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Abstract: This research describes a non-interactive process that applies several 
forms of computational intelligence to classifying biopsy lung tissue  
samples. Three types of lung cancer evaluated (squamous cell carcinoma, 
adenocarcinoma, and bronchioalveolar carcinoma) together account for  
65–70% of diagnoses. Accuracy achieved supports hypothesis that an accurate 
predictive model is generated from training images, and performance achieved 
is an accurate baseline for the process’s potential scaling to larger datasets. 
Feature vector performance is good or better than Thiran and Macq’s in every 
case. Except bronchioalveolar carcinomas, each individual cancer classification 
task experienced improvement, with two groupings showing nearly 20% 
classification accuracy. 
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1 Introduction 

The American Cancer Society (2007a) estimates that in the USA in 2007, over 213,000 
people will be newly diagnosed with lung cancer and over 160,000 people will die from 
lung cancer. This makes lung cancer the second most prevalent type of cancer to be 
diagnosed in both men and women, and the leading cancer-related cause of death in both 
sexes. Lung cancers will account for approximately 15% of new cancer diagnoses in 
2007 (American Cancer Society, 2007b). Lung cancers can be divided into two main 
groups: small cell lung cancer, which accounts for approximately 10–15% of lung 
cancers, and non-small cell lung cancer, which accounts for the other 85–90%.  
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The lung cancers evaluated in this study primarily fall into the second category. 
Squamous cell carcinomas represent 25–30% of new lung cancer diagnoses, while 
adenocarcinomas (including bronchioalveolar carcinoma) represent about 40% 
(American Cancer Society, 2007c). 

This research develops a non-interactive process that applies several forms of 
computational intelligence to the task of classifying biopsy lung tissue samples based on 
visual data in the form of raw digital photographs of those samples. The three types of 
lung cancer evaluated (squamous cell carcinoma, adenocarcinoma, and bronchioalveolar 
carcinoma) together account for 65–70% of lung cancer diagnoses. 

Computing technology has often proven useful in performing tedious or complex 
tasks quickly, accurately, and consistently. In extensive previous work by this author and 
others, computational intelligence was used to identify cancerous breast lesions based on 
radiologist’s impressions of various features visible on a mammogram. This previous 
work includes, but is not limited to: Fogel et al. (1995, 1997, 1998a, 1998b), Land et al. 
(2000, 2001a, 2001b, 2001c, 2001d, 2002a, 2002b, 2003a, 2003b, 2003c, 2004a, 2004b, 
2004c, 2004d), Lo et al. (1997, 1999) and McKee (2001). In other areas of medicine, 
computational intelligence has been used to separate (or segment) an image (such as an 
MRI display) into its constituent parts, allowing automated estimations of tissue volumes 
(Pham, 2003). 

While related research forms a basis for this work in many of the areas being applied, 
providing a self-tuning end-to-end process is unique to our work. In addition, the 
segmentation procedure developed for this research is based on the well known and 
widely used Fuzzy C-Means (FCM) algorithm, but we introduce a new kernel-based 
extension to this algorithm to improve its accuracy and enable the segmentation to  
self-adapt to the image at hand. 

The end-to-end process developed can be broken down into three consecutive steps, 
each with its own unique challenges and dependent on the quality of the processing in the 
previous step(s). The first step is segmentation, or identifying physical features such as 
nuclei, cytoplasm, and background within the source image. The second step is the 
extraction and measurement of features, based on the segmented image. Finally, the third 
step is to combine the measurements to classify the cells in the image as cancerous or 
non-cancerous.

The applications of computational intelligence used in this study are all directed 
toward classification problems. The goal of a classification problem is to accurately 
identify to which set (or class) an unknown item belongs. In terms of the image 
segmentation problem, the classes are known – nucleus, cytoplasm, and background, and 
we need to determine the correct classification for each pixel in the image. Deciding 
whether an image corresponds to normal or cancerous tissue is also a classification 
problem – the classes are ‘normal’ and ‘cancer’ (or perhaps a specific type of cancer), 
and based on the metrics collected from the segmented image, we must decide to which 
of these classes the image belongs. 

The classification methods used in this study can be divided into two main categories: 
rule-based systems and those based in Statistical Learning Theory (SLT). Rule-based 
systems use a series of rules to classify an unknown datum. These rules are usually 
developed by an ‘expert’ in the classification domain. 

An opposing approach for classification stems from SLT, which uses mathematical 
methods to attempt to reduce data with known classifications to a model. This model can 
then be used to determine the statistical probability that an unknown datum belongs  
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to a particular given class, and those probabilities can in turn be used to provide  
a classification and often a measure of confidence in that classification. 

2 Problem foundation 

This section contains a summary of several key knowledge domain areas that serve as a 
foundation for this work. 

2.1 Medical background 

This summary discussion is provided because a basic understanding of the structure and 
form of each of these cancers is a prerequisite to developing intelligent software to 
perform accurate classifications, and is sometimes absent from papers describing research 
of this type. 

2.1.1 Cancer 

Cancer in general is a type of neoplasm, or ‘new growth’. The word tumour is often used 
to refer to neoplasms of all sorts, benign and malignant, while cancer is a general term 
for malignant neoplasms. All neoplasms (including the lung cancers represented in this 
study) have certain characteristics in common. They consist of an independent, abnormal 
tissue growth, uncoordinated with the surrounding tissues. The parenchyma contains the 
growing outer edge of the neoplasm, and the stroma contains connective tissues and 
blood vessels needed to support the development of the neoplasm. Cancers may be 
broadly classified into two groups: those which develop in epithelial tissue are 
carcinomas (e.g., adenocarcinoma), and those which develop in non-epithelial tissue are 
sarcomas (e.g., fibrosarcoma). Sarcomas generally have a minimal stroma, while 
carcinomas can have a significant network of blood vessels and other supportive tissue 
(Cotran, 1999, pp.260–262). 

Cotran (1999, pp.264–265) describes four categories that are useful in classifying a 
tumour as benign or malignant: differentiation, rate of growth, local invasion, and 
metastasis. Differentiation describes how well the tumour cells replicate the normal cells 
from their tissue of origin. Well-differentiated tumours bear a strong resemblance to 
normal tissues, both in the appearance and the functioning of the cells. Poorly 
differentiated tumours have ‘primitive-appearing, unspecialised cells’. Benign tumours 
are usually well-differentiated, while malignant tumours span the entire range from  
well-differentiated to undifferentiated. 

