the regression relationship was used. This result 
provides evidence that this procedure using the relationship between EEGs and 
ERPs is effective in predicting viewed characters, and that performance can be 
improved by a combination of waveforms across electrodes. 
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1 Introduction 

Human visual perception has been studied using a chronological approach because the 
information being viewed is processed as from a low level to a high level (Posner and 
Raichle, 1994). Since we can quickly recognise most objects and make decisions, image 
processing requires very little time (Bacon-Macé et al., 2005). Not only visual stimuli, 
but lexical decisions can be made in around 500 ms as conventional reaction time studies 
show (Wagenmarkers et al., 2008). 

Lexical perception has a very important role in our daily life because this process is 
required prior to the recognition of any message. Event-Related Potentials (ERPs) (Rugg, 
1997) are often used for lexical perception analysis, as well as for the study of the image 
perception process. To extract an ERP waveform, waveforms of Electroencephalograms 
(EEGs) which record responses to stimulus need to be averaged as much as is possible. 
As information about decision making can be extracted from EEG waveforms, EEGs can 
be applied to a Brain Machine Interface (BMI) or to a Brain Computer Interface (BCI) 
(Blankertz et al., 2001; Devlaminck et al., 2009) using some signal processing techniques. 
Recently, a technique employing an fMRI as a BCI technique (Miyawaki et al., 2009) has 
been used to observe viewer’s recognition of characters. 

This suggests that there is a possibility of obtaining information about images viewed 
from a subject’s brain activity. 

Though EEGs have been used to observe the human visual perception process,  
EEGs are noisy data because a single stimulus point at the scalp is quite small (5–10 μV). 
Therefore, most lexical studies employ ERPs rather than EEGs (Kutas and Federmeier, 
2000) because ERPs are a well-known conventional technique for reducing noise on 
EEGs, in which the high time resolution of ERPs, which is the benefit of using ERPs,  
has been kept. The relationship between EEGs and ERPs is simple, but ERPs as a 
prototypical signal can be a key piece of information for the understanding of single-trial 
EEG waveforms. This suggests that single-trial EEGs for lexical decisions contain an 
ERP waveform with some artefacts. To extract the information from single-trial EEGs, 
some additional information such as references for the signals are often required (Parra  
et al., 2003). As ERPs can indicate some features of events, they may be used as a 
reference to extract distinct information from single-trial EEGs. 

The authors have proposed a procedure to reduce these artfeacts using Support 
Vector Regression (SVR) (Smola and Scholkopf, 1998) to establish a relationship between 
single-trial EEGs and ERPs which are extracted from a small number of trials as a 
reference (Nakayama and Abe, 2009; Nakayama and Abe, 2010). According to previous 
studies, regression with Neural Network and SVR can be used to reduce noise as a non-
linear filter of time series signals (Bishop, 1995; Luo and Unbehauen, 1997; Smola and 
Scholkopf, 1998). The proposed processing procedure is based on this scientific evidence. 
This technique has been used previously to predict classes of symbols or Kanji viewed by  
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subjects (Nakayama and Abe, 2009; Nakayama and Abe, 2010). The performance is 
insufficient, however. To improve it, the perceptual processes including local and 
chronological activities in the brain are examined using a combination of multiple 
waveforms are determined. 

The following topics are addressed in this paper: 

1 A signal prediction technique using a relationship which is based on the regression 
between EEGs and ERPs, is applied to measured EEG waveforms and used to evaluate 
the effectiveness of classifying a viewed character using cross validation rates. 

2 The change of classification performance is compared across EEG electrodes and 
chronological phases. 

3 The effect of combinations of electrodes on classification performance is examined 
by comparing the performance of each electrode when the classification is conducted 
using multiple electrodes. 

This paper is organised as follows. First, the experimental methods and classification 
procedure are described in Section 2. Section 3 explains the classification performance 
using single-channel and single-trial EEG waveforms. Section 4 explains the classification 
performance using multiple channel single-trial EEG waveforms. The channel selection 
effectiveness and individual differences are discussed in Section 5. Finally, Section 6 
concludes the paper and proposes future research work. 

