
   

 

   

   
 

   

   

 

   

   Int. J. Agile Systems and Management, Vol. 15, No. 1, 2022 93    
 

   Copyright © The Author(s) 2022. Published by Inderscience Publishers Ltd. This is an Open Access Article 
distributed under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/) 
 
 

   

   
 

   

   

 

   

       
 

A systems approach to managing complex 
engineering assets: exploring shifts in equipment 
management and reliability enhancement paradigms 

Burnet O’Brien Mkandawire* 
Department of Mechanical Engineering,  
School of Engineering,  
Malawi University of Business and Applied Sciences,  
Private Bag 303, Chichiri, Blantyre 3, Malawi 
Email: bmkandawire@mubas.ac.mw 
*Corresponding author 

Nelson Ijumba and Akshay Kumar Saha 
School of Engineering, 
University of KwaZulu-Natal, 
Howard College,  
Durban, 4041, South Africa  
Email: mutatinak@gmail.com 
Email: saha@ukzn.ac.za 

Abstract: Engineering asset management is a complex socio-technical system, 
and there has been a surge in efforts to optimise the capacity utilisation of these 
assets in the wake of conflicting economic and performance objectives. The 
major challenge is in determining which assortment of approaches (tools, 
strategies, techniques, methodologies and philosophies) to apply in order to get 
optimal trade-offs of cost, risk and performance or reliability. This paper 
critically reviews the literature to examine shifts in physical asset management 
paradigms over the past few decades and to determine the best combination of 
approaches; and it shows that none of these approaches are able, individually, 
to optimise the trade-offs, but as a cluster. It proposes a Systems-thinking 
model-based integration approach. Pilot studies have shown that using the 
model proposed can yield savings in maintenance costs of 15–40% and in 
avoided costs of up to 15%. 
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1 Introduction 

This study addresses challenges in management of engineering systems by examining the 
equipment management paradigm shifts (evolutions), with emphasis on power 
infrastructure assets, over the past few decades; and then proposing a model that 
integrates a number of best strategies, techniques and models to effectively manage 
physical asset risks and to enhance reliability. It is a review paper with some case study 
content towards the end, which is aimed at informing the systems-thinking discourse for 
clarity. Management of physical assets is a complex process, because problems arise 
from not only the technology but also from complex social-economic systems; and as 
such, it requires a transdisciplinary and multi-criteria approach to adequately address 
these problems (Mkandawire et al., 2011a, pp.322–323; Papathanassioua et al., 2013; 
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Wognum et al., 2019, pp.78–79). The emergent nature of decision making process is 
eclipsed by ill-structured messes which cannot be solved by analysis only, but by a 
systems-approach (White, 1995; Mkandawire, 2015). The complexity of power asset 
management gets aggravated by the vastness and spatial nature of the infrastructure so 
much that in most cases it becomes too difficult to provide services and to locate faults to 
remotely located assets; thus, model-based approaches must be developed to cater for 
such isolated areas. Model based approaches are an emerging paradigm that must be 
leveraged on for such spatial and remote systems (Mo and Richardson, 2017). Giese and 
Hogräfer (2002) cited in Schneider et al. (2006, p.1411), advocates for an integrated 
model-based approach in terms of integrating enterprise resource planning (ERP), 
equipment database, geographical information system (GIS) and supervisory control and 
data acquisition (SCADA), but a gap still exists in model-based approaches that focus on 
maintenance strategies, philosophies, techniques, and socio-technical aspects. 

Figure 1 Hierarchical levels of power infrastructure assets (see online version for colours) 

 

A set of physical assets usually consists of hierarchies or levels, mostly aggregated into 
zones with defined system boundaries that, among other things, can help in modelling of 
risk profiles and in improving decision making processes (Mkandawire et al., 2015a). For 
example, in power infrastructure asset management, three levels exist, namely: 
hierarchical level one (HL1), two (HL2) and three (HL3); respectively, the generation (Gx), 
transmission (Tx) and distribution (Dx) systems (Figure 1). In terms of risk analysis and 
mitigation, the HL3 is the most critical as it represents risks that cascade from the Gx 
through the Tx to the Dx systems due to a domino effect that it creates (Billinton and 
Allan, 1992). Water utility, road infrastructure assets and complex process plants present 
a behaviour similar to power assets in terms of the domino effect. The physical asset 
management (AM) system is also a hierarchical one, and the objectives that can address 
the missions’ gaps should be established in the corporate strategy (Figure 2, Level 1) so 
as to provide direction for the firm (British Standard, 2008; Woodhouse, 2004; 
Mkandawire, Ijumba and Whitehead, 2011a, pp.321–322). The corporate strategy comes 
at the top and consists of strategic (≥5-year time frame), tactical (2 ≤ 3-year time frame) 
and operational (≤1-year time horizon) plans (Schneider et al., 2006; Mkandawire, 
Ijumba and Whitehead, 2011b, pp.263, 271). Risk profiling (Figure 2, Level 1) is a 
performance measurement to ensure that the asset strategies are aligned with the 
objectives (Moubray, 1997; Schneider et al., 2006). 
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The risk profile must be reviewed regularly to retain relevance; and this is where 
skills, aided by user friendly models, must be interfaced at all levels of the AM process  
(Figure 2, middle-left). However, the task of rating the various tools and strategies is a 
very complex one and as such, physical asset managers usually seek for models that can 
help them to integrate the best tools so that they get optimum returns on assets that are 
being managed (Woodhouse, 2001; Mkandawire et al., 2011b, pp.264–266); and this 
study elucidates that approach. 

