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Abstract: Dimension reduction is important during the analysis of gene
expression microarray data, because the high dimensionality in the data
set hurts the generalisation performance of classifiers. Partial Least
Squares Based Dimension Reduction (PLSDR) is a frequently used method,
since it is specialised in handling high dimensional data set and leads
to satisfying classification performance. However, the previous works
exist an ambiguous usage of projection weights in PLSDR. To assure the
orthogonality of projected components, the usually used project weights
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are nonorthogonal. Here, we propose to use orthogonal project weights
for PLSDR. Experimental results on four microarray data sets show our
proposed orthogonal project weights are better than the previous used to
help improve the generalisation performance of classifiers.
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1 Introduction

DNA microarray experiments are used to collect information from tissue and cell
samples regarding gene expression differences for tumor diagnosis (Golub et al., 1999;
Alon et al., 1999; Dudoit et al., 2002). The output of microarray experiment is
summarised as an n × p data matrix, where n is the number of tissue or cell samples,
p is the number of genes. Here, p is always much larger than n, which hurts the
generalisation performance ofmost classificationmethods. To overcome this problem,
we can either select a small subset of interesting genes (gene selection) or construct
K new components summarising the original data as well as possible, with K < p
(dimension reduction, feature extraction).

Gene selection has been studied extensively in the last few years. The most
commonly used procedures of gene selection are based on a score which is calculated
for all genes individually and genes with the best scores are selected. Gene selection
procedures output a list of relevant genes which can be experimentally analysed by
biologists. These methods are often denoted as univariate gene selection, whose
advantages are its simplicity and interpretability. However, much information
contained in the data set is lost when genes are selected solely according to their
individual capacity to separate the samples, since interactions and correlations
between genes are omitted, as are of great interest in system biology.

Dimension reduction is an alternative to gene selection to overcome the problem of
curse of dimensionality. Unlike gene selection, dimension reduction projects the whole
data into a low dimensional space and constructs the new dimensions (components)
by analysing the statistical relationship hidden in the data set. Researchers have
developed different dimension reduction methods in applications of bioinformatics
and computational biology (Antoniadis et al., 2003; Nguyen et al., 2004; Dai et al.,
2006), among which Partial Least Squares Based Dimension Reduction (PLSDR) is
one of the most effective methods (Dai et al., 2006).

PLS was firstly developed as an algorithm performing matrix decompositions by
Wold (1975), and then was introduced as a multivariate regression tool in the context
of chemometrics (Wold et al., 1984). A detailed chronological introduction of PLSwas
given inMartens (2001), some comprehensive overviews of PLS were given in Helland
(1988), Wold et al. (2001), Helland (2001) and Boulesteix and Strimmer (2006). Only
in recent years, PLS has been found to be an effective dimension reduction technique
(Nguyen and Rocke, 2002a, 2002b).

Nguyen and Rocke (2002a, 2002b) proposed to use PLS for dimension reduction
as a preliminary step for binary and multi-class classification. A numerical simulated
study on total predictor variance explained by PLS was also carried out by Nguyen
et al. (2004). Experiments on microarray data proved that PLSDR is better than
Principle Component Analysis (PCA) based dimension reduction. Barker and Rayens
(2003) explained the relationship between PLS and Canonical Correlation Analysis
(CCA) in a formal statistical manner. They clarified that PLS is superior to PCAwhen
dimension reduction is needed. Boulesteix (2004) compared PLSwith some of state-of-
the-art classification methods and investigated some interesting properties of PLSDR.
Dai et al. (2006) provideda comparative studyof threedimension reduction techniques:
PLSDR, sliced inverse regression (SIR) and PCA, which evaluated the predictive
accuracy and computational efficiency of classification procedures incorporating those
methods. Zeng et al. (2007) introduced PLS into the field of text classification as
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a text representation method. All these works have demonstrated the outstanding
performance of PLSDR.

There are two series of projection weights in PLS method denoted as W and V
respectively. The difference between W and V is slight but significant: W are project
weights which related to residual matrix Ek and V are the modified versions of W
which linked with original matrix X . By the notion that using latent components
constructed by PLS as new predictors, V is the natural choose projection weights.
Though the previous works show that PLSDR is much faster than PCA and leads
to accurate classification (Dai et al., 2006; Barker and Rayens, 2003; Boulesteix,
2004), the ambiguous usage of projection weights W and V in PLSDR has not been
clarified yet.

In this paper, we concentrated on the orthogonality of the projection weights for
PLSDR. Since dimension reduction is a certain kind of coordinates transformation, it
is important to consider the orthogonality among the projection weights, furthermore
an orthogonal space is much popular than an nonorthogonal one. The difference of
these two series of weights has not been mentioned before and the choice of W and V
has not been clarified. It is difficult to make sure which projection weights were used in
previous works, while the investigation of this problem has great sense for the standard
usage of PLSDR. Therefore, we propose to investigate the classification performance
affected by dimension reduction with W and V.

