

 Int. J. Nuclear Knowledge Management, Vol. 3, No. 3, 2009 263

 Copyright © 2009 Inderscience Enterprises Ltd.

Formal representation of knowledge using Z in fast
breeder test reactors

Bindu Sankar*, H. Seetha, K.K. Kuriakose,
S.A.V. Satyamurty and P. Swaminathan
Indira Gandhi Centre for Atomic Research
Computer Division, Kalpakkam 603 102, India
E-mail: bindu@igcar.gov.in
E-mail: seethah@igcar.gov.in
E-mail: kuriakose@igcar.gov.in
E-mail: satya@igcar.gov.in
E-mail: swamy@igcar.gov.in
*Corresponding author

Abstract: In this paper, knowledge representation using Z, a formal notation, is
adapted in mapping Fast Breeder Test Reactor (FBTR) requirements. The
most frequent cause of faults in safety-critical real-time computer systems is
traced to fuzziness in representing requirements knowledge. Pitfalls using a
natural language as a medium for representing the system requirements
knowledge were analysed and explored. To ensure the specified safety, it is
necessary to represent the system requirements of safety-critical real-time
computer systems using formal mathematical methods. This removes the
fuzziness in communicating knowledge on reactor system requirements. This
paper contains the formal mathematical model for requirement specifications of
FBTR systems using Z notation. Finally, the advantages of using formal
representation for representing system requirements knowledge of FBTR using
Z notations to minimise the ambiguity in knowledge communication and thus
improve the safety are summarised.

Keywords: formal methods; notation; knowledge representation; nuclear
knowledge management.

Reference to this paper should be made as follows: Sankar, B., Seetha, H.,
Kuriakose, K.K., Satyamurty, S.A.V. and Swaminathan, P. (2009) ‘Formal
representation of knowledge using Z in fast breeder test reactors’, Int. J.
Nuclear Knowledge Management, Vol. 3, No. 3, pp.263–283.

Biographical notes: Bindu Sankar is working as a Scientific Officer in the
Computer Division of the Indira Gandhi Centre for Atomic Research (IGCAR),
India. She finished her Master’s in Engineering at Regional Engineering
College, Tiruchirapalli, India in 1998. She joined IGCAR in 2001. She
has written Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder
Reactor (PFBR) system requirements in Z. Apart from writing requirement
specifications, she has taken an active part in the development of Graphical
User Interface (GUI) software using Qt library in C++. She has also contributed
to animation in graphics using Sherril-Lubinski-Graphical Modelling System
(SL-GMS). Her fields of interest include knowledge management, SharePoint
2007, dynamic simulation and graphics.

 264 B. Sankar et al.

H. Seetha graduated in Computer Science and Engineering from Bharathidasan
University, Tiruchirapalli, India in 1997. She worked as a Lecturer at
Government College, Chidabaram, India. She joined the Computer Division of
the Indira Gandhi Centre for Atomic Research (IGCAR), India in 2001.
She has been involved in 3D modelling of Prototype Fast Breeder Reactor
(PFBR) components and the design, development, installation and
commissioning of a PFBR full-scope operator training simulator. She has
actively participated in the design and development of a knowledge
management portal for IGCAR’s Computer Division. Her fields of interest
include knowledge management, logic modelling, and coding in C and C++.
She has published papers in international journals.

K.K. Kuriakose graduated with honours in Electrical Engineering from the
Regional Engineering College (now the National Institute of Technology),
Calicut, India in 1977. After undergoing a one-year course in Nuclear Science
and Engineering from Bhabha Atomic Research Centre (BARC) Training
School, he joined the Indira Gandhi Centre for Atomic Research (IGCAR),
India in 1979. He had successfully completed a Master of Engineering (first
class) in Electrical Communication Engineering from the Indian Institute of
Science, Bangalore (1986) and a Master of Business Administration from
Indira Gandhi National Open University (2000). Currently he is the Head of the
Knowledge Management Section and a doctoral-level research scholar in the
area of knowledge management with Homi Bhabha National Institute.