Figure 2 Hierarchical levels of the asset management system (see online version for colours) 

 

2 Overview of a shift in physical asset management paradigms 

There have been four domains or paradigms of equipment management in the past half 
century or so, and each of them impacts the asset life cycle either adversely or positively 
(Mkandawire et al., 2011b, p.265; Moubray, 1997). The first paradigm or generation 
(Figure 3(a)) is the reactive domain, which helps to realise short term cost savings but 
subjects firms to surprises and catastrophic failures (Mitchell, 2006). The second one, 
(Figure 3(b)) was fashioned in such a way as to prevent the weakness of the first one, to 
safeguard the asset integrity and increase the bottom-line (Moubray, 1997; Mkandawire 
et al., 2011a). The third one (Figure 4(a)), developed progressively as a result of failure 
of approaches in the second domain to increase plant reliability; where about half of tasks 
carried out were found not to add any value (Mitchell, 2006). 

Finally, the proactive generation (Figure 4(b)) evolved (Mkandawire et al., 2011a). It 
applies probabilistic, stochastic and computer aided models and concepts aimed at 
determining optimum maintenance decision processes (Chen and Trivedi, 2005; Chan 
and Asgarpoor, 2006); improving probabilistic capabilities of reliability centred 
maintenance (RCM) (Mkandawire et al., 2015a); and optimising spare parts holding 
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levels for physical assets (Chowdhury and Koval, 2005, pp.1493–1498). Probabilistic 
techniques for modelling repairable systems have not received much attention for a long 
time yet they form the bulk of physical assets (Rigdon and Basu, 2000). They contain an 
assortment of non-invasive, proactive approaches from the third domain as well as 
computer models (Mkandawire et al., 2011b); with root cause analysis (RCA) employed, 
and the selection of such a mix of approaches is being dictated by empirical inferences 
rather than gut-feel (Woodhouse, 2004). Some philosophies, e.g., total productive 
maintenance (TPM) and risk based inspection (RBI) have also been integrated in the 
paradigms (Mkandawire et al., 2011b; Woodhouse, 2001; Mitchell, 2006). 

Figure 3 (a) First paradigm and (b) second paradigm (see online version for colours) 

 

Figure 4 (a) Third paradigm and (b) fourth paradigm (see online version for colours) 

 

In recent years, it is common practice to integrate the second, third and fourth generation 
strategies with, for example, power flow management techniques in aging assets so as to 
de-rate them and prevent overloading (Endo et al., 2009), to determine their age 
(Bajracharya et al., 2009), and to extend their life spans (Pothisarn et al., 2020). 
Ultimately, there has been a quantum leap into a new and ever evolving paradigm, i.e., 
the artificial intelligence (AI). Wavelet Transformation techniques, which offer better 
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capability to depict sudden disturbances than Fourier Transforms, have also been blended 
with AI in five special applications in power systems diagnostics, protection, load 
forecasting; and power measurement and quality management (Ren et al., 2000). First, in 
power system protection, for improving performance of relays during transient earth 
faults (Janicek et al., 2007). Second, in power quality management, e.g., using discrete 
wavelet transforms (DWT) (Pothisarn et al., 2020), and to detect and locate disturbances 
based on the rate at which a fault wave travels to the control relay (Zheng and Makram, 
1998; Zheng et al., 1999). Additional power quality management applications include the 
wavelet-multiresolution signal decomposition approach (Gaouda et al., 1999), as well as 
the wavelet series expansion and reconstruction to detect filter bank switching transients 
(Abu-Elanien and Salama, 2009; Zheng and Makram, 1998). Third, to detect partial 
discharges in transformers, cables, and gas insulated substations using ultra high 
frequency (UHF) signals; which offers more advantages than the standardised IEC 60270 
method (Sinaga, 2012). Fourth, in load forecasting, by combining Wavelet transforms 
and artificial neural networks (ANN) for load forecasting (Li and Fang, 2003). Fifth, in 
power system measurements, applying algorithms to discrete wave transforms (DWT) for 
root mean square (RMS) value and phasor measurement (Liang and Jeyasurya, 2004; 
Mallat, 1989). A newer type of Wavelet Transform called direct quadrature Wavelet 
Packet (dqWPT)-based hybrid technique provides digital differential protection of 
transformers to augment ANN, wavelets and fuzzy logic techniques (Aktaibi, 2015). The 
major concern with the AI is that its accuracy and success depends on selection of the 
right technique for the application; some of which depend heavily on expert interaction 
during classification and training hence are prone to bias, are unable to accurately model 
expert behaviour, judgement, and other human factors (White, 1995). Lack of field 
specialists and case-specificity of AI tends to hinder its penetration and acceptance in 
industry. AI techniques such as reinforcement learning, deep learning and their 
combination-deep reinforcement learning usually do not involve expert interaction, hence 
they fill this gap; but their major disadvantage is their complexity, data-intensity nature 
and lack of interpretability (Zhang et al., 2018). Generally, when applied to critical 
components, AI provides a risk mitigation layer for mission and safety critical systems; 
where critical components are determined using fault tree analysis (FTA) and/or failure 
mode effect and criticality analysis (FMECA) (Souza et al., 2014). 

