

 Int. J. Advanced Intelligence Paradigms, Vol. 21, Nos. 3/4, 2022 189

 Copyright © The Author(s) 2021. Published by Inderscience Publishers Ltd. This is an Open Access Article
distributed under the CC BY license. (http://creativecommons.org/licenses/by/4.0/)

Computational offloading framework using caching
and cloud service selection in mobile cloud
computing

K. Sindhu* and H.S. Guruprasad
Department of ISE,
BMS College of Engineering,
Bangalore, India
Affiliated to: Visvesvaraya Technological University, India
Email: sind19@gmail.com
Email: drhsguru@gmail.com
*Corresponding author

Abstract: Execution of resource constrained applications on mobile devices is
still a challenging task due to limited resources of mobile devices like
processing speed, battery-power and network bandwidth. Mobile cloud
computing enables mobile devices to execute the resource intensive tasks with
the help of cloud servers. In this paper, we have implemented a computational
offloading framework to offload resource intensive task of an application onto
the cloud server. A caching scheme is proposed to further reduce the latency of
execution and battery-power consumption of mobile devices. Multi criteria
decision analysis methods are used to select the optimal cloud considering four
cloud servers located at different regions. The results indicate a performance
increase of 99% in execution time and 97% in energy consumption using the
caching scheme and 92% in execution time and 90% in energy consumption
using offloading on cloud server compared to execution on mobile device for
the proposed application.

Keywords: mobile; cloud service selection; TOPSIS; offloading; mobile cloud
computing; MCC; energy consumption; caching; analytic hierarchy process;
AHP; multi-criteria decision analysis; MCDA; mobile device.

Reference to this paper should be made as follows: Sindhu, K. and
Guruprasad, H.S. (2022) ‘Computational offloading framework using caching
and cloud service selection in mobile cloud computing’, Int. J. Advanced
Intelligence Paradigms, Vol. 21, Nos. 3/4, pp.189–210.

Biographical notes: K. Sindhu is currently working as an Assistant Professor
in the Department of Information Science and Engineering at BMS College of
Engineering, Bangalore, India. She received her MTech in Computer Network
Engineering from the Visvesvaraya Technological University. She is currently
pursuing her PhD at the Visvesvaraya Technological University. Her research
interest includes cloud computing, mobile cloud computing, internet of things
and mobile-based application development.

H.S. Guruprasad holds a PhD in Computer Science. He is working as a
Professor in the Department of Information Science and Engineering at BMS
College of Engineering, Bangalore, India. He has over two decades of
experience in the teaching field. His research interests include networks and
communication, cloud computing and internet of things.

 190 K. Sindhu and H.S. Guruprasad

1 Introduction

Mobile device faces various challenges such as shortage of processing power, inadequate
storage and reduced battery life. With the advancement of cellular network, it is easier to
incorporate cloud computing on mobile systems. To overcome the resource constraints of
mobile devices, cloud computing is integrated with mobile computing which has paved
way to a new terminology called mobile cloud computing (MCC). MCC is a paradigm
consisting of mobile computing, cloud computing and communication network. MCC
overcomes the limitation of mobile devices such as limited battery life and processing
capabilities by augmenting the capability of cloud computing (Othman et al., 2013). Key
objective of MCC is to boost the processing power and reduce the battery consumption of
mobile devices by offloading computation intensive task onto the cloud data centres
(Arun and Prabu, 2017; Somula and Sasikala, 2018; Fernando et al., 2013). Computation
offloading boosts the capabilities of mobile devices by delegating the resource
demanding task onto the cloud server.

Offloading is a promising method to solve the limitations of mobile devices where the
idea is to migrate the computationally intensive task to the cloud servers and obtain the
results. The decision to offload to cloud server or execute on mobile device is considered
based on various decision criteria since the cost of offloading must be lesser than
executing on the mobile device (Wu, 2018). Cloud computing facilitates end users in
accessing computing resources from anywhere, anytime and pay as per the usage. MCC
is an infrastructure where both the data processing and/or data storage happens outside
the mobile device thereby facilitating a broad range of mobile subscribers to benefit from
the usage of mobile cloud applications (Akherfi et al., 2018; Dinh et al., 2013; Noor
et al., 2018; Al-Janabi et al., 2017).

Mobile device is a primary human need in today’s information technology world.
Resource intensive application execution on mobile phones leads to faster depletion of
battery power. Execution of complex applications on mobile device is still a challenge
due to resource constraint issues of mobile devices. Hence, the main objective of the
proposed work is to enhance the battery life of mobile devices and faster execution of the
application.