S.A.V. Satyamurthy did his BTech at Jawaharlal Nehru Technological
University, India in 1977, for which he was a university gold medalist. Later,
he joined a one-year orientation course in Nuclear Science and Engineering
(21st Batch) at BARC. He was awarded the Homi Bhabha prize for getting 1st
place. He joined the Indira Gandhi Centre for Atomic Research (IGCAR) in
1978. He played a key role in the establishment of a mainframe computer
system for IGCAR. He was also instrumental in establishing internet and e-mail
facilities at IGCAR. He was responsible for the upgrading of the IGCAR
Campus Network. He took keen interest in network security and commissioned
many security servers, a high-performance computing facility, a intra-DAE
VSAT network and a grid computing facility at IGCAR. He has more than 25
journal publications/conference proceedings and edited one international
conference proceedings. At present, he is the Head of the Computer Division
at IGCAR.

P. Swaminathan graduated with honours in Electronics and Communication
Engineering from Regional Engineering College, Tiruchirapalli, India in
1971. He is a gold medallist of the University of Madras, India. After
undergoing a one-year course in Nuclear Science and Engineering from BARC
Training School, he joined Indira Gandhi Centre for Atomic Research
(IGCAR) in 1972. He further underwent a one-year course in mainframe
systems from International Honeywell Bull Training Institute, Paris, France.
He is the main architect for the design, development, installation and
commissioning of the fault-tolerant safety-critical real-time computer system
for the fast breeder test reactor. As Outstanding Scientist and Director of the
Electronics & Instrumentation Group at IGCAR, he is engaged in the
development of safety instrumentation, a full-scope training simulator and a
knowledge management system for a fast breeder reactor programme. He has
over 40 publications in international journals/seminars.

 Formal representation of knowledge using Z in fast breeder test reactors 265

1 Introduction

The use of real-time computers for safety-critical systems in strategic applications, such
as nuclear, space and defence, is increasing rapidly. They can provide an inexpensive and
flexible means of implementing very powerful and complex features. In the case of
safety-critical systems, the implementation of system functions must be demonstrated to
be safe and reliable with a certain degree of confidence. The software component of
computer-based systems is not amenable to a quantitative assessment of reliability. Hence
the assessment of software in computer-based systems has to be based on evidence that
the software is correct (with respect to software requirements), safe and completely
implements the requirements. Basically, the software component of real-time computers
is prone to three types of errors: software requirement errors, logic errors and timing
errors. When the software requirements knowledge is represented in a natural language,
the interpretation by different stakeholders, such as the specifier, the designer, the
developer, the tester, and the verification and validation team, may vary. Finally, this may
result in the designing of a system with a functionality which is not as expected by the
end user. Especially in safety-critical systems, this may affect the safety and functionality
of the system. To avoid software requirement errors, the description of software
specifications should be detailed, unambiguous, verifiable and complete. Knowledge
representation using formal notation meets this goal. This paper describes the knowledge
capture and representation of three safety-critical subsystems of a Fast Breeder Test
Reactor (FBTR) using formal notation.

2 Brief overview of knowledge representation

A knowledge representation can be defined as a set of knowledge attributes which are
necessary for efficiently finding relevant and applicable matches for the context of a
knowledge need (Mahesh and Suresh, 2004). Knowledge representation can be a formal
notation used to code the knowledge which will be stored in any knowledge-based
system. Knowledge is usually stored in implicit form inside our minds or spread in the
society as habits, experience, etc. To share this knowledge, it has to be made explicit.
Producing different knowledge representations is a vital part of intelligence, since the
ease of solving a problem is almost completely determined by the way the problem is
conceptualised and represented (Shadbolt and Milton, 1999). Knowledge representation
is a combination of:

• logic – This analyses inferences and is a source of knowledge for correct reasoning
with formal structure.

• ontology – An ontology is a specification of conceptualisation. It is a formal
description of concepts and the relationships that exist between entities.

• computation – Calculations or means by which implementation is carried out in
computer programs.

 266 B. Sankar et al.

Knowledge representation utilises theories and techniques from the above three fields.
Knowledge representation can be carried out by two methods:

1 using a natural language

2 using a formal language such as Z.

Natural languages are very expressive; probably everything that can be expressed
symbolically can be expressed in natural languages. The problems associated with natural
languages are that they are very ambiguous and the syntax and semantics are not fully
understood. Also, there is little uniformity in the structure of sentences. Such informal
representations are not adequate as they are often inaccurate, inconsistent and unclear.
Natural language representations are also very lengthy, making them difficult to check
for completeness. These problems can be overcome by the use of formal languages
(Holloway, 1997).