Metrics can track the benefits of the strategies on reliability, but are mostly asset-
specific and range from top-tier strategic to low-tier operational, and depend on targeted 
industries which makes standardisation and generalisation difficult (Mitchell, 2006; 
Mkandawire et al., 2011a, p.267). The difficulty in standardisation makes benchmarking 
implausible (Jagers and Tenbohlen, 2009). Despite the diversities in industries, there is 
one salient feature of metrics in that most of them are applied within the hierarchical 
level 3 of the AM process (see, e.g., Figure 2). For instance, the impact of the risk of 
failure of power Dx assets on the system and customers can be assessed using reliability 
indices (e.g., SAIDI, SAIFI, CAIDI, SAIDI) (Endrenyi et al., 1998). These indices are 
flawed as they can only give a short-term outlook of risk, usually a one-year time-
horizon. Data mining techniques, needed for machine learning in AI, have inherent risks 
that relate to misidentification of the data when the classification model used gets 
confused, thereby degrading the performance of the model; and the Confusion Matrix is 
the method most commonly used to overcome that problem by deriving classification 
performance metrics (point metrics). These metrics are accuracy, i.e., comparing the 
actual with predicted class; precision, i.e., how well the model does when a positive 
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prediction is made; and recall or sensitivity, i.e., how good the model performs in 
identifying positive and negative labels (Luque et al., 2019; Ting, 2011). Uncertainty in 
the estimation of unobserved values, such as the remaining life of physical assets, is 
another inherent risk; and model evaluation metrics such as the Mean Squared Error 
(MSE) can reduce that risk (Sammut and Webb, 2017). 

Risk matrix methods such as the robot type, the distance-d-technique and the loss 
distribution approach (LDA) are among the conventional risk assessment techniques. The 
robot types are usually in simple tri-coloured (yellow, green, red) matrix form as in  
Table 1 (Gjerde and Nordgard, 2009) or in a more detailed tri-coloured matrix form with 
narrations of various risk scales as in Table 2 (Mkandawire, 2010). 

The advantage of the robot type (Table 1) is that it is easy to use, but it fails to show 
the effects of low- probability-high-impact risks as it assumes that the improbable risks 
do not have any severe impact, which may not always be true; hence, physical asset 
managers tend to use the type presented in Table 2 to offset some of the shortfalls. The 
other shortfall is that they are generally unable to portray the whole-life (long-term) 
outlook of risk. In addition, the determination of the risk level and impact depends on 
subjective judgement of the risk analysts, which may vary from one analyst to the other 
(Gjerde and Nordgard, 2009; Suwnansri, 2014; Nordgård et al., 2007). The matrix 
methods express the risk level as the product of probability and consequence factors 
(IEEE, 2006; Mkandawire et al., 2011a, p.273). 

The loss distribution approach (LDA) is a variant of the risk-matrix method that uses 
a metric called value at risk (VAR) according to the IEC60300-3-9 standard to identify, 
analyse, evaluate and control risk (Nordgård et al., 2007), but the approach fails to give a 
long term outlook of risk (Mkandawire, 2015). The distance-d-technique (Figure 5), used 
to select maintenance strategies, expresses the risk by equal weighting between condition 
and significance criteria in terms of distances d1, d2, and d3 relative to a 45° reference 
line; where the distances are proportional to the risk level (Suwnansri, 2014), but it fails 
to determine whether the asset condition is age related or otherwise. 

The net present value (NPV) analysis can present a firm’s business case by selecting  
re-investment strategies. In a study on air blast circuit breakers, Anders et al. (2001), used 
an optimised NPV decision criterion to convert engineering analysis into economic 
impacts associated with various management decisions, to generate equipment life cycle 
curves (deterioration states); and to employ probabilistic modelling with Markov-
process’ first-passage-times (FPT). However, the NPV analysis fails to correlate the 
impact of strategies to technologies applied (Davidson, 2005; Mkandawire et al., 2011b). 

Table 1 A risk matrix of the robot type (see online version for colours) 

Impact 
 High level  Medium level  Low level 

  Immaterial Minor Moderate Major Catastrophic 
Frequent           
Probable           
Occasional           
Remote           Pr

ob
ab

ili
ty

 

Improbable           

Source: Adapted from Suwnansri (2014) 
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Table 2 Robot type of risk matrix with probability and impact scales (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

    A systems approach to managing complex engineering assets 101    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 Distance-d-technique (see online version for colours) 

 
Source: Adapted from Suwnansri (2014) 

