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Abstract: This study proposes a numerical solution to simulate the transient flow with column 
separation in pipelines using the lattice Boltzmann method (LBM). By combining the LBM and 
the discrete vapour cavity model (DVCM), the governing equations and boundary conditions 
were analysed and derived for numerical simulation. Experiments and actual projects were 
adopted to verify and examine the new solution. The results indicate that the computational grid 
of the LBM-DVCM is unrelated to the wave speed, which significantly reduces computational 
resources and time. Moreover, compared to the method of characteristics (MOC)-DVCM, the 
LBM-DVCM eliminates virtual pressure peaks during the transient flow. Finally, the  
LBM-DVCM can simulate the process of transient flow quickly and accurately. It is expected 
that this method will be useful for practical numerical experimentation and efficient prediction of 
the pipeline. 
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1 Introduction 
Liquid column separation and vapour cavities accompany 
hydraulic transient flow in pipelines when the transient 
pressure temporarily drops to the vapour pressure of the 
liquid at a certain temperature (Wylie, 1992). These vapour 
cavities appear at specific locations, such as high points 
(Simpson and Wylie, 1993). The collapse of these cavities 
in a pipe can generate high-pressure peaks instantaneously, 
which are stronger than the Joukowsky pressure (Bergant 
and Simpson, 1999). If this phenomenon occurs repeatedly, 
it might destroy the pipeline systems dramatically (Bergant 
et al., 2006). Long-distance water supply pipelines may 
have many more cavities owing to the long and complex 
topography (Zhou et al., 2018). To describe and understand 
this phenomenon in more detail, a series of numerical 
studies have been conducted on column separation in 
pressurised pipes (Bergant et al., 2006; Sadafi et al., 2012; 
Stewart et al., 2018). Among these studies, the discrete 
vapour cavity model (DVCM), which considers these 
cavities as internal and end boundaries, is a relatively 
simple numerical model and easy to be solved. Hence, the 
DVCM is widely used combined with numerical methods, 
particularly the method of characteristics (MOC) (Wylie, 
1985). The MOC is easy to code, relevantly accurate, and 
efficient. Nevertheless, Santoro et al. (2018) demonstrated 
that the MOC had some disadvantages in practical 
applications. There are virtual pressure peaks in the  
MOC-based numerical simulation. A simulation of long 
distance pipes has a large number of computational points, 
which can significantly affect the efficiency of the MOC. 
Although the practice of the MOC-DVCM is confirmed to 
be easy to code with acceptable accuracy on the 
experimental scale, the drawbacks of the MOC became 
increasingly obvious in later practical applications (Gao  
et al., 2018). This may be because the spatial disposition of 
simulation nodes is limited and fixed in specific conditions. 
For example, the distance between two inner boundary 
conditions, such as two vapour chambers, may change as 
transient flow occurs, but the node spacing is fixed in the 
whole system. Consequently, a long pipe section can 
impose a large number of computational points. In fact, 
spatial or time interpolation can be used, but additional 
complicated procedures and inaccurate methods are 
required (Budinski, 2016; Zhang et al., 2018). To overcome 
these shortcomings, Cheng (1998) introduced the lattice 
Boltzmann method (LBM) as an alternative approach. 

The LBM was developed from the lattice gas automata 
(LGA). Owing to the use of Boolean variables, the LGA 
model does not encounter numerical instability problems 
(Hoogerbrugge and Koelman, 1992). Moreover, the 
collision and flow of all particles occur simultaneously, and 
the interaction between particles is partial. It is suitable and 
convenient to implement on computers when dealing with 
complex boundaries, such as fluid particles bouncing back 
into the field at the boundary of a solid wall; however, the 
calculation results fluctuate significantly as the LGA only 
performs integer operations between 0 and 1. To decrease 
the computational cost, the integer operation in the LGA 

was changed into a real number operation, and a Boltzmann 
grid model was established to overcome the shortcomings 
of numerical noise in the LGA. To simplify the  
above model, a linearised collision operator model was 
proposed. This model introduces the equilibrium 
distribution function eq

if  to linearise the collision operator 
( )Ω ( ) ( ),eq

i ij j if K f f= −  where Kij = ∂Ωi/ ∂fj is called the 
collision matrix. From a numerical point of view, this 
linearisation process simplifies the calculation and 
significantly reduces the storage capacity. However, the 
numerical stability of this method is poor. A Boltzmann grid 
model of the reinforcement operator was further proposed. 
The collision matrix of the model is an asymmetric circular 
matrix, and its elements are only related to the included 
angle of discrete velocity. Based on it, some researchers 
proposed a simpler model, the single relaxation model. In 
this model, the collision process is replaced by a relaxation 
process that tends to a certain equilibrium state, and the 
matrix is determined by a parameter called relaxation time 
Kij = –(1/τ)δij (Zou and He, 1997). 