The readability of formal requirement specifications is usually poor (Zimmerman
et al., 2002). However, by selecting a formal specification language such as Z, which is
more intuitive and user friendly with logic-based graphical notations, this could be
overcome. Apart from the creation and analysis of requirements knowledge, formal
methods can also be applied in a cost-effective way to answer specific questions about
the domain (Bhardwaj, 2002).

3 Understanding requirements knowledge

Some of the difficulties associated with representing the requirements knowledge in
a natural language which might lead to errors/bugs are contradiction, ambiguity,
vagueness, incompleteness and a mixed level of abstraction. In subsequent discussions
in this paper, the terms ‘requirements knowledge’, ‘requirement specifications’ and
‘specifications’ are used interchangeably.

3.1 Contradiction

Contradictory statements in a lengthy requirements document are often separated by
many pages and remain undetected – until coding.

Here is an example: “The system will always operate on values between levels 0.0
and 4.0….” This statement is later contradicted by another: “Module X will be required
to read in data from an external source over the range of integer values 0 to 10.”

According to the first quoted statement, only floating point values need to be
considered; but later this is contradicted by considering integer values with a
different range.

3.2 Ambiguity

Ambiguity is common in written requirements. For example, consider this requirement:
“The system will read in 120 initial data values and compute the mean and mode. They
will be stored for later analysis.”

What exactly must be stored? Is it the raw data or the computed mean and mode
values that need to be stored?

 Formal representation of knowledge using Z in fast breeder test reactors 267

3.3 Vagueness

Sometimes lengthy requirements might include vague parts. For example, consider the
following requirements: “The storage size should be as small as possible.”

Obviously this is useless in a requirement representation, but the danger is that coding
might begin before this vagueness is clarified.

3.4 Incompleteness

This is the hardest flaw to deal with when working with requirements. For example: “The
system will accept time entries ranging from 03:00 on 1/2/02.”

And suppose if someone enters 02/02/02? What happens then? It is not clear from
the requirements.

3.5 Mixed levels of abstraction

It can be very hard to see the overall functional architecture when the levels of
description are intermixed, like this: “The system will make it easy to access the values in
all consumer accounts. This will involve extraction of the 5-digit real values by clicking
on the tab to the left of the rightmost frame on the entry page….” This is so obscure that
understanding will be difficult.

4 System failure prevention

The three main causes of failure in software systems are physical causes, software errors
and human/computer interference. Software errors can be minimised by formal
techniques.

Even in a safety-critical application, software may fail frequently, yet still not lead to
unsafe behaviour. On the other hand, highly reliable software can be unsafe because, in
the rare event of a failure, the effect is dangerous.

Ideally, software designers and manufacturers should demonstrate that software
specification forbids actions that lead to catastrophic failures of the system. The software
should also protect itself from failures of the other parts of the system. The only way to
be certain that a system is specified as safe is to rely on formal techniques. This
necessitates the creation of more friendly interfaces for project managers and designers
who are not professional mathematicians.

Formal specification of software involves three main concepts:

1 the data invariant – This is a set of rules that governs the range and nature of the data
in the system throughout its operation.

2 the state – These are the actual values stored in the system.

3 operations – Each operation has a precondition (i.e., a statement of conditions for the
particular action to be allowed to proceed) and a postcondition (i.e., a statement of
what happens when the operation is complete).

 268 B. Sankar et al.

In the future, we may need to use combinations of formal verification, more advanced
testing and other methods to achieve the genuinely safe operation of software-controlled
systems.

5 Brief overview on formal methods

Formal methods are based upon elementary mathematics, which is used to produce
precise, unambiguous documentation, in which information is structured and presented at
an appropriate level of abstraction. Formal methods apply logic and simple mathematics
to programming. It particularly concerns discrete mathematics. Formal methods can
determine the meaning of a formula, such as a specification or design, without executing
it. Usage of formal methods will enable the prediction of what a program will do without
running any code. This means that we can discover errors without having to run any tests
(Jackey, 1997).

Formal methods can be used for modelling and predicting the system behaviour
within a mathematical formalism. In many cases automated tools support formal
methods. Such tools provide increased repeatability of analysis, increased soundness
and assurance.

6 Z – a formal notation

Formal specification is nothing but expressing system requirements in a well-defined,
logically sound mathematical notation.