Most risk trending or assessment models aim at monitoring and controlling the risk rather 
than optimising strategies involved in the risk mitigation process (Suwnansri, 2014; 
Nordgård et al., 2007; IEEE, 2006; Mkandawire et al., 2011b). The ultimate goal of these 
models is to determine the best combination of tools, strategies and techniques that can 
be applied in the process (British Standard, 2008; Woodhouse, 2001). Models for 
optimisation of strategies also exist, e.g., where maintenance is assumed to be a Poisson 
Process, hence stockholding levels are established (Chen and Trivedi, 2005; Chowdhury 
and Koval, 2005); and where the maintenance is assumed to be a Markov Decision 
Process (MDP) and by applying it in RCM, an inverse proportionality of maintenance 
costs and the mean-time-to-first-failure (MTTF) is established (Mkandawire et al., 2015a, 
p.475); or where it is assumed to be a semi-Markov decision process (SMDP) and is used 
to optimise maintenance policies and inspection rates (Chan and Asgarpoor, 2006; 
Rigdon and Basu, 2000). Their major strength is in the ability to simulate the uptime and 
failure states for repairable machines (Mkandawire et al., 2015a; Billinton and Allan, 
1992). However these are not suitable for plant-wide risk profiling; and due to their high 
level of computational complexity, practitioners tend to relegate them to mere theoretical 
tools, contrary to best practice that advocates for reduction in complexity (Velten, 2009). 
It is advanced that probabilistic characterisation of system behaviours by monitoring 
hazard rates as well as failure and survival functions (see also Sections 3.2 and 4.2) is the 
best conservative risk rating approach and is pivotal to end of life-time reliability 
evaluations (Rigdon and Basu, 2000; Jardine and Tsang, 2013, pp.225–230). 
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Emergence of the systems theory or systems-thinking has marked a distinct shift into 
the fourth paradigm (see, e.g., Figures 3–4). In the past few decades, the theory was 
traditionally applied for the management of risk in insurance firms, but most recently it 
has been adopted in engineering as a means of integrating several techniques and to 
reveal cause and effect relationships (Schneider et al., 2006; Mkandawire, 2015,  
pp.14–21; Mkandawire et al., 2015b, pp.1185–1186); and as a means of dealing with  
ill-structured messes, and complex socio-technical systems (White, 1995). Systems-
thinking was for a long time criticised as being too theoretical, abstract and without merit 
(Mkandawire et al., 2011b, p.321, 2015b, p.1185) until, in a recent study, Mkandawire 
(2015) introduced quantitative capabilities into it using parametric probability 
distribution models for physical asset risk-trending. The sections that follow expound the 
application of systems-thinking for risk trending and the associated cost benefits. 

3 Exposition of leverages of the systems-thinking paradigm 

3.1 Overview of the systems approach 

Mkandawire et al. (2015b) postulated that, from a system-thinking perspective, the asset 
management is an aggregate of interacting sub-systems, as shown in Figure 6. 

Figure 6 Asset management as a cluster of interacting systems (see online version for colours) 

 

The maintenance subsystem (supported by OPEX) is on the right of the dotted line and 
the investment subsystem (supported by CAPEX) is on the left hand side. In the figure, 
‘s’ means the variable produces an amplification effect; while ‘o’ means it produces a 
decreasing effect in the direction of the arrow. Using Markov inference models, these 
systems can be considered as consisting of various state-transitions as different lifecycle 
management strategies are carried out and they make the whole system oscillate before 
reaching an equilibrium (Figure 7). The empirical systems-thinking model as presented 
by Mkandawire et al. (2015b) is as shown in equation (1). 

[ ] ( ) ( ){ }( ) 1 1 1 , 0r
F tRF n

ϕ ζ σ ζλρ ζ λ τ ζ µω ζ ϕ
γ ϕ

= + + − − − − < < >⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (1) 
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where ϕ , γ, σ, ρ, τ, and ω are component quantities as follows: critical, total, overloaded, 
normally loaded, relieved from the overloaded regime, and refurbished, respectively. 
Zeta, ζ, represents lifecycle phases as in the bath-tub curve; λ, λr and µ are, respectively, 
transitional probabilities of being overloaded, relieved from the overload regime, and 
refurbished; t and n are, respectively, the technical life and the age bracket that 
determines ζ. The term F(ζ) is the cumulative density function (CDF), obtained by 
integrating the probability density function (PDF). It is assumed that τ = τ1 + τ2, and 
ω = ω1 + ω2 (see Figure 7). The expressions ζ λ ρ , ( ) rkζ λ τ−  and ( )kζ µ ω−   
represent amplification and attenuation effects of interacting elements in the engineering 
system. The failure risk and service level vary as the maintenance and renewal or 
refurbishment strategies are applied on assets during the lifespan, which can be trended 
by superimposing some empirical models into equation (1). Mkandawire et al. (2015b) 
showed that the model (equation (1)) is an improvement over the traditional physical 
asset risk assessment approaches, because it can trend the asset risk throughout the 
expected technical life; because F(ζ ) is a function of the operating time. 

