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Abstract: Proper and timely fault diagnosis is of premier importance to 
guarantee the safe and reliable operation of Nuclear Power Plants (NPPs). 
If faults occur in NPPs, it is very difficult for a human operator to perform 
routine tasks, such as distinguishing normal from abnormal conditions and 
predicting future states, etc. In this paper, a fuzzy inference system is adopted 
for the diagnosis of abrupt faults in a nonlinear model of a typical Pressurised 
Water Reactor (PWR). The fuzzy system is tested with different shapes of 
Membership Functions (MFs). The if-then rules, representing the underlying 
processes, are inferred from the available fault-symptom relations. The 
symptoms are generated using plant model measurements. 
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1 Introduction 

Large-scale systems such as Nuclear Power Plants (NPPs) are increasingly relied upon to 
provide safe, reliable operations for long periods of time. Unfortunately, all of these 
systems’ components are subject to manufacturing defects, interactions with the 
environment, wear and tear and other causes of performance degradations. For these 
safety-critical systems, the problem of detecting faults’ occurrence is of high importance 
due to their disastrous consequences. Contemporary diagnostics of processes is mainly 
based on process models and to detect the occurrence of a fault, a model of the normal 
process behaviour is needed. The current process behaviour is compared with the normal 
process behaviour. The comparison of the observed features with the nominal behaviour 
of the process leads to residuals. The detectable deflections of the residuals yield to 
symptoms. The symptoms are then processed in the subsequent fault diagnosis by means 
of fault-symptom-causality. The faults are located and the fault causes are determined 
(Frank, 1990). For the latter stage of fault diagnosis, classification or inference methods 
(including fault-symptom trees, fuzzy rules or neural approaches) can be used (Isermann, 
2005). If no information is available on the fault-symptom casualties, trained 
classification methods can be applied for fault diagnosis. This leads to an unstructured 
knowledge base. The classification approaches to fault diagnosis have been presented in 
many works. Previous methods to identify NPP transients were based on the time-series 
data of various transient signals. Various diagnostic methods were worked out. The 
following approaches were applied: neural networks approaches (Bartal et al., 1995; 
Embrechts and Benedek, 2004) and pattern classification by fuzzy clustering approaches 
(Marseguerra et al., 2003; Zio and Baraldi, 2005). However, such techniques need a large 
amount of fault data to extract the features of individual faults or expert knowledge about 
the system and its misbehaviour. 

If the fault-symptom causalities can be expressed in the form of ‘if-then’ rules, 
reasoning or inference methods are applicable. In this case, one of the powerful tools 
for fault diagnosis is fuzzy logic. Indeed, the key benefit of fuzzy logic is that it lets 
the operator describe the system behaviour or fault-symptom relationship with simple 
 



   

 

   

   
 

   

   

 

   

   298 R. Razavi-Far, H. Davilu and C. Lucas    
 

    
 
 

   

   
 

   

   

 

   

       
 

if-then rules. The diagnostic system developed in this work uses the Mamdani inference 
strategy due to transparent reasoning that allows the user to understand the inference of 
the system and support the operator in decision making. 

The proposed diagnostic method is validated with a Pressurised Water Reactor 
(PWR). In this work, we focus on the area of abrupt faults similar to most of the 
transients occurring at NPPs. Abrupt faults are injected into a nonlinear PWR simulator 
developed by MATLAB SIMULINK. The PWR simulator was built based on a nonlinear 
model of a typical PWR power plant (Naghedolfeizi and Upadhyaya, 1992). The fuzzy 
diagnostic module connected to the simulation and the Mamdani approach is used 
for generating fault diagnosis rules based on the knowledge of the operator about the 
fault-symptom relations. The proposed faults are Main Steam Line Break (MSLB), Loss 
of Coolant Accident (LOCA), fault in the Pressuriser Heater Control (PHC), fault in the 
Pressuriser Spray Control (PSC) and blockage in Feedwater Piping (BFWP). 

The paper is organised as follows. Section 2 introduces the fuzzy diagnostic module 
from the topological point of view. In this section, the theoretical aspects of the employed 
fuzzy inference methodology for Fault Detection and Isolation (FDI) are presented. 
Section 3 describes the typical abrupt faults in the PWR NPP and shows how the faults 
can be injected into the PWR simulation. In this section, the fault-symptom trees are used 
to analyse and identify the source of the faults by evaluating the combination of basic 
events (fault symptoms) which can lead to a root event (a particular fault). Section 4 
presents an application of the fuzzy inference system to the fault diagnosis of the case 
study and the obtained results. Finally, the conclusions are drawn in Section 5. 