This paper is organised as follows. Some essential notions are given in Section 2.
In Section 3, PLS is shortly introduced and then PLSDR is presented in detail.
The difference between W and V is also discussed. Experiments and discussions on
four biological data sets are described in Section 4. Finally, conclusions are given in
Section 5.

2 Notions

Expression levels of p genes in n microarray samples are collected in an n × p data
matrix X = (xij), 1 ≤ i ≤ n, 1 ≤ j ≤ p; of which an entry xij is the expression level
of the jth variable gene in the ith microarray sample.

Here we consider binary classification problem, the labels of the n microarray
samples are collected in vectory. When the ith sample belongs to class one, the element
yi is 1; otherwise it is −1.

Besides, ‖ • ‖denotes the length of a vector. XT represents the transpose ofX, X−1

represents the inverse matrix of X .
Note that X and y used in Section 3 are assumed to be centred to zero mean by

each column.

3 Partial Least Squares Based Dimension Reduction

3.1 Principle

Partial Least Squares (PLS) is a class of techniques for modeling relations between
blocks of observed variables by means of latent variables. The underlying assumption
of PLS is that the observed data is generated by a system or process which is driven
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by a small number of latent (not directly observed or measured) variables. Therefore,
PLS aims at finding uncorrelated linear transformations (latent components) of the
original predictor variables which have high covariance with the response variables.
Based on these latent components, PLS predicts response variables y and reconstruct
original matrix X at the same time.

Let matrix T = [t1, . . ., tK ] ∈ R
n×K represents the n observations of the K

components which are usually denoted as Latent Variables (LV) or scores. The
relationship between T and X is defined as:

T = XV (1)

where V = [v1, . . .,vK ] ∈ R
p×K is the matrix of projection weights. PLS determines

the projectionweightsV bymaximising the covariance between the response and latent
components.

Based on these latent components, X and y are decomposed as:

X = TPT + E

y = TQT + f
(2)

where P = [p1, . . .,pK ] ∈ R
p×K and Q = [q1, . . .,qK ] ∈ R

1×K are denoted as
loadings of X and y respectively. Generally, P and Q are computed by Ordinary
Least Squares (OLS). E and f are residuals of X and y respectively.

By the decomposition of X and y, response values are decided by the latent
variables not by X (at least not directly). It is believed that this model would be more
reliable than OLS because the latent variables are coincided with the true underlying
structure of original data.

The major point of PLS is the construction of components by projecting X
on the weights V . The classical criterion of PLS is to sequentially maximising the
covariance between response y and latent components. There are some variants
of PLS approaches to solve this problem (Wold et al., 2001). Ignoring The miner
differences among these algorithms, we demonstrate the most frequently used PLS
approach: PLS1 (Helland, 1988; Wold et al., 2001).

PLS1 determines the first latent component t1 = Xw1 by maximising the
covariance between y and t1 under the constraint of ‖w1‖ = 1. The corresponding
objective function is:

w1 = arg max
wT w=1

(Cov(Xw,y)). (3)

The maximisation problem of equation (3) can be easily solved by the Lagrange
multiplier method.

w1 = XT y/‖XT y‖). (4)

To extract other latent components sequentially, we need to model the residual
information of X and y which could not be explained by previous latent variables.
So, after the extraction of the score vector t1, PLS1 deflate matrices X and y by
subtracting their rank-one approximations based on t1. The X and y matrices are
deflated as:

E1 = X − t1pT
1

f1 = y − t1qT
1

(5)
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where p1 and q1 are loadings determined by OLS fitting:

pT
1 = (tT

1 t1)−1tT
1 X

qT
1 = (tT

1 t1)−1tT
1 y

. (6)

As an iterative process, PLS1 constructs other latent components in turn by using the
residuals E1 and f1 as new X and y.

wk = ET
k−1fk−1/‖ET

k−1fk−1‖
tk = Ek−1wk

pT
k = (tT

k tk)−1tT
k Ek−1

qT
k = (tT

k tk)−1tT
k fk−1

Ek = Ek−1 − tkpT
k

fk = fk−1 − tkqT
k .

(7)

For the convenient of expression, matrices X and y are often denoted as E0 and y0
respectively. The number of components is a parameter of PLS which can be fixed
by user or decided by a cross-validation scheme. In general, the maximal number of
latent components is the rank of matrix X which have non-zero covariance with y.