The remaining categories are useful from a clinical perspective, but are beyond the 
scope of cytological examination. The rate of growth describes the change in the 
neoplasm with time. Although a number of factors may influence the rate of growth, 
benign tumours generally grow slowly over several years, whereas cancers may grow 
rapidly or erratically. Local invasion describes whether a neoplasm grows as a separate 
cohesive mass or whether it infiltrates surrounding tissues. Benign tumours may displace 
surrounding tissues, but generally respect the tissue boundaries and will not ‘grow into’ 
neighbouring structures. Cancers, however, will infiltrate, invade, and eventually destroy 
surrounding tissue. Finally, metastasis (a tumour implant not connected to the original 
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tumour) is always an indicator of cancer, since benign neoplasms do not metastasise, 
while almost all cancers can metastasise (Cotran, 1999, pp.267, 268). 

2.1.2 Lung cancer 

Most lung cancers develop in the bronchial epithelium, and are therefore carcinomas 
(Koss, 1979, p.608). The cells of the parenchyma allow us to classify the tumour  
(Cotran, 1999, p.261) and we will focus the remainder of this discussion on that layer.

Tumours are named for the type of cells in the parenchyma. Squamous cell carcinoma 
consists of cells that mimic the morphology and function of stratified squamous epithelia. 
Adenocarcinomas mimic glands or ducts in the epithelial lining. Bronchogenic 
carcinomas (a subset of adenocarcinomas) mimic respiratory passages, and more 
specifically bronchioalveolar carcinoma imitates the terminal bronchioles and alveoli 
(Cotran, 1999, p.263; Koss, 1979, p.608; Takahashi, 1971, p.179). Several other types of 
lung cancer also exist, but are outside the scope of this study. For a more thorough 
examination of additional types of lung cancer and their properties, see Koss (1979, 
p.608), Graham (1972, pp.259–284) and Cotran (1999, pp.697–753). 

2.1.3 Cytology of lung tumours 

This section discusses some of the specific features visible at the cellular level, which 
may be useful for determining whether a tumour is cancerous. An overview of general 
cytological features is presented, followed by a specific discussion of each type of cancer 
represented in this study.  

2.1.3.1 Cytological features common to multiple types of cancer 

Poor differentiation is also called anaplasia, and is accompanied by a number of visible 
changes in the cells. The cells and the nuclei often have a wide variation in size and shape 
(pleomorphism). Anaplastic nuclei are extremely dark staining (hyperchromatic) due to 
large quantities of DNA. The nuclei are larger than in normal cells, with a 
nucleocytoplasmic ratio approaching 1 : 1 (normal cells have a ratio around 1 : 4 to 1 : 6). 
There can be wide variations in nucleus shape, with coarse chromatin granules distributed 
along the nuclear membrane, and large nucleoli. 

2.1.3.2 Cytological presentation of squamous cell carcinoma 

Squamous cell carcinoma is characterised by sheets of cells attempting to form  
squamous epithelium. These sheets often contain keratin ‘pearls’ – small round  
nests of keratin-producing cells. Necrosis is common in the centre of this type of tumour 
(Koss, 1979, p.610). 

Squamous carcinoma cells can vary widely in size and shape, with giant cells 
adjacent to small cells. Spindly cancer cells are common as well. Abnormal nuclear shape 
is common with this type of cancer, and the nuclei are often hyperchromatic, staining 
evenly to a deep colour resembling droplets of India ink. The increased receptivity to 
staining is caused by pyknosis, a degenerative change to the nucleus. Some nuclei may 
also appear relatively pale, particularly within highly keratinised cells. While the nucleus 
is generally large for the size of the cell, there are also very small pyknotic nuclei, 
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making the nucleocytoplasmic ratio of limited value in diagnosing this type of cancer 
(Koss, 1979, pp.610–613). 

When cells are forcibly removed from the tumour (which is the case in all of the 
samples used in this study), the cancer cells appear in sheets or clusters. The nuclei are 
granular, often with only slight to moderate hyperchromasia, often with large nucleoli 
(Koss, 1979, p.616). Irregular distribution of chromatin within the nucleus is one of the 
most significant factors in identifying individual malignant cells, and undifferentiated 
cells often have no cytoplasm and lack cell borders (Graham, 1972, p.267). 

2.1.3.3 Cytological presentation of adenocarcinoma and bronchioalveolar 
 carcinoma 

Adenocarcinomas of central bronchial origin are tumours whose precise tissue of origin 
has not been clearly determined. They may be derived from the epithelium of the 
secondary bronchi, bronchioles, or related mucus glands. These tumours typically contain 
large, irregular nuclei which appear in groups (Graham, 1972, p.269), and have a variable 
configuration, which may include papillary structures, lined with cells that are polygonal 
or columnar (Koss, 1979, p.629). Otherwise, the nucleus appears similar to any other 
malignant cell. 

Bronchoalveolar carcinoma is a particular type of adenocarcinoma (Takahashi, 1971, 
p.179) that originates in the epithelium of the terminal bronchioles and alveoli.  
These tumours are usually peripherally located; but the cytological presentation is similar 
to adenocarcinoma (Koss, 1979, pp.625–629). 

2.1.3.4 Cytological impact of tissue specimen collection techniques 

In order to view and evaluate the cells from a tumour, a tissue biopsy is needed.  
The biopsy process involves collecting a tissue sample, which must be transferred 
quickly to one or more microscope slides and fixed and stained. The prepared slide is 
then viewed under a microscope by an expert who uses a number of factors to decide 
whether the cells are from normal or cancerous tissue, and if cancerous, to determine the 
type of cancer. 

There are several methods used to collect a tissue sample for biopsy, and the method 
used impacts the decision rules employed by the expert to develop a classification.  
For example, a sputum sample may be collected from the lungs through a deep  
cough, possibly triggered by inhaling an aerosol. Similar ‘loose’ material may also be 
collected by inserting a catheter into a bronchus in the area of a suspicious tumour and 
the bronchial wall scraped with a fine nylon brush to collect cells (Takahashi, 1971, 
pp.166–171). Both of these mechanisms normally contain a number of ‘dead’ cells which 
have been shed naturally by the lining of the lungs and are in varying states of necrosis 
(Koss, 1979, p.609). Squamous cells from the lining of the mouth and pharynx may also 
appear in sputum samples and must be differentiated from squamous cancer cells  
(Koss, 1979, p.551). 