Figure 7 A typical system dynamics’ state-space model (Arrows show the transitions) (see online 
version for colours) 

 

However, the equation (model) does not express the risk level in terms of costs or 
monetary value, which could be more useful to physical asset managers, as best practice 
demands (British Standard, 2008). In the sections that follow, operations and 
maintenance (O & M) costs are incorporated into the model to demonstrate the cost 
benefits of risk mitigation measures. 
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3.2 Overview of lifecycle-modelling distributions 

Various lifetime distributions exist for application to repairable and non-repairable asset-
systems modelling. The most common distribution functions for electro-mechanical 
equipment life data fitting are the Normal, Lognormal, Extreme Value, Weibull, 
Exponential and the Poisson (Nelson, 2009). The Normal distribution is suitable for 
wear-out types of failure (Mkandawire, 2015; Nelson, 2009), and it belongs to a group of 
distributions called the parametric family of distributions (Rinnie, 2009). The others in 
this family comprise the Gamma distribution, the Change-Point Model, the Mixed 
Exponential distribution and the Erlang distribution (Gupta et al., 2010). The Weibull 
parameters can be computed, using methods outlined in Section 3.3, and then they can be 
applied to model component reliability and the hazard rate. The hazard rate can in turn be 
used to evaluate maintenance strategies, based on the relative risk of failure. This is 
demonstrated in Section 3.4. The hazard rate h (t) is the survival probability up to time t, 
given as (Mkandawire et al., 2014): 

1

( ) th t
ββ

η η

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2) 

where β is the shape parameter and η is the scale parameter of the Weibull distribution. 
The Weibull distribution is preferred to other types of distributions as it can be used 

to model a variety of distributions based on the variation of the shape parameter (β), 
using a set of failure data from similar types of assets (O’Connor and Kleyner, 2012). 
The lognormal distribution empirically fits many types of data adequately, especially 
suitable for metal fatigue and electrical insulation data (Nelson, 2009). The major 
concern is that the focus of these has been more on non-repairable items than on 
repairable systems (Rigdon and Basu, 2000). The Poisson distribution is probably the 
most versatile for minimal-repair and renewal modelling of both non-repairable and 
repairable items (Rigdon and Basu, 2000), and it was shown that it can be used to model 
optimum spare parts holding levels for power transformers (Chowdhury and Koval, 
2005). 

3.3 Parameter inputs for the risk-trend modelling 

The failure function F(t) in equation (1), is expressed as a two-parameter Weibull 
distribution instead of a three-parameter model; because it is simpler yet it sufficiently 
models failure data as follows (Mkandawire et al., 2014): 

( )
0

( ) ( )d 1
t

F t f t t R t= = −∫  (3) 

where 

( ) exp tR t
β

η
⎡ ⎤⎛ ⎞= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦  (4) 

where f(t) is the PDF, t is the expected lifespan and R(t) is the survival likelihood. The β 
and η are derived by applying the maximum likelihood estimation (MLE) and the method 
of moments (MOM) to failure statistics. Through iterative numerical methods, the MLE 
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can be applied to equation (5) and (6) to estimate β and η for a random variable xi (Chan, 
2004): 

1

1 n

i
i

x
n

βη
=

⎡ ⎤= ⎢ ⎥
⎣ ⎦
∑

 (5) 

( )
1

1
1

1

ln 1 ln
( )

n
ni ii

in i
ii

x x
x

nx

β

β
β

−

=
=

=

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦

∑ ∑
∑

 (6) 

The MOM applies the mathematical expectation theory to a moment generating function 
for a given random variable to estimate the parameters as follows (Walpole et al., 2002): 
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If h(X) = Xr for r = 1, 2, … n, is the expected value, the inner summation and integral in 
equation (7) can be differentiated to give the rth moment, rµ′ , about the origin of the 
random variable X, for the real variable t expressed as follows (Walpole et al., 2002): 
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For the Weibull PDF, 
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where θ  = β, η 
From equation (9), it can be shown that: 
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Further manipulation of equation (10) results in the following (Li, 2004; Al-Fawzan, 
2020; Gove, 2003; Lei, 2008; Gupta et al., 2010): 
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where, CV, η̂ , β̂ , and x  are, respectively, the coefficient of variation, the estimate of η, 
the estimate of β, and the mean of the data. Statistical software like R-Statistics and 
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MATLAB, or tabulation methods may be applied to equations (11) and (12) in order to 
compute β̂ , and η̂ . 

3.4 Integrating strategies and systems-thinking with parametric-probability 
inferences 

Since the case study data applied in this study is from transformers which are normally 
subjected to electrical, thermal and mechanical stresses, the Weibull distribution can be 
used to generate parameters for the model (Zhang and Gockenbach, 2007), and it can 
easily be used to model survival and failure probabilities (O’Connor and Kleyner, 2012; 
Smith, 2011). It is worth noting that it is imperative to carry out a test to determine 
whether the hypothesised distribution fits the dataset (Jardine and Tsang, 2013, p.248) 
(see, e.g., Section 4.1). Models that utilise both surviving and failing components also 
exist as in Li (2004); however, they are data intensive as they require large sample sizes 
(Schneider et al., 2006; Mkandawire et al., 2015b). The Weibull-based modelling of costs 
can be pitched according to the renewal theory as per (Zhang and Gockenbach, 2011) or 
according to planned maintenance as a function of the survival and failure likelihoods 
(O’Connor, 1991); where the maintenance cost rate C(τ) incorporating imperfect (cr), 
corrective (cc), and preventive (cp) maintenance strategies carried out at time interval (τ) 
is given according to Zhang and Gockenbach (2011) as: 