The objective is achieved by an offloading framework which offloads resource
intensive task of the application onto the cloud server along with a caching scheme
implemented on the client device. Network latency in mobile apps has a greater effect on
user experience. Users expect the apps to be faster and responsive. Prefetching and
caching are effective in reducing latency and energy consumption of mobile application.
Caching helps in storing the data so that future requests are accessed more efficiently. It
eliminates the need for a network request call if requested data is available in cache.

The work also addresses the issue of selecting the optimal cloud server for offloading
the task. Cloud service selection considering mobile environment is not explored to the
fullest even though there are many previous works in ‘cloud service selection’ domain.
Fuzzy techniques were used in the previous works where linguistic variables were
considered to represent the significance of each criterion and four cloud servers were
assumed to be present. In the proposed work, four real time cloud servers located in
different regions were considered; analytic hierarchy process (AHP) and technique for
order preference by similarity to ideal solution (TOPSIS) were proved to be the viable
solutions in finding optimal cloud server by comparing the theoretical and real time
results obtained. The results indicate performance improvement of the mobile device

 Computational offloading framework 191

when the task is offloaded to the cloud server and further efficiency of mobile device is
achieved by using the caching scheme.

The contributions of this paper are as follows:

• The execution of applications on mobile devices increases the latency and power
consumption. Hence, an offloading strategy is proposed where cloud servers are
utilised for executing the computation intensive task.

• Caching mechanism is introduced in this approach to further reduce the execution
time and energy consumption. The result of the computation is cached so that next
time the same request arrives from the end user, the cache is accessed in fetching the
response. The network calls to the cloud server are reduced by incorporating caching
scheme along with offloading and is useful when communication network is not
available.

• Selection of optimal cloud server to offload computationally intensive task of the
application is proposed considering four cloud servers located at different region.
The real time testbed results are considered for ranking the cloud server.

The novelty of the proposed framework is to enhance the performance of the mobile
device by choosing an optimal cloud server for offloading from a set of cloud servers
along with a caching mechanism. The rest of the paper is organised as follows:
Section 2 of the paper examines the research work done by other researchers. Section 3
demonstrates the proposed work followed by cloud path selection in Section 4. Section 5
represents the results and discussion followed by conclusions in Section 6.

2 Related work

The related work carried out in the field of computation offloading, caching and
multi-criteria decision analysis (MCDA) is discussed in this section.

2.1 MCC infrastructure for offloading

In computational offloading, resource extensive computations are transferred from
mobile device to the resource rich cloud server or cloudlets. The main objective of
computational offloading (Enzai and Tang, 2014; Magurawalage et al., 2014) was to save
mobile device energy and decrease execution latency. The mobile device battery
consumption is minimised by offloading computationally intensive task onto the cloud
servers. Computational offloading involves communication among mobile device and
cloud server. Hence, communication cost involved must be considered when making an
offloading decision which involves transmission delay/s, network bandwidth and energy.
Offloading is ideal only when the cost of data transmission and execution is lesser than
execution of the job on the mobile device. Cloud side offloading decision scheme (Jadad
et al., 2018) is proposed to decide the task of execution on mobile device or cloud server.
A comparison between latency of execution and energy consumption on mobile device
and cloud server was conducted. The cloud side offloading scheme saves execution time
and energy, but the network availability should be present to send the request to the cloud
and find where the job needs to be executed. Saha and Hasan (2017) represent an
offloading mechanism for execution of the job on cloud server considering previous

 192 K. Sindhu and H.S. Guruprasad

connection history to estimate the communication delay. Application used for the
experiment was bubble sorting. Sarvabhatla et al. (2017) considers few mobile devices
accessing the cloud resource to execute the task. The choice to offload or not to offload is
based on cost tables considering metrics like size of data, time taken for execution,
network bandwidth, etc. The cloudlet is used as the decision-making point to decide
where to execute the task. Whaiduzzaman et al. (2015) uses cloudlet to augment the
performance of the mobile device. The computationally intensive task is offloaded to the
cloudlet hence the mobile device should be located closer to cloudlet for application
execution. Liang et al. (2018) proposes cloudlet for offloading computation intensive task
and cloud server was considered in case of unavailability of cloudlets. Considering the
mobility of the device, two cloudlets are considered in their work. Thanapal and Durai
(2018) proposes an offloading framework based on resource utilisation history, cloud
capacity, energy consumption and delay tolerance using CloudSim simulator. Application
considered for their study was a random matrix multiplication program. A comparison
study on execution time and energy consumption on mobile device and cloud server were
carried out. The results prove that offloading to the cloud server is better than execution
on mobile device. Alsubhi et al. (2020) proposes a framework for offloading the resource
intensive task, the decision to offload or not was taken by decision engine based on the
cost metric for execution on mobile device and cloud. The application considered for
their work was counting the total number of words in a file. A comparison on execution
time on three different mobile devices and cloud platform were discussed. The results
indicate as the file size increases the execution on cloud platform is better.