2 Method 

2.1 EEG/ERP waveforms 

2.1.1 Kanji recognition task 

To observe EEG waveforms during the character perception process, a Kanji recognition 
task was conducted (Abe and Nakayama, 2006a; Abe and Nakayama, 2006b; Abe and 
Nakayama, 2006c). The experimental task is depicted in Figure 1(a). When a Kanji character 
or a symbol was flashed on a computer screen, EEG waveforms were recorded from 21 
electrodes, as shown in Figure 1(b). This experiment examined the Kanji recognition 
process in accordance with the differences in ERP waveforms among Kanji which were 
known, Kanji which were unknown and symbols. The known Kanjis were selected using 
a Japanese lexical database (Amano and Kondo, 1999). The number of trials for each 
kind of stimuli, symbols, known Kanji and unknown Kanji, was 100. For each subject, a 
total of 200 trials were analysed. The procedure was as follows:  

1 The subject clicked the left button of a mouse to start the trial. 

2 A black screen which gave a random delay of 1.8–2.2 s was then presented. 

3 An image of a character (either a known Kanji, an unknown Kanji, or a symbol) was 
presented briefly (83 ms). 

4 The subject had to report if the image presented was a known Kanji, an unknown 
Kanji or a symbol, by clicking the mouse’s left or right button respectively. Four 
subjects who were 23–25 years old participated in this experiment. 
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Figure 1 Experimental task for Kanji recognition (a) and placement of electrodes (b) (Nakayama 
and Abe, 2010) 

 

2.1.2 EEG/ERP recording 
The EEGs were recorded from 21 scalp electrodes which included Fpz, Oz and 19 other 
locations, according to the international 10–20 system, using an electrocap manufactured 
by Electro-cap International. A ground electrode was placed on the forehead. All scalp 
electrodes were referenced to the subject’s ear lobes. The signals were amplified and  
0.5–100 Hz band pass filtered using a BIOTOP amplifier from NEC. The signals were 
stored in a PC that had a 512 Hz sampling rate. After being recorded, the signals were 
digitally filtered to reduce line noise below 40 Hz. Trials containing an EOG amplitude 
of more than 70 μV were removed from the subsequent analyses, because of the large 
artefactual influences of eye movements on EEGs (Makeig et al., 1999). Each subject’s 
single-trial raw EEGs were recorded from every electrode, from 100 ms before to 1000 ms 
after stimulus onset in all correct trials. Baseline voltages were subtracted from the raw 
data of these EEGs. As a baseline for each trial and for each electrode, the average 
voltage in the preceding 100 ms interval before stimulus onset during the trial was used. 
Correct trials were trials in which the subject correctly discriminated between the 
characters or symbols presented. 

ERP waveforms reflect the kind of characters that were shown (Abe and Nakayama, 
2006a; Abe and Nakayama, 2006b; Abe and Nakayama, 2006c). Figure 2 shows an ERP 
extracted from the Oz electrode. The waveforms of all correct responses were summed 
up and compared with ERP waveforms of symbols and Kanji. These ERP waveforms are 
well smoothened using a simple moving average and show the differences in response to 
the stimuli. Some significant differences between symbols and Kanji were observed in 
P100 (at 100 ms: amplitude, symbols > Kanji, t(5)=2.61, p < 0.05), N170 (at 170 ms: 
latency, symbols > Kanji, t(5) = 5.51, p < 0.05). There is no significant difference in 
P250 (at 250 ms), however. Mean reaction time was around 500 ms and the waveforms 
between 100 and 500 ms were significantly different because the recognition processes 
were different (Abe and Nakayama, 2006a; Abe and Nakayama, 2006c). 

In this paper, we focused on EEG waveforms for symbols and known Kanji from 
several electrodes in the occipital and frontal area because the occipital area reflects 
visual perception and the frontal area reflects the decision making process. The 
effectiveness is evaluated using measured signals from electrodes from both areas of  
the brain. 
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Figure 2 ERP waveforms of symbol and Kanji character stimuli from the Oz electrode 

 

2.2 Classification of single-trial EEGs 

2.2.1 Data pre-processing 

The classification performance for single-trial EEG waveforms from several electrodes 
was evaluated using the diagram in Figure 3. Therefore, only trials with correct responses 
were selected. Rates of correct selection averaged over 90% (Abe and Nakayama, 
2006a). All EEG waveforms for each subject were smoothened using a simple moving 
average in advance, to permit the application of some signal processing. The first  
20 trials, which showed both symbols and Kanji, were used to create a training data set 
for each subject. A test data set was then created using the remainder of the data. Since 
EEG measuring equipment requires some calibration before being used, the some of first 
few trials may be assigned to a preparation stage. 