As radiographic techniques have improved our ability to precisely locate tumours, 
fine needle aspiration has become more widely used. This collection method uses a fine 
needle with jagged edges toward the tip to collect tissue directly from the tumour in 
question. Though somewhat more invasive than sputum collection or bronchial scrapings, 
this technique has several advantages – including the ability to collect cells from 



      

      

      

   32 W.H. Land Jr. et al.    

      

      

      

      

peripherally located tumours which may not produce sputum. Unlike the sputum samples 
mentioned above, the presence of necrotic cells in a sample obtained in this manner 
would be highly unusual and indicate a (possibly cancerous) pathology (Koss, 1979, 
pp.607–609).

Finally, tissue samples may be collected through an open incision, where the tumour 
or a portion of it is surgically removed. For the purposes of this study, it is sufficient to 
say that the cytological features of such tissue samples are similar to those obtained 
through fine needle aspiration. 

There are a number of non-cancerous external factors which can cause substantial 
changes in lung tissue as well, such as smoking or exposure to asbestos or other 
contaminants. An accurate diagnosis can only be made by considering the cytological 
evidence in combination with the patient’s history and other factors (Koss, 1979,  
pp.551–560).

2.2 Fuzzy C-Means (FCM) 

The well-known FCM clustering algorithm was chosen as a starting point for our 
segmentation process. This algorithm uses an iterative process to divide the pixels in the 
source image into an arbitrary number of classes (clusters) by solving a constrained 
optimisation problem. We want to minimise 
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In equation (1), uki is the degree of membership of pixel k in cluster i, dki is the ‘distance’ 
(typically the Euclidean norm) between pixel k and the centroid for cluster i, n is the 
number of pixels in the image, c is the number of clusters (classes), U is an n × c matrix 
of the membership values for each pixel and cluster, and v is the collection of centroids, 
one for each cluster. The constraints listed ensure that each pixel’s membership in each 
cluster is bound by [0, 1] (equation (2)), and that the membership values across all 
clusters sum to one for each pixel (equation (3)). Finally, equation (4) ensures that each 
class has some pixels with a non-zero degree of membership, and that no single cluster 
can contain all pixels. This constraint forces the solution to have the desired number of 
distinct clusters.  

The optimisation problem described above can be solved by Bezdek’s (1981) FCM 
clustering algorithm. The initial membership matrix in Step 1 can be assigned at random; 
however, the algorithm will converge much more rapidly if we make an intelligent guess 
at the classification for each pixel. Once the initial membership matrix has been 
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established, it can be used in Step 2 to provide a new estimation of the position of the 
centre of each cluster. Step 3 uses these new centres to refine the membership matrix. 
These two steps (using the membership matrix to refine the cluster centres, and using the 
centres to refine the membership matrix) are alternated until the changes to the 
membership matrix become insignificant.  

A key element affecting the accuracy of FCM’s classification is the distance 
measurement, dki. Bezdek defines this distance as the Euclidean norm between a sample 
xk, and a cluster center, vi, so that

|| || .ki k id = −x v  (5) 

However, the Euclidean norm may not be the most accurate representation of the 
‘distance’ between these points. By substituting a kernel function for the distance 
calculation in equation (1) we obtain 

2 2
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Now the clustering can be based on the kernel’s calculation of the similarity between the 
sample and the cluster centre. It is important to note that the distance we are referring to 
here is the difference in the Red, Green, Blue (RGB) colour space between the sample 
pixel and the cluster centre – it has nothing to do with the physical location of the sample 
pixel within the image. Likewise, the cluster centre is the prototypical set of RGB values 
for a pixel belonging to that cluster – physical location within the image is not 
considered. In fact, FCM treats the image as a set of pixel values, without respect for the 
coordinate system used to assemble those pixels into a two-dimensional image. 

2.3 Kernel based learning methods 

Kernel-based learning methods comprise a subset of SLT. This learning theory is based 
on the premise that we can learn about an unknown datum by comparison with known 
data. Kernel-based methods are those which use a kernel as a non-linear similarity 
measure to perform this comparison. 

2.3.1 Support Vector Machines (SVMs) 

The Support Vector Machine (SVM) is one of the most well-known kernel-based 
classifiers. While several texts (Cristianini and Shawe-Taylor, 2000; Haykin, 1999; 
Gunn, 1998; Vapnik, 1995; Burges, 1998) provide extensive development of the 
mathematical foundation of SVM s, this section will present an overview of the nature 
and operation of these machines. In the context of cancer identification, the main purpose 
of an SVM is to construct an ‘optimal hyperplane’ as the decision surface such that the 
margin of separation between positive (cancer) and negative (normal tissue) cases is 
maximised. SVMs are based on four fundamental ideas:  

• Structural and Empirical Risk Minimisation (SRM/ERM) 

• the Vapnik-Chervonenkis (VC) dimension 
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• the constrained optimisation problem 

• the SVM decision rule. 

In the explanation of these concepts, vectors and matrices will be labelled with bold 
typeface, while vector and matrix elements will be labelled with normal typeface.  
The interested reader can find a discussion of Structural and Empirical Risk Minimisation 
and the VC dimension in the above references on SVMs. These concepts relate to the 
theoretical foundation of SVMs, an understanding of which is not essential background 
for the remainder of this study. As such, that discussion will not be duplicated here. 
However, since much of the analysis and results in this study assume a basic familiarity 
with the constrained optimisation problem and the SVM decision rule, these concepts 
will be reviewed briefly. 

2.3.1.1 The constrained optimisation problem 

Obtaining a solution in the most general case where the environment is non-linear and 
non-separable requires the use of inner-product kernel functions. The inner-product 
kernel function provides a mapping from the input space to a higher-dimensional feature 
space. This kernel mapping is used to construct a decision surface that is non-linear in the 
input space, but has a linear image in the feature space. The inner product kernel function 
must be symmetric and must satisfy Mercer’s Theorem (additional discussion of 
Mercer’s Theorem can be found in Cristianini and Shawe-Taylor (2000). The solution to 
the Lagrangian dual problem for this most general case is given by: 
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Equation (7) is also referred to as the objective function, equation (8) as the linear 
constraint. Equation (9) provides an upper bound, C, on the Lagrange multipliers.  
This bound is called the regularisation parameter and limits the effect of outliers in the 
training data. 