2.2 Caching

Caching is useful to reduce network calls and fetch the data extremely fast. Based on
storage area, there are two types of cache: memory cache and disk cache (Android,
2019). The memory cache is faster in getting the data but once the app terminates, the
data is no longer available since it is stored in the memory of the application. In disk
cache, the data is retained even after the app terminates. When the app is executed again
after the termination, the earlier data stored in disk cache can be accessed. In the
proposed work, disk cache is used since the data can be retained in the cache for further
use when the application is executed again. A middleware solution (Zhao et al., 2016) for
pre-caching to improve execution efficiency and reduce network costs is proposed. The
approach is useful when the app is developed using HTML and Webkit. Dutta and
Vandermeer (2017) represent a caching mechanism at OS level and the cache is available
to all mobile applications. Response and object level caching approaches have been
implemented. The response cache stores full HTTP responses. In object level caching,
each object refers to a portion of HTTP response. The results indicate object caching
reduces energy consumption to larger extent than response cache. Zhao et al. (2018)
discusses a framework where the cached data is stored on the mobile SD card,
prefetching and caching schemes are suggested while developing mobile apps.
Thirty-three different categories of apps were considered to check whether it is beneficial
to prefetch HTTP requests and cache the responses. The analysis indicates that
prefetching and caching can be beneficial across many apps. Progressive webapps
(Malavolta et al., 2020) provides users with offline first experience by storing resources
and java script modules on browser in dedicated cache when accessed for the first time.
This helps users to work offline. The results indicate that with populated cache, the

 Computational offloading framework 193

progressive webapps load faster but does not have much impact on difference in energy
consumption when loaded with an empty or populated cache.

2.3 Cache replacement algorithms

Cache replacement algorithms are used to manage the information stored in the cache.
When the cache is full, there is a need to replace old contents of the cache to make way
for the new contents. This section provides few cache replacement strategies (Safavat
et al., 2020).

2.3.1 First in first out replacement
The item cached first would be the item which is moved out first when the cache is full. It
is one of the hassle-free strategies for content replacement.

2.3.2 Least frequently used replacement
Least frequently used item in cache is evicted when the cache is full. In this method, there
is a need to track how frequently an item in the cache is used.

2.3.3 Time-aware least recent used replacement
The contents are time stamped to see how often the content is used. The timestamp is
used to decide which content to be removed from the cache.

2.3.4 Adaptive replacement cache
Extensively used and recently used data are tracked and the removal history of both is
used to change the data of the cache.

2.3.5 Least recently used replacement
Least used data of the cache is tracked. The content which is least used is the one that
would be removed when the cache is full. This method uses the storage space effectively.

In the proposed approach, the least recently used (LRU) replacement algorithm is
used for cache content replacement when the cache is full since this method uses the
storage space effectively.

2.4 Multi-criteria decision analysis

MCDA (Odu, 2019) aims in choosing the optimal solution among several alternatives by
evaluating multiple conflicting criteria. It provides mathematical solutions for choosing
best alternative among several alternatives based on different criteria. The general steps
involved in MCDA methods are to first determine the relevant criteria based on which the
alternatives will be selected. Next step is to select a set of relevant alternatives from
which finally a decision is made to choose the best alternative. A matrix is constructed
based on the criteria and alternatives. The weights of each criterion are determined based
on the importance of the criteria for a specific problem. The best alternative is selected
among a set of alternatives by assigning performance value for each alternative by using

 194 K. Sindhu and H.S. Guruprasad

MCDA methods. Wu et al. (2012) used AHP and fuzzy TOPSIS in fuzzy environment to
choose an optimal cloud for mobile cloud environment. Five criteria and four alternatives
were considered for their work, the experiment was based on numerical analysis using
linguistic values for the criteria. Goudarzi et al. (2017) discusses the usage of genetic
algorithm to select the ideal alternative in a multisite environment while offloading the
computationally intensive task in MCC. Singla and Kaushal (2015) presents the usage of
fuzzy AHP to select the optimal cloud server from a class of cloud servers in a MCC
environment.