( ) ( ) ( )r r c c pC c N c N cτ τ τ= + +  (13) 

where Nr and Nc are, respectively, number of components under repair and corrective 
maintenance. Equation (13) takes electrical, thermal and mechanical stresses of 
components into consideration, and is elaborated in Zhang and Gockenbach (2007). 
Furthermore, the total cost per year found in O’Connor and Kleyner (2012) is modified to 
express corrective and preventive maintenance costs given as: 

.$ .$
1 expac pm ac cm

T

Y Y tC
m m

β

η

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= + − −⎢ ⎥⎨ ⎬⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 (14) 

where Yac = annualised maintenance hours; m = preventive maintenance interval; 
$pm and $cm are, respectively, preventive and corrective maintenance cost rates, 

whereby maintenance is conducted at ‘m’ intervals; t is the operating time; η and β are as 
stated earlier on (see, e.g., equation (4)). The model assumes a constant maintenance rate 
and that failures are rectified only during the time of execution of planned preventive 
maintenance, which may not always be the case as the repairs may be triggered by 
catastrophic and/or breakdown failures. According to Smith (2011), the unit cost £cm and 
£pm for corrective and preventive maintenance, respectively, is given as: 

( ) ( )
0

£ . 1 exp £ . d
t

T

T cm pmC R t R t tη
−⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫  (15) 

where, R(t) is defined as in equation (3). 
Although equation (13) models cost rates well, it is not used in this work because it 

requires a lot of data which may not be readily available to a practitioner in the field 
(Schneider et al., 2006; Zhang and Gockenbach, 2007); whereas equation (14) assumes 
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the maintenance tasks are restricted to a year, hence it is not chosen. Instead, equation 
(15) is adopted with modifications, because it is flexible to apply to the systems-thinking 
risk model (equation (1)), as follows: 

( )
0

£ . d £ .exp
t

T cm pm
tC f t t

β

η
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

∫  (16) 

where ( )
0

£ . d
t

cm f t t∫  is a failure cost model and ( )£ .exp t
pm

β

η−  is a planned preventive 

maintenance cost model. 

3.5 Application of the systems-thinking model with parametric-Probability 
inferences 

Planned and unplanned maintenance costs and time-to-failure data for transmission (Tx) 
and distribution (Dx) transformers (TSRF), respectively, are presented in Tables 3 and 4 
(Mkandawire, 2015). These are used to demonstrate the risk trending methodology. 

Table 3 Average maintenance costs for transformers 

Maintenance costs 

Transformer size 
Preventive maintenance costs 

(₤pm ) [$] 
Corrective maintenance costs 

(₤cm ) [$] 

12 MVA Tx TSRF 17,467 30,000 
0.2 MVA Dx TSRF 748 1300 

MVA = Mega-volt-ampere; Tx = Transmission; Dx = Distribution; TSRF = Transformer. 

Table 4 Transformer failure statistics 

Life span (Operating hours before decommissioning) 

12 MVA Tx TSRF [105 h] 0.2 MVA Dx TSRF [103 h] 
1.892 0.07488 
4.188 0.07488 
3.925 0.01123 
1.971 0.03182 
2.182 0.06739 
1.971 0.07301 
4.366 0.0805 
2.365 0.8237 
2.418 0.09173 
4.03 1.554 
2.31 2.771 
3.715 4.512 

MVA = Mega-volt-ampere; Tx = Transmission; Dx = Distribution; TSRF = Transformer. 
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4 Analysis and discussion of study results 

The data in Tables 3 and 4 were used to derive the parameter estimates using  
equations (5) and (6) for the MLE, and equations (11) and (12) for the MOM as presented 
in Section 3. 

4.1 Analysis of computed statistical parameter estimates 

Table 5 outlines parameter estimates that were computed and compares the results from 
the MLE and MOM techniques (see, e.g., Section 3.2) for both the transmission and 
distribution transformers that were operated under the planned maintenance and reactive 
maintenance regimes, respectively. The distribution transformers were being subjected to 
the run-to-failure maintenance strategy (Mkandawire, 2015), an approach in the first 
paradigm (see also Figure 3). The Kolmogorov-Smirnov (K-S) goodness-of-fit test was 
applied to determine whether the hypothesised distribution (the Weibull) fits the dataset 
(Jardine and Tsang, 2013, p.248). The acceptance of the K-S test for the hypothesis was 
based on p > 0.05, and the p-value was 0.2185; thus supporting that the results of the β 
and η indeed came from the Weibull distribution. Table 5 shows that the MLE is the most 
suitable for short hours-to-failure; but when hours-to-failure increase the MLE and MOM 
produce results that are equally accurate, hence the two methods can be applied 
interchangeably. 

Table 5 Computed parameter estimates by the MLE and MOM (see online version for colours) 

Transformer rating Weibull parameters MLE MOM 

β 3.43 3.50 
95% ci [LL, UL] [2.19, 5.39] [2.91, 4.51] 
η [105 hrs.] 3.29  3.28 

12 MVA Transmission 
transformers 

95% ci [LL, UL] [2.76, 3.92] [2.70, 3.83] 
β 1.17  1.45 

95% ci [LL, UL] [0.77, 1.76] [0.70, 2.99] 
η [×103 hrs.] 0.13 0.08 

200 kVA Distribution 
transformers 

95% ci [LL, UL] [0.08, 0.22] [0.04, 0.20] 

ci = confidence interval; LL = Lower limit; UL = Upper Limit. 