2.3.1.2 The SVM decision rule and soft limiting 

Together, equations (7)–(9) describe the Quadratic Programming (QP) problem.  
QP problems are well-founded in SLT. Simply stated, SLT proves that bounds  
on the expected (or true) error for ‘future’ points (such as those not found in the training 
set) may be obtained. It may be shown that these bounds are a function of the 
classification error on the training data, expressed in terms that measure the complexity 
(or capacity) of the classification function (Vapnik, 1995). For example, maximising the 
separating margin for linear functions reduces the function complexity or capacity. 
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Consequently, by this explicit margin maximisation, one accomplishes the minimisation 
of bounds on the generalisation error, which means the learning machine can expect 
better generalisation with high probability.  

Secondly, these QP problems may be solved by several methods such as gradient 
ascent methods, conjugate direction methods, interior point methods, or Platt’s (1998) 
Sequential Minimal Optimisation (SMO) method. This study used SMO to solve the QP 
problem, because of its ability to find the solution much more quickly than the other 
methods.  

Finally, when the optimal solution to the QP problem has been found, a new point is 
classified by using the SVM decision rule and the hyperbolic tangent soft limiter: 

1
F( ) tanh K( , ) .

N

i i i
i

y bα
=

= +x x x  (10) 

2.3.2 Kernel functions 

We now turn our attention to kernel functions, represented as K(x, y) in equations (7) and 
(10). The purpose of a kernel function in both training (equation (7)) and classification 
(equation (10)) using an SVM is to represent the similarity (in a higher-dimensioned 
feature space) of the two input vectors; however, the idea of kernel functions is not 
limited to SVMs, and the general principles discussed here apply to other kernel-based 
classifiers as well, including our kernel-based extension to FCM, discussed in the 
previous section. 

A kernel function should yield a higher output from input vectors which are very 
similar than from input vectors which are less similar. An ideal kernel would provide an 
exact mapping from the input space to a feature space which was a precise, separable 
model of the two input classes; however, such a model is usually unobtainable, 
particularly for complex, real-world problems, and those problems in which the input 
vector provided contains only a subset of the information content needed to make the 
classes completely separable. As such, a number of statistically-based kernel functions 
have been developed, each providing a mapping into a generic feature space that provides 
a reasonable approximation to the true feature space for a wide variety of problem 
domains. The kernel function that best represents the true similarity between the input 
vectors will yield the best results, and kernel functions that poorly discriminate between 
similar and dissimilar input vectors will yield poor results. As such, intelligent kernel 
selection requires at least a basic understanding of the source data and the ways different 
kernels will interpret that data. Some of the more popular kernel functions are the (linear) 
dot product, the Gaussian Radial Basis Function (GRBF), the Exponential Radial Basis 
Function (ERBF), and the polynomial kernel. The dot product and polynomial kernels 
use a similar mechanism to establish similarity, while the two radial basis functions share 
a different common measure.  

2.4 Related research 

The cell image segmentation problem has been around for a long time, and has been 
studied by several other researchers. However, most existing research on cell image 
segmentation has focused on identifying cells in a noisy background (Garbay et al., 1986; 
Jiang and Yang, 2002; Nedzved et al., 2000) or solely on nucleus isolation and evaluation 
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(Sammouda et al., 2002; Thiran and Macq, 1996; Schnorrenberg et al., 1997). Sammouda 
et al. (2002) work with cell images similar to ours to detect cancer; however, that work 
focused only on nucleus segmentation and analysis, whereas we extract information from 
the entire cell image.  

A good overview of current segmentation approaches can be found in Bengtsson et al. 
(2004), where techniques including thresholding, using edge and shape information, and 
seeded watershed transforms are discussed. Wählby et al. (2004) present a seeded 
watershed technique which takes into account a number of morphological features to 
improve the quality of the segmentation, achieving approximately 90% accuracy by 
comparison with manual counts from the same image fields. While the 2D images 
processed in that study were based on florescence microscopy, a number of the principles 
used could be applied to optical microscopy images as well.  

Other possible approaches for improving the accuracy of the segmentation by using 
edge information or other neighbouring pixel information are discussed in Morrison and 
Attikouzel (1992) and Pham (2003). These are presented in the context of MRI image 
segmentation, however, and would require significant adaptation in order to work with 
cell images. 

A very thorough survey of the current research into automated cancer diagnosis based 
on histopathological images can be found in Demir and Yener (2005). This survey 
includes a discussion of segmentation, feature extraction and selection, and the various 
classifier types that have been applied to this class of problems, as well as a summary of 
the evaluation methods used in the various studies that have been performed. 

Schnorrenberg et al. (1997) outline a system similar to ours for the analysis of biopsy 
specimens, automating an assessment currently performed by a histopathologist; 
however, the specimens in that study were stained to identify specific markers for 
cancerous cells. The processing done by their system is limited to identifying the 
percentage of positive nuclei and the stain intensity, and using those to assign a 
diagnostic index. While they still had to address variations in the collection process, the 
cancer identification is much more narrowly defined than in our system, which uses 
biopsy samples stained to bring out general cell features rather than specific cancer 
markers and uses entire cell information rather than evaluating the nuclei only. 

Sanei and Lee (2003) present an interesting technique for multi-class identification of 
blood cells by applying and extending face recognition work to the task of cell 
recognition. With this approach each cell is classified as a particular type (basophile, 
monocyte, lymphocyte, etc.). While this is a significant departure from our methods, if 
such an approach could be extended to identify particular types and stages of normal cells 
and cancer cells, it could in theory provide a similar functionality to that developed in this 
study. 

One other study (Zhou et al., 2002) closely parallels our work, but has some 
significant differences. This study deals with identifying lung cancer from biopsy images 
very similar to ours (digitised 400X light microscope images of hematoxylin-eosin 
stained needle biopsy tissue samples); however, their classification is based on 
classifying individual cell images extracted from those large field images – our process 
evaluates an entire field of view containing hundreds of cells. The above study also 
performs multi-class classification on the images, whereas we have limited our 
classification analysis at this point to several binary classification scenarios using normal 
tissue and one or more types of cancer. The Zhou study achieves classification error rates 
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varying from 46% for single artificial neural networks, and 14–21% for various artificial 
neural network ensembles.  