In fluid mechanics problems, the evolution of the LBM 
is the distribution function, and the distribution function on 
the boundary is unknown. Therefore, certain formats need 
to be constructed to obtain the distribution function. The 
boundary conditions affect the accuracy of the calculation 
results and influence the stability of the calculation. Cheng 
et al.(1998) proposed a general boundary processing method 
assuming that the unknown distribution function and the 
equilibrium distribution function have similar forms:  
fα = ωαρ [1 + 3eα(uw + s)] α = w → b, where ρ is the 
assumed density, uw the is boundary speed, s the is assumed 
slip speed relative to the boundary, and the term of w → b 
indicates the direction from the outside of the boundary to 
the boundary (Budinski, 2016; Cheng et al., 1998). The 
advantage is that it can solve any number of unknown 
distribution functions, and it has good generality. It 
overcomes the shortcomings of other methods that can only 
solve a limited number of unknown distribution functions. 
Later, a processing method applicable to any curved 
boundary was proposed (Filippova and Hanel, 1998). Linear 
interpolation is performed using a known distribution 
function near the edge and wall to solve the unknown 
distribution function at the boundary. The velocity on the 
boundary is also solved using linear interpolation. However, 
this method requires a lot of calculations. 

Recently, because of the reduced computational costs, 
some pieces of research have used this method to simulate 
the single-phase transient flow in pipelines; however, no 
simulation and analysis of two-phase transient flow was 
performed using the LBM (Budinski, 2016). Therefore, in 
this paper, the LBM combined with the DVCM was 
considered to simulate two-phase transient flow. First, the 
LBM-DVCM was proposed, including the control equations 
and boundary conditions. Then, experimental results were 
used to verify the new method in the classical reservoir 
pipe-valve system (Bergant and Simpson, 1999). In 
addition, the MOC-DVCM and LBM-DVCM were 



 Numerical simulation of transient flow with column separation using the lattice Boltzmann method 333 

compared. Finally, the effectiveness of the LBM-DVCM 
was compared to that of the MOC-DVCM based on a 
practical long-distance water supply system. 

2 Method 
2.1 Transient flow equations 
The wave speed is significantly higher than the fluid 
velocity. Hence, the continuity equation and motion 
equation of one-dimensional transient flow can be 
simplified as follows (Zhou et al., 2017): 

2
+ 0,H a V

t g x
∂ ∂ =
∂ ∂

 (1) 

+ + | | 0,
2

V H μg V V
t x D

∂ ∂ =
∂ ∂

 (2) 

where H is the piezometric head, x is the spatial coordinate, 
g is the gravitational acceleration, V is the fluid (mixture) 
velocity, t is the time, and µ is the friction factor. The wave 
speed a is defined as: 

2 /

1+

K ρa K D
E e

=
⋅
⋅

 (3) 

where K is the bulk modulus of water, ρ is the density of 
water, E is the elastic modulus of the pipe wall material, and 
e is the thickness of the pipe wall. 

In this study, the two-phase transient flow is studied 
using the D1Q3 LBM (Frisch et al., 1986), and the  
three-velocity lattices are {e2, e0, e1} = {–1, 0, 1}, as shown 
in Figure 1. 

Figure 1 Boltzmann D1Q3 model 

 

The local equilibrium distribution function can be expressed 
as: 

( )+ Δ , +Δ ( , ) +Ω ( )i i i if x e t t t f x t f=  (4) 

where fi is the particle distribution function along the i link, 
x is the position vector in the one-dimensional domain, and 
Δt is the time step. The three-velocity lattice particles ei 
along the x direction are defined as e0 = 0, e1 = Δx/Δt, and  
e2 = –Δx/Δt. Ωi(f) is the collision term. 