It is obvious that the deflation scheme guarantees mutual orthogonality of the
extracted score vectors T , that is, TT T = I . By the arguments of Hoskuldsson
(1988), it can be seen that the weightsW = [w1, . . .,wK ] ∈ R

p×K are also orthogonal.
Furthermore, the relation between V and W was demonstrated as Manne (1987):

V = W (PT W )−1 (8)

from which, we evade the iterative construction of latent components on residual
matrix Ek, but relate T to X directly. In general, the loading vectors P and Q are
not orthogonal (Some obscure variants of PLS provide the orthogonality of P or Q
(Wold et al., 2001)). So deduced from equation (8), we can see that the projection
weights V are not orthogonal.

A side result which comes up during the derivation of equation (8) is that
the weights W span the same space as an orthogonal Krylov sequence which is
defined as:

κ = (z, Az, . . ., Ap−1z) (9)

where κ is the p-dimensional Krylov space of A and z.

3.2 Dimension reduction

PLSreduces the complexityofmicroarraydataanalysis by constructinga small number
of new predictors, T , which are used to replace the large number of original gene
expression measures. Moreover, obtained by maximising the covariance between
the components and the response variables, the PLS components are generally more
predictive than the principal components extracted by other unsupervised methods
like PCA (Barker and Rayens, 2003).
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The projection matrix V are approximate coordinates of the original data space.
After projecting and representing each sample in the new space, PLS build models
on some latent variables by using the ordinary least squares algorithm. When the
number of latent components is the same as the rank of matrix X , all the information
of X is preserved and PLS exhibits the same as OLS does on X . But, we need not
stick to using OLS in the transformed space. Other statistical learning may also be
used in this space, such as Support Vector Machine (SVM), Logistic Discrimination
(LD) etc. That is, we may just use PLS as a dimension reduction method instead of
a classification/regression model (Nguyen and Rocke 2002a, 2002b).

After dimension reduction, many statistical methods may be used for classification
based on these new predictors. But the new space has one problem that the projection
weights V are nonorthogonal. As the independent assumption (orthogonality) of
input variables (latent components projected by V ) is important for OLS regression,
PLS keep the orthogonality of components T by modifying projection weights
from orthogonal (W ) to nonorthogonal (V ). When it came to the application of
dimension reduction, the orthogonality of projection directions is more desired than
the orthogonality of projected components.

Additionally, it needed be clarified that the lengths of columns of V are not
unit. Due to the deflation scheme of PLS, the significance of components produced
iteratively are in the descending order. That is, the tail components are less informative
than the initial components. Reflected by V , the lengths of these projection weights
are in the descending order too. V instinctively punish the uninformative projection
weights by reducing the corresponding vector lengths.

Consequently, when casting classification on the dimensions created by V , the
performance of classifiers is hardly influenced by adding tail components to gene
expression. This would be a problem when we are interested in these ‘important
components’, because in some situations, similar cancers can only be distinguished by
certain miner genes. It is hard to say that weighted projection weights are better than
united ones to help improve the generalisation performance.

Though V is a natural choice of projection weights, we advocate using W to
replace V . As for the vector length of W , the length of each projection weight is unit
which is guaranteed by the PLS algorithm.

It is noted that the latent components projected by W is not the same as original
PLS latent components T . The orthogonality of latent components is not preserved
as well, while we consider the modification of T is trivial, since we just use PLS as a
dimension reduction tool with W and V .

4 Experiments

4.1 Date sets

Four real microarray data sets are used in our study which are briefly described as
below.

Leukemia

The acute leukemia data set was published byGolub et al. (1999). The original training
data set consists of 38 bone marrow samples with 27 ALL and 11 AML (from adult
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patients). The independent (test) data set consists of 24 bone marrow samples as well
as 10 peripheral blood specimens from adults and children (20 ALL and 14 AML).
Four AML samples in the independent data set are from adult patients. The gene
expression intensities are obtained from Affymetrix high-density oligonucleotide
microarrays containing probes for 7129 genes.

Colon

Alon et al. (1999) used Affymetrix oligonucleotide arrays to monitor expressions of
over 6,500 human genes with samples of 40 tumour and 22 normal colon tissues.
Using two-way clustering, Alon et al. were able to cluster 19 normal and five tumour
samples into one group and 35 tumour and three normal tissues into the other.
Expression of the 2000 genes with highest minimal intensity across the 62 tissues were
used in the analysis.

Prostate

Singh et al. (2002) used microarray expression analysis to determine whether global
biological differences underlie common pathological features of prostate cancer and
to identify genes that might anticipate the clinical behaviour of Prostate tumours.
In Singh’s experiments, the training set contains 52 prostate tumour samples and
50 non-tumour (labeled as ‘Normal’) prostate samples with around 12600 genes.
An independent set of test samples is alsoprepared,which is fromadifferent experiment
and has a nearly ten-fold difference in overall microarray intensity from the training
data. After removing extra genes, 25 tumour and 9 normal samples were left in the
test samples.