4.2 Analysis of reliability, maintenance and risk 

Now, equations (2)–(4) are applied, using values from Table 5, to plot the cumulative 
density function (CDF) and the hazard rate, h(t) as portrayed in Figure 8. 

The figure shows an increasing hazard rate, h(x), which means the TBM alone would 
not suffice in preventing failure unless it is augmented by predictive maintenance or 
CBM; thereby justifying a shift from the second to the third paradigm (see, e.g., Figures 3 
and 4). 
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Figure 8 CDF and hazard rate for the 12 MVA transformers (see online version for colours) 
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Figure 9 compares cost patterns for the 200 kVA (0.2 MVA) distribution and 12 MVA 
transmission transformers (see, e.g., Tables 3 and 4), operated within the first and second 
paradigms (see Figure 3(a) and (b), respectively; by applying equation (16) (Mkandawire 
et al., 2015b). The reactive strategy applied in the first paradigm (Figure 3(a)) fails to 
optimise the capacity utilisation of assets as the annualised corrective maintenance costs 
pick up so quickly that they exceed costs of assets managed under the second paradigm 
over a ten year period. This is particularly so because there are numerous distribution 
transformers in the electric grid. This is against the perception that some utility 
companies have, in subjecting the less capital intensive assets to reactive strategies, and 
the more capital intensive ones to preventive and proactive strategies. This, however, 
results in increased O&M costs as this study has shown; which collaborates the findings 
of Otal and Bakulev (2014) and Mitchell (2006). The points marked I and II are critical 
decision thresholds when corrective maintenance costs tend to exceed preventive costs; 
the point the asset manager should watch for and take appropriate interventions. 

4.3 Application of the systems-thinking model with parametric-Probability 
inferences to trend risks 

Next, equation (1) is applied in the trending of risks and costs, by superimposing  
equation (16) on the cumulative density function (CDF) or failure function (F) using 
parameters (β, η) in Table 5 for the 12 MVA transformers for the following three 
scenarios: risk with business as usual, with refurbishment carried out in the middle of the 
life span, and refurbishment carried out towards the end of the life span; and for ϕ  = 3, 
γ = 20, σ = 6, λ = λr = 0.02, and µ = 0.03. The PDF is obtained using equation (9). 
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Figure 9 Comparison of (a) 200 kVA and (b) 12 MVA transformer cost patterns (see online 
version for colours) 
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Figure 10 Comparison of reduction of risk level: refurbishment at middle and end of life cycle 
(see online version for colours) 
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Then, the variation of the risk factor to changes in ρ, τ and ω are plotted as shown in 
Figures 10 and 11, representing risk reductions due to the application of refurbishment 
strategies during the middle of the life cycle (ξ = 5–10) and during the end of the life 
cycle (ξ = 10–11) of the assets relative to the business as usual scenario. It is shown that 
the greater the reduction in the risk factor, the more effective are the strategies in 
reducing the risk of failure. 

Thus, the Systems-thinking Model with parametric-probability inferences is able to 
trend physical asset risks. Furthermore, Figure 11 outlines trends of risk for the three 
scenarios that are used in Figure 10 as well as the PDF (ref. equation (9)) of these 
transformers; whereby, the risks are expressed in terms of benefits of reduction in O & M 
costs. It is shown that business as usual scenario presents the highest risk, followed by the 
end-life renewal and the mid-life renewal with the least risk level. The mid-life renewal 
strategies yield cost benefits early enough to be re-invested in the business, hence, that is 
the best option from an asset management point of view. Since the economic benefits of 
refurbishment are mostly difficult to validate and convince shareholders to invest in the 
undertaking, the results derived from this model could be of help in seeking approvals 
from the top management for refurbishment budget plans, for their buy-in. 

Figure 11 Risk-cost trending derived from systems-thinking model with parametric-probability 
inferences (see online version for colours) 
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5 Synthesis of approaches and paradigms for reliability enhancement 

Figure 12 is a model-based approach summarising synergies of various AM paradigms 
that have been reviewed and advanced in this study, including clusters of tools, 
techniques, strategies and methodologies that are aimed at enhancing reliability. In the 
figure, the first paradigm is not interconnected with any other because it is not a best 
practice; it may be used as a default strategy when no appropriate preventive measure is 
available as in the RCM (Moubray, 1997). Corporate objectives and stakeholder 
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requirements are at the top, because they determine the type of asset portfolio for an 
organisation (British Standard, 2008). No single cluster of techniques or methodology 
suffices in reducing the risk of failure, hence asset managers should apply the best 
assortment of strategies, techniques and philosophies contained in an appropriate model 
in order to optimise returns on their assets. The optimum point is where the cost, risk and 
performance trade-off is of minimal impact on the whole life cycle of the asset 
(Woodhouse, 2004). The parametric modelling applied in the study generated parameters 
that are unique and customised to the type of equipment. In general, the main merit of 
parametric modelling is the customisation of deliverables (Thajudeen et al., 2020, 
pp.571–572). 