For non-equilibrium systems, the distribution function 
of a molecule is a function of spatial position x, velocity v, 
and time t, that is, f(x, v, t). According to statistical 
mechanics (Chen and Doolen, 1998), f obeys the equation 

+ + Ω( )f f F fv f
t x m v

∂ ∂ ∂ =
∂ ∂ ∂

 (5) 

where F is an external force, and m is the molecular mass 
collision term given by: 

[ ](0)

0

1Ω( ) ( , , ) ( , , ).f f x v t f x v t
τ

= −  (6) 

f(0) (x, v, t) is the Maxwell-Boltzmann equilibrium 
distribution function, and τ0 is the relaxation time. The 
collision term means that the amount of change in the 
distribution function caused by each collision is directly 
proportional to the amount of deviation from the local 
equilibrium state; thus, ω = 1/ τ0 is also called the collision 
frequency. 

According to equations (5) and (6), a continuous 
equation without external force term can be obtained as 
follows. 

( )(0)

0

1+f v f f f
t τ

∂ ∇ = − −
∂

 (7) 

, .ρ fdv ρu vfdv= =   (8) 

When performing numerical calculations, it is necessary to 
perform numerical integration on equation (8). The 
following numerical integration form is applied: 

( )

( )

( , ) , ,

( , ) , ,

i i
i

i i i
i

ρ x t w f x e t

ρu x t w e f x e t

=

=




 (9) 

where ei and wi are the weight coefficients of the discrete 
velocity and numerical integration formulas, respectively, 
and the specific form is determined by the selected 
numerical integration method. 

According to equation (7), the evolution equation can be 
derived as follows. 

( )1 (0)

0

1+ i i i i
f e f f f
t τ

∂ ∇ = − −
∂

 (10) 

Equation (10) is discretised into a finite difference scheme 
as follows 

( ) (0)1+ , + ( , ) ( , ) ( , )i i i if x e t t t f x t f x t f x t
τ→  Δ Δ − = − −   (11) 

where τ = τ0/ Δt is the dimensionless relaxation time. In this 
study, the Maxwell-Boltzmann equilibrium distribution 
function f(0) (x, v, t) is 

( )
(0)

2

1 .
exp + + | |

f
A Bv u C v

=
⋅

 (12) 

The terms A, B and C are Lagrange’s undetermined 
coefficients, which are a function of density and 
temperature (Al-Neama et al., 2017). 

Under the condition of low Mach number, |u| is very low 
and is expanded to the power series of |u|2 the equation f(0) 
(x, v, t) is expanded by Taylor series, and the basic form of 
the equilibrium distribution function in statistical mechanics 
is obtained: 
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(0) 2 2 3
0 1 2 3 4

2
5

( ) + + ( ) + | | + ( )
+ ( ) | | +

f v C C v u C v u C u C v u
C v u u

= ⋅ ⋅ ⋅
⋅

 (13) 

where Ck = (k = 1, 2,···) are undetermined constants. 
Similar to equation (13), the equilibrium distribution 
function of the Boltzmann grid method can take the 
following general form (Cheng et al., 1998). 

( ) ( )
( ) ( )

2(0) 2
0 1 2 3

3 2 2
4 5

+ + + | |

+ + | | +
i i i i i ii

i i i i

f C C e u C e u C u

C e u C e u u

= ⋅ ⋅

⋅ ⋅
 (14) 

Similarly, Ci0, Ci1, Ci2, Ci3, Ci4, Ci5 are the undetermined 
constants. 

The Chapman-Enskog (CE) expansion and multiscale 
analysis are used to connect Boltzmann grid equations and 
macrophysical equations. The local equilibrium distribution 
function in the Boltzmann grid equation must be determined 
by comparing the multiscale equation with the specific 
physical equation (Wolf-Gladrow, 2000). It is assumed that 
the physical system is close to the equilibrium state, and the 
distribution function deviates slightly from the local 
equilibrium distribution function and satisfies the following: 

(0)

(0)

( , ) ( , ) ( , )
.

( , ) ( , ) ( , )

i i
i i

i i i i
i i

ρ x t f x t f x t

ρu x t e f x t e f x t

 = =



= =


 
 

 (15) 

The Chapman-Enskog equation can be expressed as: 
(0) (1) (2)2+ + +i i i if f εf ε f=  (16) 

where ε << 1 is a small positive number, called the Knudsen 
number, which is the ratio of the average free path of 
particle motion to the length of macroscopic features. 
Moreover, ε–1 is equivalent to the size of the mesh, and the 
enforcing conditions are ( ) ( )0, 0, 1.j j

ii i
i i

f e f j= = ≥   

Two types of time scales, t1 = εt and t2 = ε2t, and space 
scales, x1 = εx, are introduced. Further, the time and space 
derivatives are expanded on multiple scales as follows: 

2

1 2 1
+ , .ε ε ε

t t t x x
∂ ∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂ ∂

 (17) 

fi(x + eiΔt, t + Δt) can also be written as the Taylor 
expansion given below. 