In most of the previous works, the task is migrated on cloudlet or a single cloud
server or a combination of private and public servers for offloading. In the proposed
work, we have considered four cloud servers located at different regions and proposed a
viable solution for cloud service selection. AHP and TOPSIS is used for cloud service
selection since the response time in getting the results is extremely fast and is known for
computational simplicity (Zhou et al., 2015). Six criteria and four alternatives are
considered in the work and the same is explained in the following section. The mobile
device energy consumption and execution latency is further reduced by incorporating a
caching scheme.

3 Proposed work

The key contribution of the proposed work is an offloading framework comprising of
caching and selection of an optimal cloud server from four cloud servers located in
different regions using AHP and TOPSIS. AHP and TOPSIS, the viable solutions for
optimal cloud path selection are proved by comparing theoretical analysis results with
experimental analysis in Section 4. Parallel execution of independent modules of the
application using multithreaded programming is incorporated for faster response.

In the proposed work, the application considered is to solve the mathematical puzzle
Tower of Hanoi. Tower of Hanoi is solved by finding the number of disk moves required
for a given number of disks considering three pegs and the rules. When the end user starts
the mobile app, the number of the disks to be moved is read as input from the user. The
mobile device checks whether the executed result of requested task is available in the
cache. If found available, it is a cache hit and the result is displayed on the mobile device.
If requested data is not available in the cache, a cache miss occurs, and the task needs to
be executed. In the next step, the communication network availability needs to be
checked. If either Wi-Fi or cellular network connection is available, a request is sent to
one of the cloud servers based on the ranking of the cloud server to execute the task. In
case of network unavailability, the mobile device is used to perform the required
operation. After execution of the job, the result is displayed on the mobile device. When
the job is executed on mobile device or cloud server, a different thread is used to check
the availability of space in the cache. Having a parallel execution here results in faster
response. If cache is not full, then the result is added to the cache database. If the size of
the cache exceeds the maximum size, then the existing data from the cache must be
removed and the new result needs to be added. To remove the existing data from the
cache the LRU algorithm is implemented. The LRU data from the cache is identified and
removed to pave way for the new data to be inserted into the cache. The algorithm of the
proposed work is represented in Figure 1 and the graphical representation of the
algorithm is given in Figure 2.

 Computational offloading framework 195

Figure 1 Proposed algorithm

Considerations:
Md – mobile device
Cs – cloud sever
Cm – cache memory
Cms – cache memory max. size
Procedure
1 Start
2 Read the input of the task to execute from Md
3 If data_available() in Cm
4 Display the result on Md
5 Update the count variable in Cm
6 Else if check_network_availability()
7 Cs ← select_cloudserver()
8 Execute the task on Cs
9 Cs sends the result back to Md
10 Display the result on Md
11 max_size ← maxsize_cache()
12 If(max_size < Cms)
13 Update() the new record in the Cm
14 else
15 Delete() the least recently used record in the Cm
16 Update() the new record in the Cm
17 End if
18 Else
19 Execute the task on Md
20 Display the result on Md
21 max_size ← maxsize_cache()
22 If(max_size < Cms)
23 Update() the new record in the Cm
24 else
25 Delete() the least recently used record in the Cm
26 Update() the new record in the Cm
27 End if
28 End if
29 End

 196 K. Sindhu and H.S. Guruprasad

Figure 2 Flow diagram of the algorithm

The resource intensive job of the application is executed on cloud server on network
availability else execution happens on mobile device. If any one of the cloud servers fails,
the execution will be migrated to the next optimal cloud. MCDA techniques are used to
find the optimal cloud from a class of four cloud servers positioned in different regions.
The criteria and alternatives required for cloud path selection can be changed as per the
developer requirement.

The cache memory is implemented in android using room library which provides an
abstraction over SQLite for robust database access. The room library helps in creating a
cache on a device that is running the app (Android, 2017). The structure of the cache
memory contains the number of disks, the result, and the count variable for keeping track
of the LRU item in the cache. Implementing the room database requires three
components, the database holder, entity and data access objects.

 Computational offloading framework 197

Figure 3 Proposed architecture (see online version for colours)

The modules used in the proposed architecture are represented in Figure 3. At the mobile
device end, six modules were implemented. The input manager is responsible to read the
request from the mobile device user and communicate with the cache manager. The cache
manager checks whether a cache hit, or a cache miss occurs and informs the decision
manager. Cache manager module is also responsible to update the cache once the results
are received from cloud agent or mobile agent and executes the LRU algorithm as per the
requirement. Network profiler is responsible for checking the network availability for
either the Wi-Fi network or the cellular network and sends the response to the decision
manager. Battery profiler module monitors the battery status of the mobile device.