2 The fuzzy diagnostic module 

Fuzzy logic systems are widely proposed in modern diagnostic technologies. The 
relationships between residuals and the faulty states of the monitored system are 
expressed by a set of if-then rules. The structure of a typical fuzzy diagnosis system is 
composed of a set of if-then rules. If multiple fault situations are to be distinguished, one 
will have a structure as seen in Figure 1. The inputs are the symptoms Si. The aim of the 
fuzzy diagnosis is to implement linguistic rules R of the kind 

i 11 j F1: If {( ),(S is ), , ( )} Then f isR A A〈 〉 〈 〉… … …  (1) 

to draw conclusions from the symptoms Si  to the fault measures fj. 
The premise of the rule is comprised in general multiple linguistic statements that 

are combined by operators .  An example is the statement ‘symptom S1’ and the 
linguistic value ‘increased’. The first step towards rule evaluation is the computation of 
the membership values µA(Si) to the linguistic value A. This is called fuzzification and 
consists of the evaluation of the individual Membership Functions (MFs) such as the 
one in Equation (1). The next step is inference. This term denotes the evaluation of 
the linguistic rules and the combination of the action list of the rule basis with a linguistic 
conclusion. The inference consists of the premise evaluation, the activation and the 
accumulation. The premise evaluation combines the membership degree of the individual 
rule premise terms. The task is to utilise the linguistic operators  of the rule to combine 
the linguistic values. The activation is now the application of the rule fulfillments to 
the rule consequences. The accumulation combines the activated output MFs for every 
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linguistic output variable. The result of the accumulation is then a linguistic output 
variable as a fuzzy set. The fuzzy set is transferred into a crisp output value 
by defuzzification. 

Figure 1 The fuzzy logic system for fault diagnosis 

 

There are two main types of fuzzy inference methods known in the literature: Mamdani 
and Takagi-Sugeno. Generally, Takagi-Sugeno structures are frequently used if 
knowledge can be extracted from raw data and Mamdani systems are preferred when 
knowledge is given by human experts in the form of linguistic expressions. The 
diagnostic system developed in this work uses the Mamdani inference strategy due to 
transparent reasoning that allows the user to understand the inference of the system and 
support the operator in decision making during normal and faulty conditions. 

3 Fault simulation and fault-symptom tree analysis 

An NPP is a complex system which has more than one variable influencing its dynamic 
behaviour. Deviation in any variable due to normal or abnormal events will almost 
simultaneously initiate a change in most of the other variables. This occurs due to the 
strong and fast coupling among system process variables, especially in the nuclear 
system. To follow the dynamic change of the plant for continuous control and safe 
operation, definition and identification have to be made for those variables which directly 
affect plant safety. These variables will then continuously be monitored and controlled 
during different phases of plant operation. A detailed nonlinear model for a typical PWR  
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system has been considered for the development of a PWR simulator. Each component in 
the PWR system has been represented by appropriate nonlinear differential equations 
which are solved simultaneously. Then, the overall PWR NPP model is constructed by 
connecting individual components to each other. The validity of models for the individual 
components and overall system has been verified. The simulation results are compared 
with reported results from similar studies (Naghedolfeizi and Upadhyaya, 1992). Abrupt 
faults are applied to the simulation via step changes in some variables. The simulation is 
run for 100 sec. The locations of the critical plant parameters and symptoms used for this 
study are shown in Figure 2. 

Figure 2 The schematic of a PWR power plant with critical plant parameter 

Fault-symptom trees are used to evaluate the behaviour of the plant in faulty conditions. 
In the fault-symptom tree, faults are typically located at the top of the tree, while other 
events form the branches and leaves of the tree. The events in nodes are described by 
qualitative variables and are connected by AND/OR logical relations. If faults occur in 
the plant, fault-symptom trees can be used to identify the cause of the faults by evaluating 
the combinations of basic events (fault symptoms) which can lead to a root event or a 
particular fault. Therefore, heuristic knowledge of the process in the form of 
fault-symptom causalities is evaluated by forward chaining the observed symptoms to 
establish possible causes. These fault-symptom relationships are used to generate the rule 
base of the fuzzy diagnostic module. 