( )

2
2

3
3

+ , + ( , )

+ ( , )

1+ + ( , )
2!
1 + ( , )
3!

i i i

i i

i i

i i

f x e t t t f x t

t e f x t
t x

t e f x t
t x

t e f x t
t x

Δ Δ −

∂ ∂ = Δ ⋅ ∂ ∂ 

∂ ∂ Δ ⋅ ∂ ∂ 

∂ ∂  ′ ′= Δ ⋅ ∂ ∂ 

 (18) 

By comparing each order of the terms we have 

(0) (1)

1 1

1: + ,i i iε e f f
t x τ t
∂ ∂ ⋅ = − ∂ ∂ Δ 

 (19) 

2
(0) (1)2

1 1 1 1

(0) (2)

2

1: + + +
2

1+ .

i ii i

i i

ε t e f e f
t x t x

f f
t τ t

∂ ∂ ∂ ∂   Δ ⋅ ⋅   ∂ ∂ ∂ ∂   
∂ = −

∂ Δ

 (20) 

By substituting equation (19) into equation (20),  
equation (20) becomes 

2
(0) (0) (2)

1 1 2

1 1+ + .
2 i i i iτ t e f f f

t x t τ t
∂ ∂ ∂   − Δ ⋅ = −     ∂ ∂ ∂ Δ 

 (21) 

According to equations (15) and (17), and taking the sum 
about i, equations (19) and (21) can be simplified as 
follows. 

(0) (0)

1 1
+ 0,ii i

i i

f e f
t x
∂ ∂ =

∂ ∂   (22) 

(0) (0) (0)

2 1 1 1 1

1+ + 0
2 i i ii i i

i i i

f τ t e f ee f
t t x x x
∂ ∂ ∂ ∂ ∂   − Δ =   ∂   ∂ ∂ ∂ ∂ 
    (23) 

From Σei × equations (22) and (23) about i, we have 

(0) (0)

1 1
+ 0i i ii i

i i

e f e e f
t x
∂ ∂ =

∂ ∂   (24) 

(0) (0) (0)

2 1 1 1 1

1+ + 0
2i i i i i ii i i

i i i

e f τ t ee f eee f
t t x x x
∂ ∂ ∂ ∂ ∂   − Δ =   ∂   ∂ ∂ ∂ ∂ 
    (25) 

Equations (22)–(25) are multiscale equations obtained by 
CE expansion and multiscale analysis. To establish the 
Boltzmann grid equation of the water hammer, the  
one-dimensional space is discretised into segments with 
computational spacing Δx = 1. Then, equation (14) is 
transformed as follows based on the D1Q3 model. 

( ) ( )2(0) 2+ + + | | ( 0,1, 2)i i i i i iif A B e u C e u D u i= ⋅ ⋅ =  (26) 

To simulate the water hammer with friction, an external 
force term is added to Boltzmann grid equation (11). 

( ) (0)1+ , + ( , ) ( , ) ( , ) +i i i i iif x e t t t f x t f x t f x t R
τ
 Δ Δ − = − −   (27) 

In which 

| |, 0
2i i i

i i

μR v v e R
D
′

= − =   (28) 

The Boltzmann grid method, like other CFD methods, has a 
similar relationship between the model of the equation and 
the actual flow field when actual problems are simulated. 
From the initial conditions and boundary conditions of the 
flow field to the initial conditions and boundary conditions 
of the model, the required parameters are calculated through 
the model and then converted to the corresponding 
parameters of the actual flow field according to the 
similarity relationship. 

According to the similarity principle of fluid mechanics, 
to ensure the similarity between the calculated flow field 
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and the actual flow field, the Euler, Reynolds, Strouhal, and 
Froude numbers must be equal, that is, 

2

Re

1

1

1

1

P
Eu

ρ u

u l

v

l
St

t u

P
Fr

g l

λλ
λ λ
λ λλ
λ
λλ
λ λ
λλ
λ λ

 = =



= =

 = =


 = =


 (29) 

For the above equations, the scale transformation 
relationship is as follows: 

1, , , ,x
x t u h u f

t u

L λ V H a μλ λ λ λ λ λ
N a v h g μ λ λ

= = = = = = =
′

 (30) 

where L is the actual length of the pipe section; N is the 
number of pipe sections; λx, λt, λu, λh and λµ are the scales of 
space, time, flow rate, head of the pressure, and friction 
coefficient, respectively. 