Three models of integration are presented in Figure 12. Model 1: TBM with CBM; 
Model 2: CBM with Probabilistic and Markov techniques; Model 3: systems-thinking 
with probability inference models, philosophies, Markov decision processes and AI. Just 
like in other complex systems like manufacturing where product service system (PSS) is 
advocated (Mo, 2012), there must be a maintenance support system (MSS) in physical 
asset management, which for Figure 12 consists of enablers (enclosed in dotted boxes), 
namely: equipment data which provides information for life cycle modelling, ERP, 
philosophies like RCM and TPM, and BSI-PAS-55 (see definition on the top left box in 
Figure 12) which help to instill the KAIZEN or continuous improvement process and to 
select the right maintenance strategy; and portfolio management, consisting of decisions 
on asset mix as well as the risk profiling which assesses, monitors and controls corporate 
risks and service level as shown by (Mo and Richardson, 2017). 

Figure 12 A model-based multi-method, multi-criteria risk and physical asset management 
approach (see online version for colours) 
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The motivation and argumentation for the modelling choices initially rest on the precept 
that assets must be aligned with strategic objectives, stakeholder expectations and legal 
requirements as seen on the top-right box (see also PAS-55 (British Standard, 2008; 
Schneider et al., 2006)). Then, the decision on the asset mix that best lowers the risk, and 
on strategies and techniques applicable to the assets follows (see box 2nd from top-right). 
Thereafter, based on asset management maturity level, a firm should decide on the most 
appropriate integration model which when augmented with relevant data can ably inform 
decision making. 

To contextualise the validity of the added value of the asset management approach 
proposed (Figure 12), we consider the application of the 4th paradigm where CBM and 
probabilistic techniques are applied (Integration Model 2). The CBM will help in the 
prediction of physical asset condition for failure prevention, however, it may not deal 
with some occasional catastrophic failures; hence the value addition of probabilistic 
approaches such as the Poisson process comes handy in estimating optimal quantities of 
spares needed to reduce the MTTR, among other things, as supported by Rigdon and 
Basu (2000), and Chowdhury and Koval (2005). The value addition can be quantified by 
metrics such as avoided costs (due to reduced safety violations) and savings from the 
CBM as well as from reduced forced outages as the stock (spares) holding will speed-up 
parts replacement during maintenance; thereby extending the MTBF. Cross-cutting 
concepts, e.g., RCM and TPM are useful for continuous improvement. 

The model developed has been piloted at a large plant containing electromechanical 
machines in Southern Africa for five years and has shown that the Level 1 model reduces 
maintenance costs by almost 15%, Level 2 by 25%, Level 3 (where systems-thinking 
approach is predominant) reduces maintenance costs by up to 40% and savings in 
avoided costs of up to 15%. In addition, it was revealed that the annualised average cost 
of condition monitoring (CM) technology within the Level 1 mode of integration was less 
than the additional annualised cost of replacement of one damaged hydraulic pump 
bearing assembly (due to unplanned failure) by 19.6%; and less than the additional 
annualised cost of replacement of all bearing assemblies by almost 90%. This finding 
provided the motivation for advocating that more investment should be put into CM 
technologies and it got the much needed support from the executive management. 

6 Conclusions 

This paper has demonstrated that for an asset management system to effectively manage 
failure risks and optimise returns on the physical assets, a systems-approach should be 
applied to determine all the underlying and potential causes of failure. There has been 
distinct evolutions of asset management paradigms since World War II to 2021: from 
reactive through preventive, condition based with advanced diagnostic techniques and 
artificial intelligence, proactive with probabilistic and stochastic approaches, to proactive 
with systems-thinking and parametric-probability inference models. The asset 
management paradigm chosen for a given asset portfolio must integrate several strategies, 
including the RCA – where the systems-thinking approach can be leveraged upon; 
because even the most advanced modern proactive strategies that employ artificial 
intelligence, probabilistic and Markovian inferences, and those with predictive capability 
like the CBM do falter if not supported by lower ranking enabling techniques and 
strategies. The multi-method, multi-criteria risk and asset management approach has been 
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proposed. Its merits are in its ability to apply asset management techniques, diagnostic 
tools and risk management tools in not only the short time horizon but also over the entire 
lifespan so that whole-life impacts of risks on the business are evaluated and mitigation 
measures are taken. The study has demonstrated that the Systems-thinking approach is a 
vital tool for collating data for integration of the various strategies, and when combined 
with parametric probability inferences it can help to reveal patterns that are not possible 
to depict with analysis only; and to trend the risk levels of physical assets. These 
parameters are component-specific, based on failure data from these components or 
similar families of items, and when applied to appropriate empirical models they can 
generate equally unique metrics for reliability enhancement in the industry; and can assist 
in the evaluation of the effectiveness and timing of renewal strategies. The study findings 
can help asset managers in deciding which equipment management paradigms and set of 
strategies, tools, and methodologies best fits their asset portfolio in industry. Pilot studies 
over the past five years have shown that using the model developed can bring about 
savings in maintenance costs of 15-40% and in avoided costs of up to 15%. Future 
research should explore characteristics that will mark the evolution of the next physical 
asset management generation, that is, the fifth paradigm. 
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