3.1 Main Steam Line Break (MSLB) 

The MSLB is a break in the main steam line that connects the steam generator to the 
steam turbine and feedwater heater. To simulate the fault, the value of the steam 
generator flow is reduced from a normal value to zero. The steam turbine input then 
remains constant (0 kg/s). After a set point, the steam generator flow is switched from its 
normal operational value to a reduced value through a SW triggered by a simple step 
input. The trigger time is 5 sec, which is typical. At this time, the steam generator flow is  
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changed from its normal value to the faulty value (0 kg/s). Once the fault is injected into 
the simulation, the total reactor power (PT), hot leg temperature (Thot) and cold leg 
temperature (Tin) are decreased. The resulting symptoms of the fault are as follows: 

• S1 – Decrease in core coolant average temperature (Tave) 

• S2 – Decrease in pressuriser pressure (Pp) 

• S3 – Increase in pressuriser water level (Lp) 

• S4 – Decrease in steam generator pressure (Psg) 

• S5 – Decrease in steam generator steam flow (Wstm) 

• S6 – Decrease in steam generator water level (Lsg) 

• S7 – Decrease in condensate receiver water level (Lcr) 

• S8 – Decrease in feedwater pressure (Pfw) 

• S9 – Decrease in feedwater flow (Wfw) 

• S10 – Decrease in feedwater temperature (Tfw ). 

Figure 3 illustrates the fault-symptom tree for MSLB (f4), which can be constructed from 
analysing the symptoms. The MSLB is a consequence of the event node, which is a 
combination of S3, S6 ,  S7 , S8  and S10 (AND). Each of these symptoms has three states: 
decrease, constant and increase. In Figure 3, the [+, –] markings next to the arrows 
linking the symptoms indicate that the connected symptoms change in the same [+] or 
opposite [–] direction. 

Figure 3 The fault-symptom tree for an MSLB 
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The fault-symptom tree for MSLB shows that a decrease in the steam generator water 
level (S6) is a consequence of a decrease in the feedwater flow (S9) and that S9 is a 
consequence of a decrease in the steam generator pressure (S 4) .  An increase in the 
pressuriser water level (S3) is a consequence of the decrease in pressuriser pressure (S2) 
and S2 is a consequence of a decrease in the core coolant’s average temperature (S1). A 
decrease in the condensate receiver water level (S7) is a consequence of a decrease in the 
steam generator steam flow (S5). A decrease in the feedwater pressure (S8) and the 
feedwater temperature (S10) is the consequence of a decrease in the condensate receiver 
water level (S7). 

3.2 Loss of Coolant Accident (LOCA) 

To simulate this fault, a fault block is placed at the reactor hot leg. After a set time, the 
primary coolant flow in the hot leg is switched from its normal operational value to a 
reduced value through an SW triggered by a simple step input. The trigger time is 10 sec, 
which is typical. The primary coolant flow is changed from its normal value to a leakage 
value (70% of the normal primary coolant flow). The resulting symptoms of the fault are 
listed in Table 1. 

Table 1 The fuzzy rule base table for a PWR plant 

Symptoms f1 (LOCA) f2 (PHC) f3 (PSC) f4 (MSLB) f5 (BFWP) No fault 

S1 Tave ↓ ↔ ↔ ↓ ↔ ↔ 

S2 Pp ↓ ↑ ↔ ↓ ↔ ↔ 

S3 Lp ↓ ↑ ↑ ↑ ↔ ↔ 

S4 Psg ↑ ↔ ↔ ↓ ↔ ↔ 

S5 Wstm ↓ ↔ ↔ ↓ ↔ ↔ 

S6 Lsg ↓ ↔ ↔ ↓ ↓ ↔ 

S7 Lcr ↑ ↔ ↔ ↓ ↑ ↔ 

S8 Pfw ↑ ↔ ↔ ↓ ↑ ↔ 

S9 Wfw ↓ ↔ ↔ ↓ ↓ ↔ 

S10 Tfw ↑ ↔ ↔ ↓ ↑ ↔ 

Notes: (↓) is decrease, (↑) is increase, and (↔) is constant. 