3 Lung cancer data 

The source data used in this study consists of 162 surgical biopsy samples provided by 
the Moffitt Cancer Centre and Research Institute. The tissue in each image was stained 
using r-H2AX, PX-DAB, and hematoxylin counterstain. A light microscope field of  
view at 400X magnification was then imaged, at a resolution of 1520 × 1080 pixels.  
The images are separated into two independent groups, a set of 83 images used for 
training and process development, and 79 images used for validating the performance of 
the system.  

In the training set, 37 of the images are of normal tissues, 21 are of adenocarcinomas, 
ten are of bronchioalveolar carcinomas, and 15 are of squamous cell carcinomas.  

In the validation set, 44 of the images are of normal tissues, 13 are of 
adenocarcinomas, eight are of bronchioalveolar carcinomas, eight are of squamous cell 
carcinomas, and six are of undifferentiated (large cell) carcinomas. 

The field of view in each image contains between 200 and 1,000 cells. The cancer 
images may have connecting tissue or other tissues visible as well as the cancer cells.  
As some tissues absorb the stains more readily, there are colour intensity differences from 
one image to the next and even within the same type of tissue in the same image.  
This darker cytoplasm presents a challenge for the segmentation process, as it is often 
much closer in intensity to the nuclei than to the remaining cytoplasm. Several images 
also have excess cytoplasm or other cell matter not associated with a complete, intact 
cell. This is an artifact of the collection process, and should be ignored (i.e., classified as 
background, even though it is identical in appearance to the remaining cytoplasm in the 
image) when evaluating the cells in the image. Figure 1 shows a portion of one of the 
images illustrating these challenges.  

Figure 1 Cytoplasm not associated with any cell (a) and differences in cytoplasm stain  
intensity (b1, b2) (see online version for colours) 

Figure 2(a) shows the field of view for a non-cancerous sample, and Figure 2(b) shows 
the full resolution detail of the marked area in that image. Figure 4 shows a similar pair 
for an adenocarcinoma image. Comparing Figures 2(b) and 3(b), it is clear that the 
appearance of a typical cell from each class (nucleus, cytoplasm, and background) varies 
substantially between images. In images such as Figure 3(b), there is very little contrast 
between the nuclei and the cytoplasm, presenting yet another challenge for the 
segmentation process.  
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The images in the validation set are similar in appearance and composition to the 
training images, and present the same challenges. 

Figure 2 (a) Microscope field of view for a normal tissue sample and (b) enlarged detail  
of marked area (see online version for colours) 

 (a) (b) 

Figure 3 (a) Microscope field of view for an adenocarcinoma tissue sample and (b) enlarged 
detail of marked area (see online version for colours) 

 (a) (b) 

Figure 4 End-to-end process overview 
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4 Method 

This section summarises the three sub-processes constituting the CAD of the lung cancer 
images. 

4.1 Classification process overview 

The end-to-end process developed in this study focuses on approximating the decisions 
made by an expert in cytology. A few simplifications have been made to reduce the 
variability of the inputs into this decision process. First, all samples being used were 
collected through surgical biopsy, so a more precise set of assumptions about normal 
tissue conditions can be applied. Second, all of the images used were taken at the same 
magnification level (400X) – this provides some level of consistency in the meaning of 
the cell sizes and the amount of tissue being analysed. This still leaves a number of 
significant variations to overcome. In addition to normal tissue, there are three different 
types of cancer represented in the training data, each with its own characteristics. While a 
common process was used as a basis for the stains applied to the cells, there are 
substantial variations in colour and contrast from one image to the next. There are also 
similar variations caused by lighting and exposure differences during the image capture 
process. In order to approximate an expert’s decision based on an image, we must break 
down the reasoning process used by the expert and develop a parallel process. The expert 
uses visual clues such as the size of the cells, variability in the size of the cells, relative 
size of the nucleus within the cell, the appearance of the cell components (how darkly or 
evenly stained different parts of the cell are), and the organisation of the cells in the 
image. Clearly we must be able to make objective measurements to approximate the 
expert’s subjective impressions of these qualities; however, in order to take 
measurements, we must first be able to identify the constituent parts of the image.  
Each image contains several hundred cells, possibly some clear background, and possibly 
extraneous cytoplasm not associated with any cell (this cytoplasm is an artefact of the 
collection and slide preparation processes). We need to accurately separate the nuclei, the 
cytoplasm, and the background portions of the image. This step of the process is 
segmentation. 

Once we have a segmented image, we can begin to analyse the image to extract 
properties of the cells pictured. This is the second step in the process. By counting the 
number of pixels in each nucleus, we can estimate the area of that nucleus. Colour 
variations within the nucleus can give us clues as to its internal structure, and variations 
between nuclei can also be significant. Once the visual data in the image has been 
reduced to a series of numerical measurements, those measurements can be used in 
conjunction with a computational intelligence classifier (the third and final step) to 
characterise the image as representing normal or cancerous cells (see Figure 4). 

4.2 Segmentation 

As noted in Section 3, the properties of each image are unique. In order to obtain an 
accurate segmentation, the process must adapt to the properties of the image at hand.  
This section will summarise the development of a robust segmentation process for these 
images. 
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Demir and Yener (2005) break the segmentation algorithms currently used in 
histopathological images into two broad categories: region-based approaches and 
boundary-based approaches. Region-based approaches attempt to determine whether a 
given pixel belongs to a cell or nucleus, while boundary-based approaches attempt to find 
the boundary points which circumscribe a cell or nucleus. The automated boundary-based 
approaches typically involve minimising an energy function over a deformable spline. 
The energy function can be defined to penalise undesirable properties in the spline  
(Lee and Street, 1999). Other boundary-based approaches (Nielsen et al., 1999; Einstein  
et al., 1997) require significant user interaction to define the boundary points, and as such 
are unfeasible for large-scale images of tissue. 

Region-based approaches include thresholding (where pixels above and below a 
certain threshold value are separated into separate classes) and learning algorithms. 
Gunduz et al. (2004) use c-means clustering with the pixel’s colour information in order 
to identify the regions of interest, but the clusters still had to be assigned to ‘cell’ or ‘non-
cell’ classes by a human expert. 