According to the continuity equation of fluids 

+ .in out DQ Q Q=   (31) 

The term Qin is the discharge into the node, Qout is the 
discharge out of the node, and QD is the demand for water at 
the node. The equality of hydraulic heads is 

, ,P I P J PH H H= =  (32) 

where I and J are pipe numbers. Substituting equation (30) 
into equations (31) and (32) the following equations can be 
derived. 

1 1 2 2 3 3 4 4

1 2 3 4

+ + +u u u u D

h h h h

v λ A v λ A v λ A v λ A Q
h λ h λ h λ h λ

=
 = = =

 (33) 

or 

1 1 2 2 3 3 4 4

1 2 3 4

+ + + /D uv A v A v A v A Q λ
h h h h

=
 = = =

 (34) 

Then, putting equation (7) into equation (34) we have 

( ) ( )
( ) ( )
01 11 21 1 02 12 22 2

03 12 23 3 04 14 24 4

11 21 12 22 13 23 14 24

+ + + + +
+ + + + + + /D u

f f f A f f f A
f f f A f f f A Q λ

f f f f f f f f




=
 − = − = − = −

 (35) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

01 11 1 02 12 2 03 23 3 04 24 4
21 11

1 2 3 4

01 11 1 02 12 2 03 23 3 04 24 4
22 12

1 2 3 4

01 11 1 02 12 2 03 23 3 04 24 4
13 23

1

+2 +2 + +2 + +2 + /
+

+ + +
+2 +2 + +2 + +2 + /

+
+ + +

+2 + +2 +2 +2 /
+

+

D u

D u

D u

f f A f f A f f A f f A Q λ
f f

A A A A
f f A f f A f f A f f A Q λ

f f
A A A A

f f A f f A f f A f f A Q λ
f f

A A

− −
=

− −
=

− − − −
=

( ) ( ) ( ) ( )
2 3 4

01 11 1 02 12 2 03 23 3 04 24 4
14 24

1 2 3 4

+ +
+2 + +2 +2 +2 /

+
+ + +

D u

A A
f f A f f A f f A f f A Q λ

f f
A A A A












− − − − =

 (36) 

where the two digits, 1 and 2, in the subscripts of f indicate 
the upstream side of the node, while 3 and 4 indicate the 
downstream side of the node. 

2.2 Basic boundary conditions 
There are various elements (such as water tanks, pumps, 
various valves, and connecting fittings) in most water 
systems. Budinski (2016) provided a detailed presentation 
of some boundary conditions for the single-phase transition 
LBM. Therefore, the boundary conditions of the two-phase 
transient LBM are presented in the following section. 

2.2.1 Downstream valve 
Based on the orifice flow equation, the downstream valve 
conditions are deduced as 

0
0

hv v
h

= φ  (37) 

where φ is the hydraulic opening of the valve, and h0 is the 
head of the reservoir. By substituting v = f0 + f1 + f2 and  
h = f1 – f2 into the above equation, f2 can be obtained. 

( )
22 2 2 2 20 0

2 0 1 0 1 0 1
0 0

2 2
2 2
v v

f f + f + + f + f + f + f
h h

   
= − −   
   

φ φ  (38) 

2.2.2 Upstream reservoir 
The head of the upstream reservoir is assumed to be 

0 0 constλH h h= =  (39) 

where λh is a relevant parameter and h0 = f1 – f2. Thus,  
f1 = h0 + f2. 

2.3 Two-phase transient flow based on DVCM 
This study is focused on the two-phase transient flow 
without free air. The numerical calculation model uses 
multipoint to fix completely isolated cavities in the pipeline. 
The LBM can be iterated by supplying the boundary 
condition of cavities. Figure 2 shows the control volume in 
the pipe. 

Figure 2 Control volume for continuity of vapour in the vapour 
zone 

 

The distribution functions of upstream (i – 1) point and 
downstream (i) point in the distributed vapour zones are 
provided by the following migration steps. 

1 1 0 0( ) ( 1), ( )u uf i f i f f i= − =  (40) 

2 2 0 0( ) ( +1), ( )s sf i f i f f i= =  (41) 

The pressure head of the cavity is equal to the vapour 
pressure head. 

vh h=  (42) 

Then, f2u(i) and f1s(i) can be obtained. 
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1 2( ) + ( )s v sf i h f i=  (43) 

2 1( ) ( )u u vf i f i h= −  (44) 

The relationship between the local function and the velocity 
is given as: 

2 0 1+ + .v f f f=  (45) 

Furthermore, during Δt, the volume of vapour is 

( ) Δs uVL v v A tdu= −  (46) 

where vs and vu are the velocities of the vapour cavity 
boundary. 