3.3 Fault in the Pressuriser Heater Control (PHC) 

To simulate this fault using the PHC system, the cycling heater set point was changed 
from 1545 kPa to 1550 kPa and, similarly, the backup heater set point was changed from 
1540 kPa to 1545 kPa, with the threshold of the SW control set to 1550 kPa. If the 
pressuriser pressure is equal to this value, the cycling heater SW will be turned off. In 
turn, the backup heater SW is switched when the pressuriser pressure is 1545 kPa. The 
resulting symptoms of the fault are the increase in pressuriser pressure (S2) and the 
increase in the pressuriser water level (S3), as reported in Table 1. 
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3.4 Fault in the Pressuriser Spray Control (PSC) 

To simulate a fault in the PSC during the normal operation of the reactor, the pressuriser 
spray flow is set to the ON position when the pressuriser pressure is 1550 kPa. When the 
set point value is changed from 1550 kPa to 1545 kPa, the pressuriser water spray rate is 
decreased. To generate this fault by using an SW, its threshold is changed from 1550 kPa 
to 1545 kPa. That is, when the pressuriser pressure equals this value, the pressuriser spray 
rate SW is switched from OFF to ON. The PSC has just one symptom (see Table 1), 
which is the increase in pressuriser water level (S3). 

3.5 Blockage in Feedwater Piping (BFWP) 

To simulate this fault, a fault block is placed between the junction of the feedwater, steam 
turbine and steam generator. After a set time, the feedwater flow is switched from its 
normal operational value to a reduced value via an SW triggered by a simple step input. 
The trigger time is 10 sec, which is typical. The feedwater flow is changed from its 
normal value to a blockage value (70% of the normal flow). The resulting symptoms of 
the fault are listed in Table 1. 

4 Fuzzy inference approach applied to the fault diagnosis of the PWR 
power plant 

Abrupt faults are injected into the proposed PWR simulator via switches. The fuzzy 
diagnostic module connected to the Simulink simulation and the Mamdani approach 
is used for generating fault diagnosis rules based on a priori knowledge about 
fault-symptom relations, which can be inferred from fault-symptom trees. The details of 
the connection between the PWR simulation and fuzzy diagnostic system are shown in 
Figure 4. The symptom scaling block is built using Simulink and the fuzzy inference 
system is implemented using the Matlab FL toolbox. The inputs of the symptom scaling 
block (S1, S2, etc.) are the outputs of the simulation model, namely the variables of the 
PWR NPP (ten symptoms). The simulator provides two outputs for each variable: the 
value under Faulty Condition (FV) and a Normal Value (NV) from the reference model. 
These values are stored as a separate vector of the normal and faulty values for each 
sampling interval (typically 1000 from a 100-sec simulation time). 

The inputs to the scaling section go to a demultiplexer (Demux) which separates the 
vector line into two values (NV and FV). The next stage is a sum block, which gives the 
difference between the normal value and the faulty value. This value (residual) will be 
scaled to accommodate the fuzzy logic toolbox inputs, e.g., if the difference of the first 
variable ranges between [–1, 1] and the fuzzy logic toolbox range is [–3, 3], then the 
input variable has to be scaled to the fuzzy logic toolbox input range. Therefore, a gain 
block (FL toolbox input range/range of symptoms) has been used to scale the input. 
Before feeding the scaled input to the fuzzy logic toolbox, it is fed through the saturation 
block to keep the input within a specified range [–3, 3]. The ranges used for each variable 
are given in Table 2. In normal operational conditions, the variables have steady-state 
values, as shown in Table 2. Any change in the variable values generates the symptoms. 
For each symptom, one limit value has been designed to indicate a decrease or increase  
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from the normal operation limit, as shown in Table 2. These limits are the upper bounds 
of the membership functions. The Universe of Discourse (UOD) value determines the 
value of the MF by using the following equation: 

6 (NV FV)
Value of UOD,

RS

× −
=  (2) 

where: 

NV = the normal variable’s value 
FV = the faulty variable’s value 
RS = the range of symptoms for each variable. 

For each input variable, an MF is defined corresponding to a decrease, constant and 
increase state, as shown in Figure 5. Tests can be run with different shapes of the 
functions. The output MFs for the faults are defined in Figure 6. 