Although interactive boundary-based approaches are generally more precise, we 
opted to use a region-based approach – FCM – as a starting point for the segmentation. 
Pham (2003) successfully used an edge-based adaptive extension to FCM for MRI image 
segmentation, and in other work had proposed other various extensions to FCM for 
dealing with various artifacts of the MRI imaging process. FCM also matched the 
parameters of our problem well – each image has nuclei, cytoplasm, and background 
pixels, but we do not have any specific information about the way each of those pixel 
types will appear in a given image. Since FCM only needs to know how many clusters 
the image data should be divided into, and computes and refines the cluster centre based 
on the image data, it was a good fit for this problem. 

Our initial FCM implementation assigned pixels to clusters randomly, and allowed 
the FCM algorithm to separate the classes. While this approach worked reasonably well 
as far as the segmentation was concerned, it took several iterations for the algorithm to 
converge, and the clusters were not always in the same order (e.g., for a given run classes 
0, 1, and 2 could represent the background, cytoplasm, and nucleus, in that order; for the 
following run on the same image, the classes could represent nucleus, background, and 
cytoplasm, in that order). Gunduz et al. (2004) solved this problem by using human 
intervention to determine the class to which each cluster belonged. In order to keep the 
process non-interactive, we leverage the defining information we do have for each class. 
Since we expect the background to be the lightest, the nuclei to be the darkest, and the 
cytoplasm to fall somewhere between those two, we can give the algorithm a head start 
by using rough estimates for each cluster centre and assigning each pixel initially to the 
closest cluster centre estimate (instead of assigning at random). This dramatically reduces 
the time the algorithm takes to converge, since it no longer has to self-organise the pixels 
into clusters – the basic structure is already there and simply needs to be refined.  
This also has the benefit of providing consistent class assignment – since we provided the 
basic structure in terms of initial cluster centre estimates, the algorithm will refine the 
clusters such that the classes appear in the order of those estimates.  

Consequently, the images were first segmented based on the information in the 
individual pixels, and then further refined by evaluating the pixels in context within the 
image, which improved the accuracy of the FCM segmented image. The following Expert 
System Rules were used to refine the segmentation accuracy:  
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• pixels in geographic proximity are likely to have the same classification 

• nuclei are geometrically closed solids 

• nuclei are bound by a convex curve and are at least several pixels in diameter 

• shapes with simple geometric centres represent multiple nuclei 

• cytoplasm associated with a cell is near a nucleus. 

Therefore, the kernelised FCM and rule-based segmentation subsystem is depicted in 
Figure 5. The raw image data is first processed by the Kernelised FCM to provide an 
initial, coarse image segmentation. This segmentation is then refined by the application of 
the five rules discussed above, yielding a final segmented image and a list of nucleus 
centres. This segmented image and list of centres is then used as the input to the next step 
in the overall process.  

Figure 5 Details of the segmentation sub-process 

4.3 Feature extraction and measurement 

The features described here correlate in some way with the cell characteristics discussed 
in the Medical Background section. The 15 features selected are listed in Table 1. This is 
by no means an exhaustive list of possible features, but represents a variety of 
characteristics that are relatively straightforward to quantify. These features can be 
broadly categorised into four areas: those related to the size of the cells and nuclei, those 
related to the nucleocytoplasmic ratio, those related to the texture of the stained nuclei, 
and those relating to the shape of the nuclei. Metrics 1–5 and 12–15 all fall into the  
broad category of morphological features (those dealing with size and shape). Metrics 7 
and 9–11 describe textural features (those which quantify variations in the intensity of a 
surface – smoothness, coarseness, regularity). Metrics 6 and 8 (and to a lesser degree 7 
and 9) are intensity-based features (providing information on the colour intensity 
histogram of the pixels within a nucleus). 
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Table 1 List of features measured in segmented images 

Metric Description 
Cell size/anisonucleosis 
1 Average nucleus area 
2 Standard deviation of nucleus area 
3 Average cytoplasm area 
4 Average cell area 
Nucleocytoplasmic ratio 
5 Nucleocytoplasmic ratio 
Nuclear texture/hyperchromasia 
6 Average nucleus pixel intensity (measured across entire image) 
7 Standard deviation corresponding to Metric 6 
8 Average of nucleus average intensity (each nucleus averaged separately) 
9 Average of Standard Deviation of nucleus pixel intensity (SD of each 

nucleus measured separately) 
10 Standard Deviation corresponding to Metric 8 
11 Standard Deviation corresponding to Metric 9 
Nuclear shape/deformity 
12 Average nucleus radius (each nucleus measured separately) 
13 Average of Standard Deviation of nucleus radius (SD of nucleus radius 

measurements measured separately for each nucleus) 
14 Standard Deviation corresponding to Metric 12 
15 Standard Deviation corresponding to Metric 13 

The first category addresses both the size of the cells and nuclei (Metrics 1, 3, and 4). 
Metric 1 is measured simply by counting the number of pixels classified as nucleus and 
dividing by the number of marked centres to find the average number of pixels per 
nucleus. Metric 3 can be measured in the same way, counting cytoplasm pixels instead of 
nucleus pixels, and Metric 4 is the sum of the Metrics 1 and 3. Metric 2 measures 
variations in size between nuclei, since a lack of uniformity between nuclei can be an 
indicator of cancer. This measure requires a list of the area for each individual nucleus. 
By using the marked centres to iterate through the nuclei in the image, and counting the 
number of pixels in each nucleus, we can produce this list, from which we can calculate 
the standard deviation. 

The nucleocytoplasmic ratio can also be calculated from Metrics 1 and 3 by dividing 
the nucleus area (Metric 1) by the cytoplasm area (Metric 3). Unfortunately, since the 
boundaries between the cytoplasm from one cell to the next are not visible, we can not 
evaluate any of the cytoplasm related metrics on a cell by cell basis, but only across the 
entire image. 
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The third category deals with the texture of the nuclei in the image. Variations in 
pixel intensity within a given nucleus can indicate a granular texture (Metrics 7 and 9), 
and the overall intensity within a nucleus (Metrics 6 and 8) can also be meaningful,  
since certain cancerous nuclei stain very darkly (hyperchromasia). Metrics 10 and  
11 are intended to measure the degree of uniformity across all of the nuclei in the  
image – Metric 10 measuring the consistency of the average nucleus’ intensity, while 
Metric 11 measures whether all nuclei have a similar level of granularity, or whether 
some have a very smooth texture while others are coarse and granular. 