Based on the inputs received from cache manager, network profiler and battery
profiler modules, the decision maker module decides where to execute the task. The
decision manager is also responsible for choosing the ideal cloud. Based on the decision
from the decision manager module, the mobile agent either communicates with the cloud
server for job execution or execution happens on mobile device. The mobile agent uses
the volley framework (Android, 2021) for communicating with the cloud agent. Volley is
an HTTP library that makes network communication easier and provides faster
communication. At the cloud end, the cloud agent is responsible for receiving requests
and sending the response to the mobile agent. The cloud agent in turn communicates with
the cloud module manager to execute the task and delivers the response back to the
mobile agent. The experimental setup used for the proposed work is represented in
Table 1.
Table 1 Device specifications

 Mobile device Cloud server 1 Cloud server 2 Cloud server 3 Cloud server 4
Model Samsung

Galaxy Note 3
SM-N900

Amazon EC2
instance

T2.Medium

Amazon EC2
instance

T2.Medium

Amazon EC2
instance

T2.Medium

Amazon EC2
instance

C4.2xlarge
North California Asia Singapore Asia Mumbai Asia Mumbai

CPU 8 core,
1.90 GHz

2 vCPUs,
2.3 GHz

2 vCPUs,
2.3 GHz

2 vCPUs,
2.3 GHz

8 vCPUs,
2.9 GHz

RAM 3 GB 4 GiB 4 GiB 4 GiB 15 GiB

 198 K. Sindhu and H.S. Guruprasad

4 Cloud service selection

MCDA (Velasquez and Hester, 2013; Bangui et al., 2017; Whaiduzzaman et al., 2014) is
a sub-area of operation research which is used in evaluating multiple conflicting criteria
and choosing the optimal solution from several alternatives. Six criteria and four
alternatives are considered in the proposed work. AHP is used to assign weights for each
criterion and TOPSIS is used to choose ideal cloud.

4.1 Analytic hierarchy process

AHP is centred on pairwise comparison among different criteria arranged in hierarchical
form. The highest level of the hierarchy is the goal and lower level is the criteria and the
alternative to be selected. The best alternative is chosen after evaluating the criteria. In
the proposed work, the goal is to choose the best cloud server among a class of available
cloud servers which are offering similar services. The six different types of criteria
considered are bandwidth, speed, proximity, availability, security and cost. The
alternatives are four cloud servers offering the same service located in different regions.
One of the cloud servers, located in Asia Mumbai region is a higher end server compared
to the other three servers located in Asia Mumbai, Asia Singapore and North California.
Figure 4 represents the decision hierarchy based on the criteria and alternatives.

Step 1 Pairwise comparison matrix is represented as A[n × n] where n is the number of
evaluation criteria. Each entry aij indicates the importance of ith criteria relative
to jth criteria as per the scale of relative importance as given in Table 2 (Wu
et al., 2012). For example, if aij > 1, it indicates that ith criterion is more
important than the jth criterion. Table 2 is used to translate the decision makers
qualitative evaluation into quantitative. Intermediate values can be assigned as
given in Table 2.

Step 2 Normalised pairwise matrix Anorm is formulated where each element in pairwise
matrix A is divided by the column wise sum of each criterion of pairwise
comparison matrix A.

Step 3 Criteria weight vector wj is obtained by finding the sum of each row of the
normalised pairwise matrix Anorm and dividing the sum by number of criterions.

Step 4 Steps 5 to 8 is done to check if the consistency of calculated criteria weight is
correct.

Step 5 Weighted sum value of each criterion is calculated by finding row sum of each
criteria.

Step 6 λmax value is calculated by finding the sum of ratio of weighted sum value and
criteria weights divided by the criteria count.

Step 7 Consistency index (CI) is obtained by the formula given in equation (1) where
the number of criteria is represented by n.

max

1
λ nCI

n
−=

−
 (1)

 Computational offloading framework 199

Step 8 Consistency ratio is computed by CI/RI where RI is the random index taken
from Table 3 based on number of criterions. The value considered is 1.24.

If consistency ratio is less than 0.10, it is assumed that the calculated metrics is
reasonably consistent.

Figure 4 Decision hierarchy

Table 2 Scale of importance

Definition Intense of importance
Equally important 1
Moderately important 3
Strongly important 5
Very strongly important 7
Extreme important 9
Intermediate comparison 2, 4, 6, 8

Table 3 Random index table

n 1 2 3 4 5 6 7 8 9 10
Random index 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

4.2 TOPSIS

This technique selects an approach which is close to ideal solution and far from anti-ideal
solution. Alternatives and criteria are represented in a matrix form of a[m × n] where
number of alternatives is represented by m and number of criteria is represented by n.