Z tools are available for this purpose. Z is a model-based notation. In Z, the system
model is represented using its state, which is a collection of state variables and their
values and some operations that can change the state. A model that is characterised by the
operations it describes is called an Abstract Data Type (ADT) (Harrison, 1992). Z has a
powerful structuring mechanism. In combination with natural language, it can be used to
produce formal specifications. The Z notation is based upon set theory and mathematical
logic. The theory includes standard set operators, set comprehensions, cartesian products
and power sets. The mathematical logic is a first-order predicate calculus. Mathematical
objects and their properties can be collected together in schemas.

A specification is a collection of schemas. Schemas are macros that we can use to
abbreviate blocks of mathematical text. A schema introduces some entities and invariant
properties. The schema declaration part defines each entity’s name and type (syntax). The
predicate expresses constraints that determine the values which the variables actually
take. The schema language can be used to describe the state of a system, and the ways in
which that state may change. It can also be used to describe system properties and to
reason about possible refinements of a design (Jackey, 1997). A schema is pictorially
represented as shown below.

The schema is the characteristic construct of the Z notation.

 Formal representation of knowledge using Z in fast breeder test reactors 269

7 Modelling of requirement specifications for safety-critical systems

If the failure of a computer system may lead to catastrophic consequences, such as loss of
human life, damage to the environment or damage to the system itself, such a system is
known as ‘safety critical’. Nuclear reactors being safety critical, requirements’ gatherings
must be done with utmost care. Hence, the formal specification language Z was chosen
against a natural language (English) for the modelling of requirement specification. The
users of formal specifications are given in Figure 1.

Figure 1 User diagram (see online version for colours)

FORMAL

SPECIFICATION

SPECIFIER

DESIGNER/

DEVELOPER

VERIFICATION &

VALIDATION
MEMBER

The Z specification document of FBTR was written using Logica’s formal methods tool
– Z specific formaliser version 7.3.7e – and the document was checked using the
provisions given by the formaliser. Formal methods require effort, expertise and
significant knowledge in order to be successfully applied to safety-critical systems.

8 Overview of Fast Breeder Test Reactor

The FBTR is a 40 MWt/13 MWe, liquid sodium-cooled plutonium-uranium carbide-
fuelled, loop-type fast reactor. The purpose of constructing it is to use it to gain
experience in the design, construction and operation of fast breeder reactors. The basic
conceptual design of FBTR systems, viz. block pile, primary and reactor protection
instrumentation, are similar to the French reactor Rapsodie, whereas the secondary,
steam-water system and turbo generator are designed in-house (Ramanathan et al., 2004).
The schematic diagram of the FBTR is shown in Figure 2.

At the FBTR, for monitoring and regulating the reactor power, neutronic
instrumentation is provided. For detecting the fuel pin clad failure, one system based on
Delayed Neutron Detection (DND) and another based on cover gas analysis are
incorporated. Thermocouples (TCs) are provided to measure the fuel subassembly
sodium temperature. Ward-Leonard driven sodium pumps accurately regulate the sodium
flow through the core. Real-time fault tolerant computer systems monitor the important
safety parameters of the plant and initiate safety actions when required. An online
computer system with a hot standby is provided to monitor the plant parameters and
initiate safety actions, besides providing vital plant information to the operator. There
are around 700 analogue and 300 digital input signals connected in parallel to both

 270 B. Sankar et al.

computers. The computers scan the signals periodically every 1 s and 20 s, depending on
the importance of the parameters, process them through different supervision software
tasks, such as supervision of the reactor core against blockage of flow, power excursion
and clad hotspot, and perform the safety-related functions of the plant. Online diagnostics
check the health of the hardware and proper execution of the application software. If
satisfactory, then a watchdog pulse is generated. The watchdog pulses from each
computer are processed by switchover logic. The digital outputs from a healthy computer
is routed to the plant in the ORING logic (according to ORING logic, based on the health
pulse received through switchover logic, either one of the digital outputs received from
computer 1 or 2 is routed to the plant) (Figure 3) (Swaminathan, 2004).

Figure 2 FBTR schematic (see online version for colours)

Figure 3 Computer system configuration (see online version for colours)

 Formal representation of knowledge using Z in fast breeder test reactors 271

9 Modelling of system specifications of FBTR

9.1 Case Study 1: core temperature monitoring system

Normally, the reactor core is provided with in-core flux sensors, TCs, flow meters,
acoustic sensors, etc. The signal from the in-core flux sensors need to be processed for
flux mapping, reactor power, period and reactivity. The outlet temperature from each fuel
subassembly needs to be monitored to detect flow blockage, clad hotspot and undesirable
power excursion. Online statistical analysis of the acoustic sensor signal is required for
the detection of a coolant boiling in the core. The availability of powerful computer
systems enable online processing of in-core sensor signals.