Figure 3 EEG signal processing diagram 

 

2.2.2 Signal transformation with ERP references 

A relationship between EEGs and ERPs has been created from the training data set, 
which consists of 20 trials which show both symbols and Kanji (total: 40 trials). Both  
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features of ERP waveforms in response to symbols and Kanji are extracted, because the 
features of EEGs while stimuli are being viewed should be emphasised using a common 
relationship. The relationship containing common features is established as follows. 

First, the local ERPs for symbols and Kanji were extracted from the training data sets 
of each subject. ERP is defined as a simple summation of all EEG waveforms from  
20 trials as shown in Figure 3. Both ERPs and single-trial EEGs are illustrated with a 
common time course because ERP is extracted from the summation of EEGs during the 
complete time course. Therefore, 20 corresponding mapping pairs of ERP and a single-
trial EEG with a common time course for symbols or Kanji can be created using the 
relationship between ERPs and single trial EEGs. Here, a regression process is used 
when there is the possibility of predicting ERP from EEG waveforms because both 
contain common feature of the waveforms. The relationship is mathematically formulated 
as a regression function across each pair. Since the regression prediction from a single-
trial EEG waveform may reflect both ERP features of symbols and Kanji, an appropriate 
signal in response to ERP waveforms from observed EEG signals is predicted. When the 
regression function SVR technique is applied to a set of data of potentials of a single-trial 
EEG, a potential of ERP is created. In this paper, a set of data consisted of ten potentials 
in series. The detailed processing is indicated in the mathematical procedure. This 
regression training procedure was conducted on a training data set, which consisted of 
EEGs of both symbols and Kanji for each subject. After training, the regression function 
can be applied to blinded waveforms in a test data set which also consists of EEGs of 
both symbols and Kanji for each subject. The function may emphasise the features of 
waveforms in response to symbols and Kanji from EEG waveforms. 

The mathematical procedures are described hereafter. 
All data were based on raw signal data. The regression function f was created for the 

training data set. Here, xi is defined as EEG potentials and yi is defined as an ERP which 
sums up EEG waveforms of 20 trials in the training data set. The pairs (xi, yi) are created 
for both symbols and Kanji in the training data set. The regression processing was 
conducted for every set of ten EEG potentials (xk = (xk−9, …, xk)) and an ERP potential 
yk at the time position k, then the function as f was trained with all training data including 
data for both symbols and Kanji. 

For the regression prediction, the estimated ERP ˆky  for the empirical potential yk at 
the time position k is reproduced from time series data samples comprising ten input 
vectors xk, so that xk = (xk−9, …, xk), ˆky  = f (xk). The parameters of SVR were given as a 
standard deviation for Gaussian kernel and as a width of error pipe (epsilon: eps = 0.5) 
using SVMTorch (Collobert, 2000; Collobert and Bengio, 2001). 

The trained regression function is applied to EEG waveforms in the test data set. A 
set of ten input vectors xk is created for each trial in the test data set as well. Then the 
transformed waveform can be defined as f(xk). This transformed waveform is different 
from the original empirical potential. According to the hypothesis, the transformed 
waveform emphasised one of two features for symbols and Kanji. As the experimental 
procedure suggests, all waveforms in the trials respond to the viewed character class t. 
Therefore the relationship can be noted as (t, f(xk)) for each trial, in both the training and 
test data sets. 

This signal processing is called ‘REG’, and the empirical data set without the processing 
is called ‘NO-REG’. 
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2.2.3 Classification of EEG waveforms 
In trials, EEG waveforms reacted when characters were viewed by subjects. In this 
section, another procedure to estimate viewed characters from both the transformed and 
empirical EEG waveforms is described. 

All trial data contain significant response periods, which were controlled to be from 
100–150 ms (for 26 data points) to 100–500 ms (for 205 data points) long. The duration 
was extended step by step, by 100 ms, up to 500 ms. From 500 ms to 800 ms (for 153 data 
points) data were collected because the response decision had been made. Classification 
labels for symbols or Kanji were given to each trial data set. The relationship between a 
trial data set and classification label can be noted as follows. 

Here, xi is defined as an EEG potential and ˆiy  is defined as the transformed potential, 
t is defined as the stimulus given and the data set comprises N input vectors x = (x1, ..., xN) 
as ‘NO-REG’ and ( )1ˆ ˆ ˆ, , Ny y y=  as ‘REG’, with corresponding target values: t ∈ {−1: 
symbol, + 1: Kanji}. The acquired data can be noted as (x, t) and ( ŷ , t) for each trial. A 
sign function, based on the SVM function, is defined as G using the Gaussian kernel. For 
every interval, the parameters for the Gaussian kernel were optimised using a software 
tool (Chang and Lin, 2001). Classification was conducted using SVM with Gaussian 
kernel, such as LIBSVM (Chang and Lin, 2001). 