Step 1 Normalised matrix is obtained using equation (2) where the row of matrix
contains the alternatives and column of the matrix the criteria.

2
1

ij
ij

n
iji

X
X

X
=

=

 (2)

Step 2 Weighted normalised matrix is calculated using equation (3) where weights for
each criterion is multiplied with each element of normalised matrix.

 200 K. Sindhu and H.S. Guruprasad

ij ij jV X W= × (3)

Step 3 The ideal best and worst for each criterion is calculated. If the criteria are
beneficial then the ideal best is the max value of the criteria and the min. value
of the criteria is the ideal worst. When the criteria are non-beneficial, then the
ideal best is the min value of the criteria and max. value of the criteria is ideal
worst.

Step 4 Equation (4) and equation (5) is used to find the Euclidean distance from the
ideal best and ideal worst where jV + is ideal best and jV − is the ideal worst of
each alternative.

()
0.5

2

1

m

iji j
j

S V V+ +

=

= −

 (4)

()
0.5

2

1

m

i ij j
j

S V V− −

=

= −

 (5)

Step 5 Performance score is calculated for each alternative as given in equation (6).

i
i

ji

SP
S S

−

+ −
=

+
 (6)

Step 6 The rank is allocated to each alternative based on the performance score. Rank 1
is assigned to the alternative with highest performance score, the next highest
performance score is ranked 2 and so on in the descending order of the
performance score.

4.3 Performance analysis of cloud service selection

Performance analysis of cloud service selection based on theoretical analysis is compared
with experimental analysis done on actual cloud servers, considering four cloud servers
located at different regions. The weights for each criterion are calculated using AHP.
AHP helps the decision makers in assigning priorities between criterions to make better
decisions. The weights of the criteria obtained using AHP after performing the steps
discussed in Section 4.1 is as depicted in Table 4. The consistency of obtained weights is
checked to minimise the bias during the decision-making process. The consistency ratio
CR is 0.055 which is less than 0.1 which is the standard check point. Since CR 0.055
< 0.1, the weights obtained are reasonably consistent and is used in the decision-making
process. After obtaining criterion weights, TOPSIS is used to rank the different
alternatives. The alternatives are the different cloud servers.

Bandwidth is most important criteria because it involves communication cost between
mobile device and cloud server or cloud server to mobile device. Speed is subsequently
important because it improves the execution time of task. Hence, the importance of
criteria is ranked in the order bandwidth > speed > proximity > availability > security
> cost.

 Computational offloading framework 201

Table 4 Criteria weights obtained from AHP

Criteria Weights Weighted sum value λmax CI RI CR
Bandwidth 0.34 2.31 6.339 0.0677 1.24 0.055
Speed 0.27 1.87
Proximity 0.22 1.44
Availability 0.1 0.6
Security 0.04 0.24
Cost 0.02 0.15

It is observed that criteria weights can have a substantial influence on the result of the
decision-making process. During the experiment, entropy and critic methods were tried
for assigning weights to the criteria which are objective methods where mathematical
functions are fully utilised to calculate the criteria weights. As results obtained were
unpromising, AHP was chosen for assigning weights of the criteria. AHP is subjective
method where decision maker’s inputs are critical in assigning weights to the criteria.

4.3.1 Theoretical analysis
Based on six criteria and four alternatives, the optimal cloud is ranked using TOPSIS.
Speed and cost are higher for cloud server 4 and equal for all other remaining cloud
servers since cloud server 4 has higher processing power compared to the other cloud
servers. Considering the user location to be Bangalore, Mumbai is closer followed by
Singapore and California. Hence, the proximity criteria were set lower for Mumbai
followed by Singapore and California. Other criterions were given the same importance
for all the alternatives. Table 5 represents the results obtained using the above
assumptions and TOPSIS algorithm.
Table 5 Ranking of cloud server using theoretical analysis

Alternatives
Si+ Si– Pi Rank

Server Location Size
Cloud 1 California T2.Medium 0.1523 0.011 0.0671 4
Cloud 2 Singapore T2.Medium 0.1161 0.058 0.3332 3
Cloud 3 Mumbai T2.Medium 0.1011 0.1144 0.5308 2
Cloud 4 Mumbai C4.2xlarge 0.011 0.1523 0.9329 1

4.3.2 Experimental analysis
The real time values obtained based on the execution of the application is considered for
the criteria. The application considered is to solve the mathematical puzzle Tower of
Hanoi. The number of the disks considered for the experiment was in the range of 12 to
22 disks. The computation time, communication time and total time taken for execution
was calculated for the number of disks ranging from 12 to 22 disks. The experiment was
performed ten times for each disk and average of each instance is taken to maintain
consistency of the reading. The experiment was repeated on four different cloud servers.