The Core Temperature Monitoring (CTM) system processes the fuel core outlet
temperature signals and reactor inlet signals. It validates all the signals (whether faulty or
not) in what is called Pre Treatment Routine (PTR). It has to calculate the core outlet
temperature (θm) in the process called Mean Value Sub Routine (MVSR). It also
calculates the mean temperature rise across the reactor core (∆θm) in what is called Mean
Gradient Sub Routine (MGSR) and detects partial plugging blockage by monitoring the
temperature rise across individual subassemblies (δϑi), in what is called Plugging
Detection Routine (PDR). It checks against alarm LOR (Lowering of Rods – slow
shutdown) and SCRAM (Safety Control Rod Axe Man – fast shutdown) thresholds,
generating Alarm, LOR and SCRAM whenever computed values cross the thresholds. In
addition, this system has to send the acquired and computed data to the local display and
backbone network for the operator’s aid in the control room. Since online computation is
involved in the process, it was decided to use a computer-based signal processing system
for CTM.

9.1.1 Modelling of signal validation (Pre Treatment Routine)

‘Value’, ‘Signal’ and ‘report’ are declared as global, that is, they can be used anywhere in
the specification document. ‘Value’ and ‘Signal’ are nonnegative integers (is a
predefined data type of Z):

Value ==

Signal ==

report::=signalvalid|faultysignal|resetalarm|resetlor|resetscram|
orderalarm|orderlor|orderscram|onrequest.

In Z, ‘report’ is a free type definition (similar to enumerated type). To define a free type,
give its name and then, after the definition symbol “::=”, list all of its elements. Here, the
free type ‘report’ consists of ‘signalvalid’, ‘faultysignal’, ‘resetalarm’, ‘resetlor’,
‘resetscram’, ‘orderalarm’, ‘orderlor’, ‘orderscram’ and ‘onrequest’ variables. The order
here is not significant (no sequence is implied).

‘Defscandb’ schema implies that at any time the number of valid and invalid signals
are less than or equal to the number of raw signals and there will not be any signal which
belongs to both valid and invalid signals. This schema is shown below:

 272 B. Sankar et al.

The symbol ‘seq’ is used to define the sequence of any type and the # symbol implies the
number of elements in a set.

Every system has a special state in which it starts up. In Z, this state is described by a
schema named ‘intscandb’(given below). Initially, ‘rawsignal’, ‘validsignal’ and ‘invalid
signal’ must be empty.

The ‘<>’ in the predicate is the empty sequence and ‘∆’ indicates change.
Some more global variables defined in the Z specification document of FBTR

systems were:

tempoutletsignal ==

tempinletsignal ==

subassemblies ==

tempvalue==

limitvalue==

ratiovalue ==

errorvalue ==

powervalue == .

The axiomatic definition is a Z paragraph that is set off from the surrounding informal
prose by an open box. Its general form is (Woodcock and Davis, 1996);

In the CTM system:

 Formal representation of knowledge using Z in fast breeder test reactors 273

The axiomatic definition of median is implied above with no predicate part, with ‘→’
indicating total function.

We have introduced a sequence for inlet temperatures and defined a partial function from
subassemblies to outlet temperatures. The median of inlet temperatures was calculated in
the above schema.

In the schema ‘Signalvalidation’, Ξ Defcore is an operation on ‘Defcore’ that does
not change the value of any state variable. In this schema the outlet temperature signal of
fuel subassemblies is compared with the median of the reactor inlet temperature. The
reactor outlet temperature signal is declared valid if it satisfies the following equation:

outlet temperature > median of inlet temperatures – x°C

where x°C is taken into account due to the inaccuracy in inlet and outlet temperature
signals. At low power, the inlet and outlet temperatures are nearly equal.

If the outlet temperature signal does not satisfy the equation, then the signal is
declared as faulty. In the schema below, contforvalidity is assigned as x°C.