When the sign function has been created from the training data set (the left side of 
Figure 3), the function can be applied to the test data set and can predict a viewed 
character class t̂  which is given as ˆ (x)xt G=  for ‘NO-REG’ or ˆ

ˆ ˆ(y)yt G=  for ‘REG’ 
from waveforms of each trial (the right side of Figure 3). The classification performance 
has been reported, but performance may depend on the quality of the training data set 
(Nakayama and Abe, 2010), however. To assess the effectiveness of the transformation 
using the relationship between ERP and EEG waveforms, cross validation rates of the 
test data set are calculated across various conditions. The rate indicates that the data has 
the ability to be classified (Stork et al., 2001). 

3 Results of classification using a single channel 

The ability to classify the test data set was assessed as a fivefold cross-validation rate 
using LIBSVM (Chang and Lin, 2001). In this procedure, the test data set was randomly 
divided into five blocks and the classification performance was assessed. The rates were 
calculated for each subject and the mean rates across the two classification procedures 
were summarised. 

Generally, the classification performance of a test data is evaluated set using a trained 
classifier with a set of training data. In this paper, the main purpose is the evaluation  
of the effectiveness of applying the regression process and the transformation between 
ERP and EEG waveforms using the relationship. Therefore, that the difference in the 
possibility of classification was evaluated using fivefold cross-validation rates for the test 
data set which was applied to the transformation. 

3.1 Cross-validation rate for Oz and Fz 

The results for the Oz electrode of all subjects are summarised in Figure 4. The 
horizontal axis shows the duration and the vertical axis shows the cross-validation rate. 
The ‘NO-REG’ shows the results using raw observation data. With the extension of  
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the duration, the rate increases gradually and the highest rate is during a duration of  
100–500 ms. Using a non-parametric test (Shiba and Watabe, 1976), this rate is 
significant when the rate is over 0.58 (p < 0.05), but other rates are not significant except 
in a condition with a duration of 500–800 ms. When predicted EEG waveforms were 
applied to classifications such as ‘REG’, all rates were significant except for conditions 
with a duration of 100–150 ms and 100–200 ms. In particular, data for a duration of  
100–300 ms became significant when the estimated EEG waveforms were applied using 
the regression function. This duration includes P100, N170 and P250, so that predictions 
using the regression relationship between EEG and ERP may emphasise the differences 
in waveforms. This also suggests that the data for a duration of 100–200 ms is insufficient 
for its classification, however. 

Figure 4 Cross-validation rate (Oz) 

 

The results for Fz electrodes of all subjects are summarised in Figure 5. The highest 
performance classification was for a duration of 100–500 ms across the three processing 
conditions. For this duration, ‘REG’ is higher than ‘NO-REG’. The performance with 
predictions using the regression relationship is almost always higher than the performance 
with raw observed data across all durations. For durations up to 400 ms all rates are not 
significant, however the rate with predictions is almost always higher. 

Figure 5 Cross-validation rate (Fz) 
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3.2 Chronological difference 

In comparing the results for Oz and Fz, the duration for the highest rates are different. 
For the Oz classification, predicted waveforms up to 300 ms are sufficient and predicted 
waveforms up to 500 ms are required for Fz classification. Both classification results 
suggest that EEG waveforms before the button was pressed to make a selection  
(at around 500 ms) reflect the viewed characters specifically. From this, it can be 
determined that single-trial EEG waveforms contain significant information in response 
to viewed characters. 

In the general visual information processing theory, the retinal image is mapped in 
the primary visual cortex, which is located in the occipital area (Posner and Raichle, 
1994). During the decision task, some activation may be observed in the frontal cortex, 
which is located in the frontal area. Some time is needed to recognise characters which 
are shown, resulting in the highest peak of the cross-validation rate being delayed until 
perception has occurred. The greater delay in perception by Fz as compared to Oz 
coincides with the chronological model, but the measured time of the delay seems longer 
than in theory. Therefore, some factors may influence the cross-validation rates in 
addition to the influence of the image processing pathway. 

These results suggest that predictions using the relationship between EEGs and ERPs 
are effective. 

4 Results of classification using multiple channels 

According to the above results, the performance was limited when the classification was 
conducted using single channel waveforms. In this chapter, the data is extended to 
waveforms of multiple channels, such as the data of two or three channels combined. 