 202 K. Sindhu and H.S. Guruprasad

Table 6 Criterion values assigned for different alternatives

Al
te

rn
at

iv
es

C
rit

er
ia

Se
rv

er

Lo
ca

tio
n

Si
ze

Ba
nd

wi
dt

h/
co

m
m

un
ic

at
io

n
co

st
Sp

ee
d/

co
m

pu
ta

tio
n

co
st

Pr
ox

im
ity

/d
ist

an
ce

Co

st

Cl
ou

d
1

Ca
lif

or
ni

a
T2

.m
ed

iu
m

0.
94

38
8

0.
41

44

14
19

4
0.

05
52

Cl

ou
d

2
Si

ng
ap

or
e

T2
.m

ed
iu

m

0.

22
10

8
0.

41
44

70

50
.5

0.

05
84

Cl

ou
d

3
M

um
ba

i
T2

.m
ed

iu
m

0.
18

42

0.
41

44

98
1.

2
0.

04
96

Cl

ou
d

4
M

um
ba

i
C4

.2
xl

ar
ge

0.
17

64

0.
31

34

98
1.

2
0.

4

 Computational offloading framework 203

The above experimental results were considered as the criteria values for the selection of
optimal cloud using TOPSIS. Average communication time taken for executing the entire
experiment on different cloud servers were given as input to the bandwidth criteria for
different alternative. Average computation time taken for executing the entire experiment
on different cloud servers were given as input to the speed criteria for different
alternative. The cost of each cloud server per hour was given as input to the cost criteria.
The distance from the current location to each cloud server was calculated and given as
input to the proximity criteria. The criteria value for different alternatives is as show in
Table 6.

The other two criteria availability and security were given equal importance for all
the alternatives. The results obtained using TOPSIS to rank the optimal cloud is as
represented in Table 7.
Table 7 Ranking of cloud server using experimental analysis

Alternatives
Si+ Si– Pi Rank

Server Location Size
Cloud 1 California T2.Medium 0.323 0.0211 0.0614 4
Cloud 2 Singapore T2.Medium 0.0922 0.268 0.7441 3
Cloud 3 Mumbai T2.Medium 0.0346 0.3196 0.9023 2
Cloud 4 Mumbai C4.2xlarge 0.0215 0.3229 0.9376 1

It is observed that the ranking of the servers remains the same with slight difference in
the performance index score by comparing results obtained in Table 5 and Table 7. In
theoretical analysis, values were assumed and in experimental analysis, the actual values
obtained from series of experiments conducted are taken as input for the criteria values.
The results prove that AHP and TOPSIS are viable solution for cloud path selection.

4.4 Time and power measurement

The execution delay in offloading the task onto the cloud server is taken as sum of
communication time from mobile device to cloud server, execution time on the cloud
server and communication time from cloud server to mobile device. The time taken for
execution on cloud server should be lesser than time taken on mobile device for
performance improvement of the mobile device.

Time taken to execute on mobile device (De et al., 2020) is computed as given in
equation (7)

/Loc mT I S= (7)

TLoc execution time on mobile device

I count of instructions in the task to be executed

Sm speed of the mobile device.

Execution time on cloud server is computed as given in equation (8),

/Server sdelay cloud rdelayT T I S T= + + (8)

TServer execution time on cloud server

 204 K. Sindhu and H.S. Guruprasad

Tsdelay delay in transmitting request from mobile device to cloud server

I count of instructions in the task to be executed

Scloud speed of the cloud server

Trdelay delay in receiving the response from cloud server to mobile device.

PowerTutor (2009) is utilised to analyse the energy consumption of mobile device when
the job is executed on mobile device and cloud server.

5 Results and discussion

Figure 5 depicts the performance score of each cloud server. The cloud server with higher
performance score is the optimal cloud server compared to other cloud servers. Cloud 4
located in Mumbai region with higher processing power C4.2xlarge is considered the
optimal cloud server, followed by cloud 3 located in Mumbai region T2.Medium size,
cloud 2 located in Singapore T2.Medium size and cloud 1 located in California
T2.Medium size. The experimental results indicate that proximity of the server is an
important criterion, the closer the server from the end user the faster the response.