In the predicate, if any of the TCs at the outlet of the subassemblies reads less than the
inlet temperature, that TC is considered as faulty and that value should not be taken
into account for further calculation purposes. The symbol , for all, is the universal
quantifier. Here it is used to introduce the bound variable ‘i’ into the predicate. This
bound variable does not model some particular component of the system we are trying to
describe; it is merely a place holder that stands for 1 to the total number of
subassemblies. The general form of a universally quantified predicate is:

 declaration • predicate.

 274 B. Sankar et al.

The character • is just a delimiter. The variables declared in declaration part of a schema
are called bound variables. This quantified predicate means that it is true for all values of
the bound variables that are admitted by the declaration. The scope of the bound variables
is limited to the predicate; outside this scope, the bound variables are undefined.

⊆ implies set inclusion, implies Logical conjunction (and).

If all the thermocouples in any one of the fuel subassemblies are declared faulty by
signal validation, then a permanent scram order is given. The equivalent Z statement is
shown below.

Symbol implies existential quantification and symbol ! implies output. ‘Dom’
means domain.

9.1.2 Modelling of MVSR (θm), MGSR (∆θm) and PDR (δθi)

A real-time computer scans each subassembly outlet temperature at the desired frequency
and calculates the core outlet temperature (θm), the mean temperature rise in the core
(∆θ m) and the deviation in individual subassembly outlet temperature over the expected
value (δθi).

Mean value sub routine

The average value (θm) of validated outlet temperature signals for fuel subassemblies
shall be computed every second. This shall be compared against the Alarm, LOR and
SCRAM thresholds. The equivalent Z statement is shown below.

where setaverage is given by the axiomatic definition:

 Formal representation of knowledge using Z in fast breeder test reactors 275

Here the schemas NormalMVSR_LOR and NormalMVSR_SCRAM are horizontal
schemas which are similar to NormalMVSR_alarm, except for the change in the alarm
limit to ‘lor’ and ‘scram’ limits respectively. Horizontal schemas are usually in a
single-line horizontal format in which the schema name appears to the left of the
definition symbol ‘ ’.

Separate schemas were written indicating whether θm exceeds the alarm, LOR or
SCRAM limits. If the values were found to exceed them, then alarm, LOR or SCRAM
shall be energised. Also, a corresponding error message shall be displayed and printed.

If θm falls below the alarm, SCRAM or LOR limits, fault clear messages shall be
displayed and printed out.

Mean gradient sub routine

The average temperature rise:

∆θ m = θm – inlet temperature

shall be calculated every second and compared against the alarm, LOR and SCRAM
limits. The thresholds (alarm, LOR and SCRAM limits) are variables which are related to
the reactor power campaign. If ∆θ m exceeds the alarm, LOR or SCRAM thresholds,
corresponding action shall be initiated. Relevant fault messages shall be printed and
displayed. If ∆θ m decreases below the threshold level of alarm or LOR or SCRAM,
corresponding reset action shall be initiated. Relevant fault messages shall be printed and
displayed. This can be shown by the schema below named NormalMGSR_alarm.

 276 B. Sankar et al.

Here the schemas NormalMGSR_LOR and NormalMGSR_SCRAM are horizontal
schemas which are similar to NormalMGSR_alarm except for the change in the alarm
limit to ‘lor’ and ‘scram’ limits respectively.

Separate schemas were written indicating whether ∆θ m exceeds alarm, LOR or
SCRAM limits. If the values were found to exceed them, then alarm, LOR or SCRAM
shall be energised. Also, a corresponding error message shall be displayed and printed.

If ∆θ m falls below the alarm, SCRAM or LOR limits, fault clear messages shall be
displayed and printed out.

Plugging detection supervision

The plugging detection software shall be operational only after the reactor power exceeds
2 MWt in the FBTR. The expected temperature rise in each subassembly shall be
calculated with the following formula:

Expected temperature rise = ai × Average temperature rise.

The term ‘ai’ is the ratio of the temperature rise of an individual subassembly to the mean
temperature rise in the core, which is determined for a fresh core and updated
periodically. To start with, the computed ai shall be available as ‘software data’.
However, there shall be online provision to calculate ai using the following equation:

thTemperature rise in the i fuel subassembly
ai .

Average temperature rise in the core
=

There shall be two sets of ai. The first is named the computational set and the other,
the operational set. Plugging detection software shall use ai values only of the
operational set.