When a cavity is near the closed valve at the 
downstream, vs = 0, the volume of the vapour is given by: 

Δ .uVL v A tdu= −  (47) 

3 Results and discussion 
To validate the proposed LBM-DVCM model on more 
practical transition problems, the simulation results were 
compared with experimental tests carried out by Simpson 
(Simpson and Wylie, 1993), as shown in Figure 3. 

The experimental device was a typical  
reservoir-pipevalve system composed of a copper straight 
and sloping pipe (with a length of 37.23 m, an internal 
diameter of 22.1 mm, and a pipe slope of 3.2°). The 
transient flows were caused by the rapid downstream valve 
closure. The wave speed was 1,319 m/s. The experimental 
results for two initial mean velocities of V0 = 0.3 m/s and 
1.4 m/s were used in this study, which are the pressure 
oscillations at the valve. 

Water flowed from tank 1 to tank 2, and the closing time 
of the downstream valve was 0.006 s. The wave speed was 
1319 m/s. The water level of tank 1, H0, was a constant 
equal to 22 m. The fluid velocities (steady flow) V0 were  
0.3 m/s, 0.71 m/s, and 1.40 m/s. 

Figure 3 Experimental apparatus layout 

 

3.1 Verification of LBM-DVCM 
Preliminarily, under the condition of rapid closing of the 
valve, the pressure oscillations at two different monitoring 
points were numerically generated (the valve and the 
midpoint of the pipeline). In this study, the grid number of 
the MOC-DVCM is Nx = 16 and the size is Δx = L/Nx = 2.33 
m; however, the grid size of the LBMDVCM is Δx = 1 m. 
The comparison results at two different monitoring points of 
the LBM-DVCM, MOC-DVCM, and the experimental data 

with velocities of 1.40 m/s, 0.71 m/s, and 0.3 m/s, are 
shown in Figure 4, Figure 5, and Figure 6, respectively. 

Figure 4 Comparisons among the LBM-DVCM, MOC-DVCM, 
and experimental (V0 = 1.4 m/s) results, (a) head at the 
valve, (b) head at the midpoint of pipe (see online 
version for colours) 

 
(a) 

 
(b) 

Figure 5 Comparisons among the LBM-DVCM, MOC-DVCM, 
and experimental (V0 = 0.7 m/s) results, (a) head at the 
valve, (b) head at the midpoint of pipe (see online 
version for colours) 

 

 
(a) 
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Figure 5 Comparisons among the LBM-DVCM, MOC-DVCM, 
and experimental (V0 = 0.7 m/s) results, (a) head at the 
valve, (b) head at the midpoint of pipe (continued)  
(see online version for colours) 

 

 
(b) 

Figure 6 Comparisons among the LBM-DVCM, MOC-DVCM, 
and experimental (V0 = 0.3 m/s) results, (a) head at the 
valve, (b) head at the midpoint of pipe (see online 
version for colours) 

 
(a) 

 
(b) 

It is worth noting that both these two mathematical methods 
have high accuracy. When V0 = 1.4 m/s, the first peak 
pressure heads at the valve are 210.04 m (experiment), 
211.04 m (LBM-DVCM), and 210.23 m (MOC-DVCM), 

respectively. In addition, the first peak pressure heads at the 
midpoint of the pipeline are 207.93 m (experiment),  
209.80 m (LBM-DVCM), and 209.00 m (MOC-DVCM), 
respectively. 

The rapid closure of the valve contributed to a 
Joukowsky pressure rise initially, and then the pressure was 
reduced to the vapour pressure, which resulted in pressure 
peaks owing to the collapse of the cavity. The pressure 
peaks predicted by the two models, as well as their shapes, 
almost coincide with the experimental data, and they are in 
good agreement with the experimental results. 