Central Nervous System

Pomeroy et al. (2002) developed a classification system based on DNA microarray
gene expression data derived from 99 patient samples of Embryonal tumours of the
Central Nervous System (CNS). Only data set C is used in our study. The data set
contains 60 patient samples, 21 are survivors and 39 are failures. Survivors are patients
who are alive after treatment whiles the failures are those who succumbed to their
disease. There are 7129 genes in the data set.

4.2 Experimental settings

For each data set, 100 random partitions into a training data set L containing nL
observations and a test data set T containing the n − nL remaining observations are
generated. The class distribution of the training and test data set is the same as the
original data set. If the data set was split already, we construct a whole observation
collection by pooling them together. This scheme is widely used in the comparative
studies of classification methods for microarray data (Dudoit et al., 2002). It is more
reliable than leave-one-out cross-validation (Ambroise andMcLachlan, 2002). We fix
the partition ratio nL/n at 0.5.

For each partition {L, T} the gene expressions are transformed to have zero mean
and standard deviation one across samples on L. In the test set T, data expressions
are transformed according to the means and standard deviations of the corresponding
training set L. As no gene selection is performed, all genes of the original data set are
used in our study.
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We compare the classification performance with features extracted by W , V and
V ∗, where V ∗ is a normalised form of V . In order to avoid bias we predict the
observations in T using three classical classifiers: SVM, LD and Ridge Regression
(RR). These models have been widely used for binary classification problems (Dudoit
et al., 2002).

We compare dimension reduction with the following cases in our experiments:

• W : Original projection weights W produced by PLS iteratively.

• V : The modified projection weights V which related to X directly. In order to
preserve the orthogonality of T , the orthogonality of these projection weights is
lost during the optimisation of PLS.

• V ∗: We eliminate the punishing effect on vector length of V by normalising the
projection weights to unit. The emended projection weights are denoted as V ∗.

In our experiments, the number of project weights is retained as a meta-parameter.
In order to examine how the classification performance varies with the dimension of
latent components increasing, we vary the dimension of reduced space from 1 to 30
for all the three series of projection weights.

The mean classification success (accuracy) rate (SUC) is used to evaluate the
different performance between W , V and V ∗. The definition of SUC is given by

SUC =
1

100

100∑
j=1

1
nT j

nTj∑
i=1

I(Ŷi = Yi) (10)

where I is the standard indicator function (I(A) = 1 if A is true, I(A) = 0 otherwise).
Note that the linear version of SVM is used and the parameter C of SVM is set to 100
in our study. All the classification models have been applied with the same partitions
and data preprocessing.

4.3 Results and discussions

The SUC results on four different data sets are shown in Figures 1–4 respectively,
the SUC results are averaged on 100 randompartitions, fromwhich we can see that the
classification performancewithW ismuch better than thosewith the other twoweights
V and V ∗. Several further observations are made as follows.

• The corresponding SUC scores with W are higher than those with V on all data
sets with respect to different classifiers. The top value with W is 1.6%, 0.8%,
1.9% and 0.7% better than those with V by three classifiers on the data sets of
Leukemia, Colon, Prostate and CNS respectively, which show W is better than
V for the dimension reduction to improve the generalisation performance of
classifiers.

• The average value with V ∗ on each dimension is 0.1% 0.2% and 0.1% better than
V on the data sets of Leukemia, Colon and Prostate respectively and no
improvement is found on the data set of CNS, which show that V ∗ exhibit the
same performance as V .
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Figure 1 Statistical results by using three classifiers on the Leukemia data set (training set with
36 samples and 7129 genes, test set with the same size) (see online version for colours)
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Figure 2 Statistical results by using three classifiers on the Colon data set (training set with
31 samples and 2000 genes, test set with the same size) (see online version for colours)
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Figure 3 Statistical results by using three classifiers on the Prostate data set (training set with
68 samples and 12600 genes, test set with the same size) (see online version for colours)
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Figure 4 Statistical results by using three classifiers on the CNS data set (training set with
30 samples and 7129 genes, test set with the same size) (see online version for colours)
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On the other hand, this also indicate that the classifiers used here can tolerate the
imbalance of the scale of dimensions in some degree. In particularly, scores got by
RR make no sense for the comparison between V and V ∗. Due to the discriminative
function, RR is insensitive to the weight of input variables.

5 Conclusions

This work investigates the difference of two series of projection weights in dimension
reduction based on PLS from the view of orthogonality. W are the orthogonal
projectionweights related to residualmatrixEk, whileV are thenonorthogonalweights
linked with original matrix X directly.

We propose to use W instead of V as the projection weights in the dimension
reduction for the orthogonality of W . Experimental results on four real microarray
data sets proved our proposal thatW is better thanV to be used in dimension reduction
for classification on high dimensional data set. We also examine the uniformity of
vector length of V and find that the unit of direction length is not important for the
classification of cancer.
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