To start with, both sets shall contain the same values. But at any time, the operator
can order online computation of ai. The computer shall calculate ai and store the values
only in the computational ai set. After transferring the values to the operational set, the
computer system shall print out the contents of the updated operational set. If any TC is
declared faulty by the signal validation (PTR) software, then the signal shall be assumed
to have crossed the SCRAM limit. In the schema, if the error between the actual
temperature rise and the expected temperature rise exceeds ‘k’, alarm shall be energised.
If the error exceeds ‘m’ in any one TC, then alarm is given and if both TC values exceed
value ‘m’, SCRAM is given.

Here, k = 5, m = 10 and power p = 2.0 Mwt.

 Formal representation of knowledge using Z in fast breeder test reactors 277

In the PluggingDetectionSoftware schema, the predicate request ? implies input and the
symbol * means multiplication. Alarm and SCRAM schemas were also written.

9.2 Case Study 2: discordance supervision

There are three fission gas chambers surrounding the reactor core at 120°. The neutron
emission is continuously monitored in these three chambers through discordance
supervision. The function of this supervision is to find out the discordance among the
triplet channels of neutronic parameters. Any discordance among the three channels will
be notified through alarm messages. Figure 4 shows a schematic representation of the
reactor core and the placement of the fission chambers at locations A, B and C.

1 The discordance threshold is calculated as:

Discordance threshold = median value of the three channels

× threshold percentage of parameter

2 The difference among the three channels is:

D1 = Channel A – Channel B

D2 = Channel B – Channel C

D3 = Channel C – Channel A

3 Compare D1, D2 and D3 with the discordance threshold and generate alarm
messages as per the algorithm below:

• If no difference crosses the discordance threshold – NO discordance

• If two differences cross the discordance threshold – ONE discordance

• If all the three differences cross the discordance threshold – TWO discordance.

 278 B. Sankar et al.

Figure 4 Reactor core, cross-sectional view

The modelling of the above English specification in Z is shown below:

CHANNEL ==

ALARMLT ==

value ==

Let us define the channels in a schema called ‘DefChannels’. The input for discordance
supervision is ‘chA’, ‘chB’ and ‘chC’. ‘S’ belongs to ‘Alarmlt’.

The axiomatic definition of the absolute difference between two channels is indicated
below:

We can define product types using the cross product symbol ×. In a formal description of
a software system, we may wish to associate two or more objects of the same kind or
different kinds, respecting order and multiplicity. To support this structuring mechanism,
the Z notation includes Cartesian products. These are sets of tuples: ordered lists of
elements, one list drawn from each of the component sets.

If ‘a’ and ‘b’ are two sets, then the Cartesian product ‘a × b’ consists of all tuples of
the form (x, y) , where ‘x’ is an element of ‘a’ and ‘y’ is an element of ‘b’.

 Formal representation of knowledge using Z in fast breeder test reactors 279

The symbol ‘ ’ denotes binary relations that can be many to many. If ‘X’ and ‘Y’
are sets, then ‘X Y’ denotes the set of all relations between ‘X’ and ‘Y’. The relation
symbol may be defined by generic abbreviation:

Any element of ‘X Y’ is a set of ordered pairs in which the first element is drawn from
‘X’ and the second from ‘Y’; that is, a subset of the Cartesian product set ‘X Y’.

The modelling of different discordance scenarios like NO discordance, ONE
discordance and TWO discordance are given below.

The schema for NO discordance is:

The schema for ONE discordance for channels A, B and C are:

The horizontal schema ‘ONEDiscordance’ will take place if ONEDiscordanceA or
ONEDiscordanceB or ONEDiscordanceC will occur.

 280 B. Sankar et al.

The schema for TWO discordance is:

The modelling of schemas for indicating alarm, clearing alarm, etc., based on the above
schemas was also done.

9.3 Case Study 3: general supervision

Sodium is pumped through the reactor core by the primary sodium pumps. There
is a secondary sodium pump which pumps sodium through a secondary loop. The
measurement of sodium flow is done using sodium flow meters like magnet flow meters
and/or eddy current flow meters. Consider a case in which sodium flows through a pipe
as shown in Figure 5. Flow meters f1, f2…etc. measure the sodium flow. Flow
supervision falls under general supervision. The flow is checked against the threshold
generating alarm, if required. In general supervision, process signals of similar nature are
grouped together and compared with thresholds (upper thresholds and lower thresholds).