Figure 7 Comparisons of the cavity volume between the  
MOC-DVCM and LBM-DVCM results (V0 = 1.4 m/s), 
(a) at the valve, (b) at the middle point of the pipeline 

 

 
(a) 

 
(b) 

In Figures 4 and 5, the results of LBM-DVCM indicate 
insignificant time delay, although these two methods use the 
same frictional model which is the quasi-steady model. For 
the quasi-steady model, the turbulence state is updated at 
each time step, providing values for the instantaneous eddy 
viscosity as a function of the instantaneous velocity profile, 
as the wall shear stress is influenced by the velocity of the 
fluid (Wylie, 1985). Thus, the quasi-steady form is 
acceptable. In Figure 6, there are significant ‘virtual 
pressure peaks’ using MOC-DVCM, between 0.7 s to 1.0 s 
at the valve. Furthermore, at the two monitoring points, 
LBM-DVCM has fewer minor unrealistic pressure peaks 
regardless of the velocity; therefore, the MOC-DVCM is 
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more likely to produce unrealistic pressure peaks in the 
numerical simulation. 

In terms of volume of vapour, LBM-DVCM and 
MOCDVCM are adopted to simulate the volume of cavity 
and its duration at three different fluid velocities, as shown 
in Figures 7–9. The volume and duration of the cavity are 
shown in Table 1, which provides detailed data about  
Figure 7. 

Figure 8 Comparisons of the cavity volume between the  
MOC-DVCM and LBM-DVCM results (V0 = 0.7 m/s), 
(a) at the valve, (b) at the middle point of the pipeline 

 
(a) 

 
(b) 

The duration of the cavity gets shorter and shorter owing to 
friction loss and energy dissipation. When the velocity of 
the fluid is 1.4 m/s, cavities appear in five periods near the 
valve. In this experimental data, it can be noted that the 
duration decreases after the first cavity is detected. At the 
same time, according to the simulation results, the cavities 
also disappeared eventually. 

In the numerical results, the cavities near the valve are 
ten times bigger than the ones at the midpoint of the pipe, as 
shown in Figures 7–9. It can be observed that the higher the 
speed of the fluid, the bigger the cavities. Consequently, the 
lower the negative pressure, the greater the number and size 
of vapour cavities generated. 

In the comparison, the two numerical results have a 
slight difference from the experimental data, particularly 

when the fluid has a comparatively high speed. However, 
according to Table 1, LBM-DVCM is more accurate than 
MOCDVCM in terms of the appearance time of the cavity. 
There is an urgent need for experimental studies to establish 
more precise methods for determining accurate cavity 
volume. 

Figure 9 Comparisons of the cavity volume between the  
MOC-DVCM and LBM-DVCM results (V0 = 0.3 m/s), 
(a) at the valve, (b) at the middle point of the pipeline 

 
(a) 

 
(b) 

3.2 Practical pipeline system case study 
To investigate the effect of the proposed LBM-DVCM in 
long-distance water supply systems, a practical case study 
of the water pipeline system was exhibited, which is the 
gravity flow section from the reservoir to the pump station 
(see Figure 10). The length of the pipeline was L = 6,078 m, 
the diameter was D = 1.8 m, the wave speed was a = 867.9 
m/s, and the designed flow rate was Q0 = 6,875 m3/h. Then, 
the hydraulic transient process period was 4L/a = 28 s after 
quickly closing the valve or because of pump failure. The 
MOC-DVCM was applied to test the effect of the 
LBMDVCM in long-distance water supply systems owing 
to its widespread use in commercial software and the lack of 
experimental data. The pipe was divided into 61 segments, 
and the calculation time was tmax = 1,200 s in the simulation 
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In the numerical results, the first peak duration of the 
head at the valve is 0 to 14 s, and the maximum heads of the 
LBM-DVCM and MOC-DVCM are 104.09 m and 103.91 
m, respectively. When the positive pressure wave generated 
by closing the valve is transmitted to the midpoint of the 
pipeline, the maximum heads of LBM-DVCM and 
MOCDVCM are 109.46 m and 109.37 m, respectively. In 
Figure 11, it can be observed that the two methods have a 
minimal difference in simulating the actual long water 
supply pipelines. Hence, the LBM-DVCM, like the  
MOC-DVCM, can be used in actual water supply projects. 