4.1 Cross-validation rate using both Oz and Fz 

In the above section, the classification performance was determined using single-channel 
signals for Oz and Fz. To determine the effectiveness of using multiple channels, a test 
data set was created by merging two data sets for Oz and Fz, such as (xOz, t) and (xFz, t). 
Because they have been measured simultaneously and the target values are common as t 
∈ {−1: symbol, + 1: Kanji}, the merged data set can be noted as (zOz+Fz, t), where zOz+Fz = 
(xOz+xFz), or zOz+Fz = (xOz,1, … , xOz,N, xFz,1, …, xFz,N). The number of dimensions for zOz+Fz 
is twice the number of dimensions for a single-channel signal. Therefore, a new 
prediction function H is also defined using the Gaussian Kernel, as ( )ˆ .Oz Fz Oz Fzt H Z+ +=  
The classification performance is assessed using cross-validation rates. 

According to the results, we have confirmed that both signals contain significant 
information about the characters being viewed. As the combination of those signals 
might provide more distinct information, an improvement in classification performance 
was expected. The cross-validation rates of classification performance using both 
features of Oz and Fz of all subjects are calculated and summarised in Figure 6, using the 
same format. 
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Figure 6 Cross validation rate (Fz+Oz) 

 

The rates increase along with the duration. The rates for ‘REG’ are higher than the rates 
for ‘NO-REG’, and the rates at 500–800 ms are the highest. The performance in the area 
of 100–300 ms and 100–400 ms shows the same level of Oz (Figure 4), and the 
performance in the area of 100–500 ms and 500–800 ms also shows the same level of Fz 
(Figure 5). Though a mutual effect was expected using the combination of Oz and Fz, the 
effectiveness of using a combination was unclear. As a possible reason, the duration 
phases for the highest performances were different between Oz and Fz. In the previous 
section, differences in the highest performances for duration between Oz and Fz were 
obtained. Therefore, performance could not have been due to a mutual effect. 

4.2 Performance using occipital channels 

To synchronise the duration of signals, EEG waveforms for occipital channels were 
analysed. The activity in the occipital area may relate directly to the recognition of 
viewed characters. According to the placement of electrodes in Figure 1, O1 and O2 were 
selected as additional EEG information about Oz for classifying viewed characters. 

Figure 7 Cross-validation rate (O2) 
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First, the effectiveness of classifying signals with ERP references for O1 and O2 was 
determined as previously with the Oz electrode. The cross-validation rates for O2 of all 
subjects are summarised in Figure 8. The rates for ‘REG’ are higher than the ones for 
‘NO-REG’ when the duration is from 100–300 ms to 100–500 ms. The effectiveness  
of the ERP reference is also determined at the O2 electrode, and the phases where 
performance has improved have the same duration as with the Oz electrode. 

Figure 8 Cross-validation rate (O2+Oz) 

 

The performance for the combination of O2+Oz was calculated using the same procedure. 
Again, the input vectors are noted such as zO2+Oz = (xO2, xOz), and the prediction function 
is defined as ( )2+ 2+

ˆ= Z .O Oz O Ozt H  
The cross-validation rates for O2+Oz of all subjects are summarised in Figure 8. The 

effectiveness of classifying signals with ERP references is obvious from 100–300 ms to 
100–500 ms because the rates for ‘REG’ are higher than in the ‘NO-REG’ condition. 
These rates also are higher than the rates for O2 or Oz by themselves, in the duration 
from 100–300 ms to 100–500 ms and 500–800 ms. In this combination, the mutual 
effectiveness is confirmed. The mutual effectiveness for O2 and Oz is higher than it is for 
Oz and Fz. This suggests that the channel combination is an important issue for the 
improvement of performance. 

5 Discussion 

5.1 Channel selection issue 

Since the combined effectiveness of electrodes in the occipital area was confirmed, the 
performance of a combination of three channels in the occipital area was evaluated. 
Using the same procedure, triple sets of input vectors are combined as ZO1+O2+Oz=  
(xO1, xO2, xOz), and the prediction function is defined as ( )1 2 1 2

ˆ z .O O Oz O O Ozt H + + + +=  
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The results of cross-validation rates for O1+O2+Oz of all subjects are shown in 
Figure 9. All phases are synchronised across the results of three electrodes, and the rates 
of the combinations show the same tendencies. The effectiveness of classifying signals 
with ERP references is obvious from 100–300 ms to 100–500 ms because the rates for 
‘REG’ are also higher than the rates for the ‘NO-REG’ condition. However, the overall 
performance is at the same level as the rates for O2+Oz. According to the hypothesis, the 
performance may increase monotonically when synchronised waveforms are combined, 
because synchronised responses may be emphasised using combinations of multiple EEG 
electrodes. This result may suggest the possibility that performance improvements are 
limited when the number of channels in the same area increases during classification, 
however. 