Finally, the fourth category evaluates the shape or roundness of the nuclei in the 
image, and the consistency of that shape throughout the image. For Metric 12 and 13, the 
radius of each nucleus was measured in eight directions from the marked centre (N, S, E, 
W, NE, NW, SE, and SW). These eight measurements were averaged to provide the 
radius for that nucleus (which was the basis for Metric 12), and the standard deviation of 
those eight measurements was recorded for each nucleus (which provided the basis for 
Metric 13). Metric 13 therefore tells us how round the typical nucleus is (a round nucleus 
having a lower standard deviation of radius measurements than that of an oblong or 
irregular nucleus). Metrics 14 and 15 tell us how much the nuclei in the image vary from 
the typical values given by Metrics 12 and 13, and thus address the degree of consistency 
in shape of the nuclei in the image. 

4.4 Classification 

The primary classifier used in this study was the SVM. While the SVM has been 
successfully used for cancer identification in several studies, it has not previously been 
applied to histopathological cell images. The SVM was chosen for its ability to perform 
well in the presence of noise in the source data, as well as its guarantee of solving to a 
global minimum for the parameters provided. Since a number of the measurements taken 
from the image are related (e.g., the nucleus area, cytoplasm area, and average nuclear 
diameter are all distinct measures, but related to the cell size), we want a classifier that 
will be able to extract the most information from the measurement data provided, but not 
allow the lack of orthogonality in the data to obscure the correct classification.

5 Results  

This section summarised the results obtained from the kernelised FCM-SVM approach 
described here as well as the approach using Thiran and Macq’s feature vector for 
comparison. 

5.1 Results from the Kernelised FCM-SVM approach 

Several machine learning algorithms have been applied to cancer diagnosis from 
histopathological images, including neural networks, k-nearest neighbourhood, logistic 
regression, fuzzy systems, linear discriminant analysis, and decision trees (Demir and 
Yener, 2002). Statistical tests have also been used in some studies in order to provide 
classification.



      

      

      

   44 W.H. Land Jr. et al.    

      

      

      

      

The primary classifier used in this study was the SVM. While the SVM has been 
successfully used for cancer identification in several studies, it has not previously  
been applied to histopathological cell images. The SVM was chosen for its ability to 
perform well in the presence of noise in the source data, as well as its guarantee of 
solving to a global minimum for the parameters provided. Since a number of the 
measurements taken from the image are related (e.g., the nucleus area, cytoplasm area, 
and average nuclear diameter are all distinct measures, but related to the cell size),  
we want a classifier that will be able to extract the most information from the 
measurement data provided, but not allow the lack of orthogonally in the data to obscure 
the correct classification. 

5.1.1 Normal tissue vs. all cancers 

The SVM configurations tested yielded a classification accuracy of up to 63% when 
tested against all of the training images. This corresponds to incorrectly classifying 31 of 
the 83 images. The best ROC AZ achieved was 0.61. The kernel configuration used to 
achieve each of these is shown in Table 2. 

Table 2 Best performing kernels for normal vs. all cancers (using training data only) 

Kernel used 
Regularisation
parameter (C)

Classification
accuracy ROC AZ

RBF,  = 2 5 52/83 (63%) 0.609 

Hyperbolic tangent, multiplier = 200 1100 52/83 (63%) 0.610 

5.1.2 Normal tissue vs. combined adenocarcinomas and bronchioalveolar 
carcinomas

When classifying the normal images against the combined adenocarcinomas and 
bronchioalveolar carcinomas from the training set, the maximum classification accuracy 
of 72% (missing 19 out of 68 images) was slightly lower than for either type of cancer 
individually. The maximum AZ achieved, 0.738, fell between the maximum values for 
these two cancer types when evaluated individually. Table 3 summarises the kernel 
parameters used to achieve these results. Figure 6 shows the actual ROC curves for the 
best performer (based on ROC AZ) in each combination. 

Table 3 Best performing kernels for normal vs. combined adenocarcinoma and 
bronchioalveolar carcinoma images (using training data only) 

Kernel used Regularisation parameter (C) Classification accuracy ROC AZ

RBF,  = 1 2 49/68 (72%) 0.738 

RBF,  = 2 5 47/68 (69%) 0.727 
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Figure 6 ROC curves for best performing classifiers using only the training data 

5.1.3 Classification results using test dataset 

Once the baseline performance had been established using one-hold-out cross-validation 
on the training data, a second series of tests was done, training the SVM with the entire 
training set.  

5.1.3.1 Normal tissue vs. combined adenocarcinomas and bronchioalveolar 
 carcinomas 

Finally, when classifying the normal images against the combined adenocarcinomas and 
bronchioalveolar carcinomas from the training set, the maximum classification accuracy 
was 69% (missing 20 out of 65 images). The maximum AZ achieved, 0.601, fell between 
the maximum values for these two cancer types when evaluated individually, which is 
expected, given the difficulty we experienced in classifying the bronchioalveolar 
carcinomas from the test set. Table 4 summarises the kernel parameters used to achieve 
these results. Figure 7 shows the actual ROC curves for the best performer (based on 
ROC AZ) in each combination. 

Table 4 Best performing kernels for normal vs. combined adenocarcinoma and 
bronchioalveolar carcinoma images  

Kernel used Regularisation parameter (C) Classification accuracy ROC AZ

RBF,  = 1 2 49/68 (72%) 0.738 
RBF,  = 2 5 47/68 (69%) 0.727 
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Figure 7 ROC curves for best performing classifiers evaluated on the test data (see online version 
for colours) 

5.1.4 Comparison of training dataset and test dataset results 

With the exception of the bronchioalveolar carcinomas, the performance on the test data 
exceeded the performance using one-hold-out cross-validation on the training data for 
each of the groupings (see Table 5). This indicates that the classifier is generalising  
well – not only among the training cases, but also with respect to cases it has not seen. 
Although more training data is always desirable, the performance on the test data also 
argues that the training data used is sufficient to generate a reasonably accurate model, 
and that the performance achieved in this study is an accurate baseline for the process’s 
potential performance. 