Table 1 Volume and appearance time of the cavity 

V0 = 1.4 m/s Volume of the cavity (m3) Duration time (s) 

Valve Experiment —— 0.0817–0.39421 
—— 0.4417–0.7165 
—— 0.7833–1.0192 
—— 1.0841–1.2717 
—— 1.3532–1.5 

MOCDVCM 4.282 × 10–5 0.0677–0.3952 
3.627 × 10–5 0.4629–0.7678 
3.167 × 10–5 0.8355–1.1065 
2.135 × 10–5 1.1742–1.4133 

—— 1.4790–1.5 
LBMDVCM 4.367 × 10–5 0.0621–0.3952 

3.703 × 10–5 0.4573–0.7621 
2.704 × 10–5 0.8242–1.0952 
2.019 × 10–5 1.1573–1.3887 

—— 1.4508–1.5 
—— 0.074–0.097 

Midpoint of 
the pipe 

Experiment —— 0.074–0.097 
MOCDVCM 9.0 × 10–8 0.074–0.099 
LBMDVCM 9.0 × 10–8 0.074–0.099 

Figure 10 Layout of the water supply system (the gravity flow 
section) 

 

Table 2 Parameters of three points along the pipeline 

Point Elevation 
(m) 

Piezometric 
head (m) 

Free head 
(m) 

1 (outlet of the 
reservoir) 

105.8 132.270 26.470 

2 (middle point 
of the pipe) 

88.98 131.279 42.299 

3 (valve) 94.8 130.327 35.527 

Figure 11 Comparisons between the MOC-DVCM and  
LBM-DVCM results, (a) at the middle point of the 
pipeline, (b) at the valve 

 
(a) 

 

 
(b) 

The short-time valve closing leads to significant pressure 
fluctuations at the valve; thus, the free head is easily 
reduced to the local vaporisation head (–9.8 m), and the 
water vaporises into the steam cavities. The middle point of 
the pipeline is conducive for preventing the vaporisation of 
water due to the lower elevation, and the water hammer 
pressure wave at the valve weakens because of the friction 
along the pipe. 

It is worth noting that the calculation speed of the 
LBMDVCM was faster than that of the MOC, with the 
running time of approximately 8 s and 358 s, respectively, 
on a single i7 CPU and 8 GB RAM PC, thus making it 
possible to run eight analyses at once. However, the reason 
for this is beyond the scope of this paper. 

4 Conclusions 
In this study, based on the DVCM, a one-dimensional two 
phase transient flow numerical model was constructed using 
the LBM, and the following conclusions were obtained: 

1 By comparing the experimental pressure data of the 
quick closing of the downstream valve in a simple 
reservoir-pipe-valve system, the LBM-DVCM has 
fewer minor unrealistic pressure spikes and 
insignificant phase lag, while both the LBM-DVCM 
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and the MOC-DVCM are accurate in predicting the 
peak pressures. 

2 The LBM-DVCM is more accurate than the 
MOCDVCM in terms of the time of appearance of 
cavities and calculating the volume of air vapour. 

3 In a practical long-distance water pipeline system, the 
LBM-DVCM has a good agreement with the 
MOCDVCM and runs faster. 

In addition, the LBM-DVCM method can further be applied 
to viscoelastic pipelines and complex pipe networks, which 
will be the focus of future research. 
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Nomenclature 
A cross area of pipe (m2) 

Ai, Bi, Ci, Di Lagrange’s undetermined coefficients 

a wave speed (m/s) 

Ck = (k = 1, 2, ···) undetermined constants 

D pipe diameter (m) 

E elastic modulus of the pipe wall material 

e pipe-wall thickness (m) 

ei weight coefficients of the discrete velocity 

F external force(N) 

f(0) (x, v, t) local Maxwell-Boltzmann equilibrium 
distribution function 

fi particle distribution function along the i link 

g gravitational acceleration (m/s2) 

H piezometric head (m) 

Hv vacuum pressure (m) 

h0 reservoir’s water depth (m) 

K bulk modulus of water 

Kij = ∂Ωi/∂fj collision matrix 

L length of pipe (m) 

m molecular mass collision term 

N number of sections of the pipe section 

Qin discharge into the node 

Qout discharge out of the node 

QD demand for water at the node 

R friction factor of the pipeline 

s slip speed relative to the boundary (m/s)t = time (s) 

uw boundary speed(m/s) 

V fluid (mixture) velocity (m/s) 

V0 initial velocity of pipeline(m/s) 

VL volume of cavity (m3) 

v velocity (m/s) 

vs downstream velocity of the cavity (m/s) 

vu upstream velocity of the cavity (m/s) 

x spatial coordinate (m) 

Greek symbols 

α = w → b direction from the outside of the boundary to the 
boundary 

Δt time step of the iterative calculation (s) 

Δx distance step of the iterative calculation (m) 

ε Knudsen number 

λh relevant parameter 

λ friction factors 

ρ density of water(kg/m3) 

τ dimensionless relaxation time 

τ0 relaxation time of equilibrium state 

φ hydraulic opening of the valve 

Ωi(f) collision term 

ω = 1/τ0 collision frequency 