Figure 4 Diagram of a fault diagnostic system 

 

Table 2 The steady-state values and limit values for variables in the PWR model 

Symptom variables Steady-state values Limit values 

Core coolant average temperature (Tave) 289ºC ±1ºC 

Pressuriser pressure (Pp) 15.5 MPa ±69 kPa 

Pressuriser water level (Lp) 1188 mm ±38 mm 

Steam generator pressure (Psg) 5.2 MPa ±15.5 kPa 

Steam generator steam flow (Wstm) 26.15 kg/s ±4.5 kg/s 

Steam generator water level (Lsg) 3200 mm ±255 mm 

Condensate receiver water level (Lcr) 2337 mm ±76 mm 

Feedwater pressure (Pfw) 8.7 MPa ±20.68 kPa 

Feedwater flow (Wfw) 25.85 kg/s ±4.5 kg/s 

Feedwater temperature (Tfw) 212ºC ±0.55ºC 
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Figure 5 The MF for inputs (symptoms) 

 

Figure 6 The MF for outputs (faults) 

 

The saturation block imposes upper and lower bounds on a signal within the range of the 
specified limits. Therefore, the input signal will pass through unchanged if it is within the 
bounds. Outside these bounds, a signal is clipped to the maximum or minimum bound. 
This is the MF range, which is [–3, 3]. The input values of the fuzzy logic toolbox are 
inside the limit range and those values determine if the variable’s value has to be changed 
or not. Also, the range for the output membership functions [0, 1] is shown in Figure 6 
and MFs have two situations (zero (no fault), one (fault)). To determine an active fault in 
the PWR model, the outputs of the fuzzy logic toolbox are applied to an SW block which 
supports multivariate input and output. The SW block has three inputs and one output. If 
the signal on the second input is greater than or equal to the threshold (0.5), then the first 
input is propagated, which is one (fault); otherwise, the third input drives the output, 
which is zero (no fault). A delay mechanism has been used to ensure that only persistent 
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faults are detected. If the fault occurs in only one sample, it will be eliminated through 
this mechanism. For a certain fault, if the fault lasts for more than 6 sec, it will be 
propagated through the Transport Delay (TD) blocks, where the product of all three 
delayed values is an active fault. The final decision will be a true fault. This mechanism 
will have an effect on reporting the fault instantly when it occurs. As the delay will check 
for a persistent fault for 6 sec, it will only report an active fault after 12 sec. Finally, auto 
scale faults generate a fault graph during simulation time. 

The rule base of the fuzzy inference system can be constructed using fault-symptom 
relations, as shown in Table 1. Each symptom has three positions (decrease, constant and 
increase), which can be used as input MFs for each fault. The input MFs are referenced 
by the antecedent or if-part (symptoms) of each rule. The output MFs are referenced by 
the consequent or then-part (faults). The crisp inputs are the scaled symptoms that feed 
into the fuzzy diagnostic module. The fuzzification module converts the crisp variables 
coming from the plant into fuzzy sets, as defined by their MFs. The fuzzy rule base is 
founded on a set of if-then rules, the so-called knowledge base. The generic fuzzy rule is 
made up of a number of antecedent and consequent linguistic statements which are 
suitably related by fuzzy connections (Equation 1). For example, the rule for BFWP has 
the following form: If 〈{(...),..., (S6 is Decrease),..., (...)}〉, as shown in the seventh 
column of Table 1, then 〈f5 is an active fault〉. 

The fuzzy inference engine receives at anytime the linguistic variables that are sent 
by the fuzzification module, which constitute the fact. The fuzzy engine compares these 
data with those in the antecedents of the fuzzy rule base and arrives at the conclusion (a 
particular fault or a normal operation). Finally, aggregation occurs and a crisp output is 
generated in the defuzzification module. If the aggregated value is over 0.5, this means 
that the proposed fault (i.e., BFWP) is active. Other faults can be similarly explained. 