Table 5 Comparison of best performers on the training data and the test data

Grouping Training performance Test performance 
Normal vs. all (w/Undif) N/A 0.687 
Normal vs. all (w/o Undif) 0.610 0.704 
Normal vs. adenocarcinomas 0.767 0.806 
Normal vs. bronchioalveolar carcinomas 0.650 0.357 
Normal vs. combined adenocarcinomas  
and bronchioalveolar carcinomas 

0.738 0.601 

Normal vs. squamous cell carcinomas 0.594 0.768 

5.1.5 Discussion of the Fuzzy FCM-SVM approach 

The primary original contributions of the study are threefold. The first is a complete  
end-to-end process – other research is currently working on individual pieces of a process 
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such as this, but a complete end-to-end process is unique to our work. Additionally, very 
few, if any, other researchers are working with cytological diagnosis based on the type of 
source data used in this study (large field microscopy images). The second contribution is 
the kernelised extension to FCM – although FCM has been in widespread use over the 
past 25 years, we have recast this framework in terms of kernel-based classifiers. This 
allows the clustering done by FCM to be based on the kernel’s assessment of the 
similarity between data points. The third contribution is the identification of an expended 
list of cytological features which improves the accuracy of the classification process.  
One of the key advantages of this integrated end-to-end process over a manual 
assessment of the image is the objectivity of the automated evaluation. Rather than 
requiring a technician to make subjective observations about a particular tissue sample, 
which may vary from one technician to the next (inter-observer variability), or may even 
be scored differently by the same technician on different occasions (intra-observer 
variability), the tissue image can be evaluated directly by this process, providing a higher 
degree of consistency and reproducibility in the results. 

5.2 Results using Thiran and Macq’s feature vector 

Thiran and Macq (1996) describe four morphological cell features used as a basis for 
lung cancer classification in their study. The first feature is the nucleocytoplasmic ratio, 
or the ratio of nucleus area to cytoplasm area. This is exactly the same measure as  
Metric 5 used in this study. 

The second feature is a measure of anisonucleosis, or variation in nucleus size.  
Thiran and Macq estimate the size of each nucleus by taking radius measurements in each 
of eight cardinal directions and averaging those measurements (an additional step is taken 
to remove from the calculation any measurements which are greater than the distance to 
the next nearest nucleus centre, since Thiran and Macq’s segmentation did not separate 
joined nuclei – since our segmentation separates each nucleus into its own contiguous 
area, we need take no such precaution). The final feature is computed by taking the 
variance of the distribution of cell measurements and dividing by the square of the mean 
nucleus size. We measure this feature in Metric 2, the standard deviation of the nucleus 
area, and also in Metric 14, standard deviation of the distribution of nucleus radius 
averages.

The third measure is nuclear deformity, or how much the nucleus varies from being 
perfectly round. The radius measurements are used again (once again with the 
accommodation for joined nuclei), but the variance is measured for the radius 
measurements for a particular nucleus. The feature is then calculated as the mean of the 
distribution of nucleus radius measurement variances, once again divided by the mean 
nucleus size. In this study, nuclear deformity is measured through Metric 13, the average 
of the distribution of standard deviations from individual nucleus radius measurements, 
and also through Metric 15, which is the standard deviation corresponding to the 
distribution whose average is reported in Metric 13. 

The final measure is hyperchromasia, or the average contribution of the small  
spikes in pixel intensity which are responsible for the granular appearance of the nuclei. 
We measure this feature in Metrics 7 and 9, the standard deviation of the nucleus pixel 
intensities across the entire image, and the average of the distribution of standard 
deviations of nucleus pixel intensities when each nucleus is evaluated individually. 
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Each of these four features was extracted from each of the 83 segmented  
training images, and this four-element feature vector evaluated using one-hold-out  
cross-validation and the same battery of classification tests performed with the training 
data. Table 6 summarises the best results (based on ROC AZ) using Thiran and Macq’s 
feature vector for each arrangement of the classes, and compares those results to the best 
results obtained with the full feature vector used in this study.  

Table 6 Comparison of best performers on the training data using Thiran and Macq’s (1996) 
feature vector and the feature vector developed in this study 

Grouping
AZ using Thiran and 

Macq’s feature vector
AZ w/our 

feature vector
Percentage

improvement 
Normal vs. all  0.604 0.610 0.9 
Normal vs. adenocarcinomas 0.642 0.767 19.5 
Normal vs. bronchioalveolar carcinomas 0.639 0.650 1.7 
Normal vs. combined adenocarcinomas 
and bronchioalveolar carcinomas 0.622 0.738 18.6 

Normal vs. squamous cell carcinomas 0.547 0.594 8.6 

The above table shows that the performance of our feature vector as good as or better 
than Thiran and Macq’s in every case. With the exception of bronchioalveolar 
carcinomas, each individual cancer classification task experienced at least a modest 
improvement, with two groupings showing nearly 20% improvement in classification 
accuracy due to our feature vector. 

6 Conclusions 

The accuracy obtained by this process, both on the training data alone, and when 
evaluated with an independent test set, demonstrates the promise of this end-to-end 
approach to the problem. The test results for a single type of cancer (adenocarcinoma) are 
particularly good for a classification problem based on challenging real-world data, 
especially taking into account the amount of additional optimisation possible throughout 
the process. Comparisons with other related research also show the superiority of this 
approach. While additional research is needed to maximise the accuracy of such a 
system, the components in this study form the basis for a robust, self-adapting process 
that can quickly and accurately generate reproducible classifications for these images. 

The accuracy of the process on the test data supports the hypothesis that an accurate 
predictive model can be generated from the training images. The fact that the 
performance of the process on the independent test data set is comparable to the  
one-hold-out performance on the training data alone also supports the hypothesis that the 
performance achieved in this study is an accurate baseline for the process’s potential 
performance against much larger quantities of data. 

Specifically, we demonstrate that the performance of our feature vector is as good as 
or better than Thiran and Macq’s in every case. With the exception of bronchioalveolar 
carcinomas, each individual cancer classification task experienced at least a modest 
improvement, with two groupings each showing nearly 20% improvement in 
classification accuracy due to our feature vector. 
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