Figure 9 Cross-validation rate (O1+O2+Oz) 

 

5.2 Individual difference 

One possible reason for the small improvement in the number of channels is the subject’s 
individual differences. Generally, there are various differences between individuals and 
sometimes these differences affect overall performance. In this experiment, four subjects 
were participants. 

One subject (Sub A) clearly shows the effectiveness of processing with ERP 
references. Figure 10 shows the performance which consists of the number of channels 
with and without ERP references. The greatest performance increase is with the number 
of channels and by the processing of ‘REG’ as ERP references. The rates at 100–500 ms 
are above 75%, and the performance improvement has been clearly obtained. 

Another subject (Sub D) does not show good performance because all rates stay at 
the level of chance except ‘REG(O1+O2+Oz)’. The performance improvement of the 
rates are determined, however, when the number of channels is increased and signal 
processing with ERP references are provided. The rates for ‘NO-REG’ stay at the level of 
chance, near 50% and the discriminant ability of signals may not be high. The baselines 
and improvements in classification performance are individually different; therefore the 
overall improvement in performance across subjects is limited. 
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Figure 10 Cross-validation rate (Sub A) 

 

Figure 11 Cross-validation rate (Sub D) 

 

Both individual results indicate a significant improvement of the rates when signal 
processing with ERP references and a combination of EEG waveforms from multiple 
electrodes are applied to classification. The synchronised electrodes can be extracted 
using a popular EEG signal processing technique, such as Independent Component 
Analysis (ICA), which can display the common spatial patterns of both electrodes and 
their waveform activities simultaneously (Abe and Nakayama, 2006b). Therefore, an 
appropriate set of electrodes can be selected easily. Again, the effectiveness of EEG 
waveform processing with ERP references has been confirmed. In this paper, the first  
20 trials were assigned as a prototype of EEG waveforms for the proposed procedure. If 
they could not extract and emphasise the features of the waveform, signal processing 
with ERP references made insufficient transformations. The better validated procedure of 
gathering prototype waveforms in response to the visual stimuli should be considered as 
a means to improve classification performance. 
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6 Conclusion 

In this paper, a new procedure for estimating viewed characters observed by subjects is 
proposed using a transformation of single-trial EEG waveforms of the human brain. The 
performance is evaluated using a cross validation rate for the test data of each subject. To 
improve the performance, classification was conducted using a single channel from 
specific electrodes in the frontal and occipital areas, and also using various combinations 
of electrodes. The following points were realised: 

1 According to the proposed model, the relationship between EEGs and ERPs were 
created mathematically, using the SVR technique for several electrodes in the frontal 
and occipital areas. The ability to classify signals using cross-validation rates were 
calculated for some duration. The rates increased from a duration of 100–300 ms to 
100–500 ms and 500–800 ms. The effectiveness of the transformation using the 
relationship was confirmed. 

2 In comparing the cross-validation rates between frontal and occipital areas, the rates 
for the occipital area were improved from a duration of 100–300 ms to 100–500 ms 
but the rates for the frontal area were significant only from a duration of 100–500 ms. 
This suggests that there is a phase difference between areas which reflects the time 
course of lexical processing. 

3 The rates increased when the classification was conducted using a combination of 
multiple electrodes which came from same area, such as O1 + O2 + Oz. The 
effectiveness of this was also confirmed individually. 

These results provide evidence that effective transformation of single-trial EEG waveforms 
can be established using the relationship between EEGs and ERPs as a regression 
between the two, and classification performance can be improved by a combination of 
electrodes placed in carefully considered positions. 

To produce a sample for the practical use of this procedure, a practice session needs 
to be conducted in order to calibrate and establish a mathematical relationship between 
EEGs and ERPs. This session produces a set of training data prior to the measuring 
session. After that, predictions can be conducted using transformed EEG signals. 

To further improve the classification procedure, other signal processing techniques 
such as applying a low-pass filter or down-sampling for ERP should be tried and 
evaluated. Also, an extension of the multiple classifications of viewed characters and the 
development of possible applications using this technique will be subjects for our further 
study. 

On the other hand, the baselines and improvements in classification performance are 
individually different, therefore this characteristic can be deployed to a biometric system. 
This possibility should be determined in our further study. 
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