Figure 5 Sodium flow inside a pipe

If the sodium flow is less than lower thresholds, it indicates that the sodium pump might
be tripped out (not working) or faulty. If the sodium flow crosses higher thresholds, it
implies that the pump is working at a higher speed. In both cases (sodium flow crossing
the lower or higher thresholds), alarms are generated.

The above specifications are modelled in Z as:

group == seq

signal ==

UT ==

LT ==

 Formal representation of knowledge using Z in fast breeder test reactors 281

Report :: = ResetAlarm

on == 1

off == 0

boolean : : = on | off

In ‘DefGensupervisionSignal’ each group of the process signal has a common upper
threshold and lower threshold. So here we can consider a one-to-one relationship
(indicated by the symbol) between ‘group’ and ‘upper Threshold’ (UT) and ‘group’
and ‘Lower Threshold’ (LT). Here ‘c’ is a constant.

Now we can define two schemas called Normal_GS and NotNormal_GS.

Based on the above schemas, we can extend the Z modelling for ‘alarms’ and
‘alarm clear’.

 282 B. Sankar et al.

10 Conclusion

The advantage of using formal methods was demonstrated in the knowledge
representation of FBTR system specifications. Knowledge representation of
specifications was done formally using Z, with clear and elegant semantics. Formal
methods can help in creating software that could be understood before the actual
execution. The usage of formal methods requires the programmers to use mathematical
symbols to represent the program’s logic before coding. Like a mathematical theorem,
knowledge representation using Z can be checked to verify that specifications form
logically correct statements. Once the programmer is sure that there is no logical flaw in
the knowledge representation of specifications of the reactor, it is relatively simple to
convert Z symbols into a programming code. Hence, this is a way to eliminate bugs even
before writing the actual code. Also, this eliminates the necessity of trial and error to
validate and improve the systems. The main advantages of using formal specifications are
as follows:

• higher quality software

• verifiability

• insight and understanding

• minimised maintenance and cost

• formal analysis

• guidance for testing

• reduced liability and risks

• standard satisfaction.

Case studies of three FBTR systems were taken to demonstrate the knowledge
representation using Z code. Similarly, formal representation of the system requirement
knowledge of the remaining systems of FBTR also successfully used Z notation.

References

Bhardwaj, R. (2002) ‘Formal analysis of domain models’, Proc. International Workshop on
Requirements for High Assurance Systems (RHAS’02), Essen, Germany, pp.1–6.

Harrison, M.D. (1992) ‘Engineering human error tolerant software’, in J.E. Nicholls (Ed.) Z user
Workshop, York 1991, Workshops in Computing, Springer-Verlag, pp.191–204.

Holloway, M. (1997) ‘Why engineers should consider formal methods’, 16th Digital Avionics
Systems Conference, 27–30 October, pp.5–7.

Jackey, J. (1997) The Way of Z, Cambridge University Press, pp.3–13, 49–51.

Mahesh, K. and Suresh, J.K. (2004) ‘What is the K in KM Technology?’, Electronic Journal of
Knowledge Management, Vol. 2, No. 2, p.16.

Ramanathan, V., Pillai, C.P., Rajendran, B., Ramalingam, P.V. and Bhoje, S.B. (2004)
‘Commissioning and operating experience on I&C systems of fast breeder test reactor’,
IAEA/RCA Technical Meeting on Research Reactor Instrumentation and Control, Korea
Atomic Energy Research Institute (KAERI), Daejeon, Korea, 3–7 May, pp.1–3.

 Formal representation of knowledge using Z in fast breeder test reactors 283

Shadbolt, N. and Milton, N. (1999) ‘From knowledge engineering to knowledge management’,
British Journal of Management, Vol. 10, pp.309–322.

Swaminathan, P. (2004) ‘Computer based on-line monitoring system for Fast Breeder Test Reactor,
India’, Technical Meeting on Increasing Instrument Calibration Interval through Online
Calibration Technology, Halden, Norway, 27–29 September, p.3.

Woodcock, J. and Davis, J. (1996) Using Z: Specification, Refinement, and Proof, Prentice Hall.

Zimmerman, M.K., Lundqvist, K. and Leveson, N. (2002) ‘Investigating the readability of state
based formal requirements specification languages’, Proc. International Conference on
Software Engineering (ICSE 2002), Orlando, Florida, USA, May, pp.10–11.