4.1 Test results 

The fuzzy fault diagnosis system is tested with different shapes of MFs to find the 
efficient MF for the fault diagnosis of PWR. In this work, the change in shape of the MF 
gives different results during simulation for the same fault, as indicated in Table 3. The 
different shapes of the MF, such as bell-shaped, triangular, two-sided composite 
Gaussian, simple Gaussian and mixed Gaussian (simple and two-sided) curves, are used 
as input MFs. The relationship between the results and the shape of the MF is shown in 
Figure 7, 8, 9, 10 and 11. Table 3 presents the different shapes of input MFs and their 
parameters. From the test results, it is found that the simple and two-sided Gaussian MF 
is more efficient for fault diagnosis. For example, to diagnose the BFWP fault by using 
the fuzzy inference approach, simple Gaussian curves are used as membership functions, 
with following parameters [1.3 –3], [1.3 0], [1.3 3], (see Table 3). The results are shown 
in Figure 10. In this case all faults are close to critical position and behavior of fuzzy 
model. For that reason, mixed shapes of input MFs are used, such as simple and 
two-sided composite Gaussian curves (Figure 11). In this case the simple Gaussian curve 
is used for decrease and increase MFs and the two-sided composite Gaussian curve is 
used for constant MF. The Gaussian curve parameters of decrease and increase MFs have 
been changed from [1.3 –3], [1.3 3] to [1.8 -3], [1.8 3], where parameters [X1 X2] are 
shown in Figure 5. The results appear to be reasonable. 
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Table 3 The relationship between the shape of the MF and FDI 

Shape of MF MF parameters Fault indication 

Bell-shaped [2.2 3.278 –3] 
[1.53 3.28 0] 
[2.2 3.278 3] 

Critical position 
Does not detect any fault 

Triangular [–7.24 –3 1.24] 
[–3.065 0 3.065] 
[–1.24 3 7.24] 

Critical position 
Unsuitable for FDI 

Two-sided Gaussian [1.098 –3.825 1.098 –2.175] 
[0.79 –0.596 0.79 0.596] 

[1.098 2.175 1.098 3.825] 

Critical position 
Unsuitable for FDI 

Simple Gaussian [1.3 –3] 
[1.3 0] 
[1.3 3] 

Critical position 
Unsuitable for FDI 

Simple and two-sided 
Gaussian 

[1.8 –3] 
[0.79 –0.596 0.79 0.596] 

[1.8 3] 

Reasonable 
Suitable for FDI 

Figure 7 The faults in the PWR model using the bell-shaped MF 
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Figure 8 The faults in the PWR model using the triangular MF 

 

Figure 9 The faults in the PWR model using the two-sided Gaussian MF 
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Figure 10 The faults in the PWR model using the simple Gaussian MF 

 

Figure 11 The faults in the PWR model using the mixed Gaussian MF 
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Figure 11 illustrates the change of faults during simulation time for BFWP. After the 
first 6 sec, all faults got the same value during the build up of rules (I). The fault f5 was 
injected at 10 sec into the simulation model. Figure 11 shows that f5 starts at 
approximately 13 sec. The delay between fault injection and the fuzzy model’s response 
is 3 sec. Other faults start dropping from 10 sec of the fuzzy model’s working time (II). 
The BFWP at 13 sec gets a value over 0.5. At that point, the outputs of the fuzzy model 
show f5 as an active fault (III). Also, other faults are not active and their graphs drop to 
zero. In this situation, if BFWP still occurs in the PWR model, the fault graph gets a (IV) 
position and others get a (V) position. In this study, at 50 sec, we suggested stopping the 
fault (f5). Figure 12 shows that the fault graph dropped suddenly to its steady-state value 
(VI) position and others increased to their normal state (VII) position. The steady-state 
value of the faults in Figure 12 could be tuned by the scaling block (see Figure 4). 
However, tuning drops the steady-state value below 0.5, which is the critical value of the 
MF that gives much better results for fault diagnosis. 

Figure 12 The faults in the PWR model with f5 stopping at 50 sec 

 

5 Conclusion 

In this paper, fault-symptom trees were used to analyse the behaviour of the PWR with 
the faults. Then, the Mamdani inference strategy was used to generate fault diagnosis 
rules based on the operator’s knowledge about fault-symptom relations. The effectiveness 
of fuzzy fault diagnosis has been analysed for different shapes of MFs. The performance 
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of the fuzzy inference system largely depends on the selection of the MF parameters and 
consequent variables. From the test results, it was found that the simple and two-sided 
Gaussian MF is more suitable for the fuzzy fault diagnosis system. The test results of the 
proposed approach shows a rapid and proper response in fault diagnosis for the PWR. 
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