Figure 5 Performance score of cloud servers (see online version for colours)

Execution of computationally intensive task on cloud server is better than execution on
mobile device to enhance performance of mobile device (Sindhu and Guruprasad, 2020).
The following section discusses the comparison results obtained by executing the task on
the mobile device, offloading the task on the cloud server and fetching data from the
cache. The Tower of Hanoi problem was considered by varying the number of disks from
12 to 22. The delay in executing the task and mobile device energy consumption were
considered for the following three cases:

• fetching data from the cache

 Computational offloading framework 205

• execution of task on cloud server

• execution of task on mobile device.

5.1 Case 1: fetching data from the cache

On availability of data in the cache, data is fetched from the cache and displayed to the
user. The mobile device energy consumption and execution time in fetching the data from
the cache is calculated. The delay in fetching the data from the cache is between 0.005 to
0.0081 seconds. The cache was varied from 10 to 40 rows of data. Mobile device energy
consumption when fetching the data from the cache is between 0.132 to 0.171 joules. It is
observed that cache hit results in faster execution and low energy consumption of the
mobile device. The experiment was reiterated ten times for each number of disks for all
the three cases and average reading was considered for latency of execution and energy
consumption.

5.2 Case 2: execution of task on cloud

On unavailability of data in the cache, the network availability of the mobile device is
checked. If the communication network is available, the decision manager chooses the
optimal cloud server and then a request for execution of the job is made to the cloud
server. Requested module is executed and response is delivered back to mobile device.
The fetched result is saved in the cache.

Figure 6 Time analysis of execution on different cloud servers (see online version for colours)

Figure 6 represents the computation time, communication time and total execution time
taken in executing the task on different cloud servers. Specifications of each cloud server
are represented in Table 1. Computation time taken on cloud server 1, cloud server 2 and
cloud server 3 are the same since the infrastructure are same for all the three cloud
servers. Cloud server 4 has higher computational power compared to the other three
cloud servers and hence is faster. The communication time indicates that the location of
the server from the current user location is an important criterion to be considered when

 206 K. Sindhu and H.S. Guruprasad

choosing the optimal cloud. Hence in the proposed work, proximity was considered as a
criterion to decide the best alternative. Cloud server 1 is in North California and it takes
longer time compared to the cloud server 2 in Singapore and cloud server 3 and cloud
server 4 located in Mumbai region. Comparing the results obtained in Figure 6 and
Table 7, we can conclude that AHP and TOPSIS are the viable solutions to find the
optimal cloud server and cloud server 4 is the optimal cloud server.

5.3 Case 3: execution of task on mobile device

On unavailability of data in the cache and communication network, the execution of the
job is done on mobile device. Result is displayed and the cache is updated.

Figure 7 Delay in execution on mobile device (see online version for colours)

Figure 8 Delay in execution on different cloud servers (see online version for colours)

The comparison of delay in execution on mobile device and cloud servers are represented
in Figure 7 and Figure 8, respectively. From the graph, it is evident that the execution at
the cloud server is better as the number of disks increase. Cloud server 4 is faster

 Computational offloading framework 207

compared to the other cloud servers. When the number of the disks is 22, the latency of
execution when executed on mobile device is 105.68 seconds, on cloud server 1 it is
5.85 seconds, cloud server 2 2.52 seconds, cloud server 3 2.50 seconds and cloud server 4
1.78 seconds. When a cache hit occurs, execution time was between 0.005 to
0.0081 seconds. The advantage of using the caching is to augment the performance of
mobile devices by ensuring frequently used information is available and reducing the
network calls. The framework also provides fault tolerance by sending the request to
another cloud server in case response is not received from the requested cloud server after
the timeout.

Figure 9 Energy consumption of mobile device during execution on mobile device (see online
version for colours)

Figure 10 Energy consumption of mobile device during execution on server and cache
(see online version for colours)

The mobile device energy consumption is reduced when the job is offloaded to cloud, or
the data is fetched from the cache as represented in Figure 10 compared to executing on
mobile device as given in Figure 9. When the number of the disks is 22, the energy

 208 K. Sindhu and H.S. Guruprasad

consumption of mobile device during execution on mobile device is 28.04 joules and
cloud server it is 0.307 joules. When a cache hit occurs, energy consumption was
between 0.132 to 0.171 joules. The main aim of the proposed work was to reduce
application execution latency and energy consumption of mobile device which is
achieved by finding optimal cloud server for offloading and incorporating a caching
mechanism for the application. Based on the experiment conducted, the results indicate a
performance increase of 99% in execution time and 97% in energy consumption using
the caching scheme and 92% in execution time and 90% in energy consumption using
offloading on cloud server compared to executing on the mobile device. Caching at edge
servers can be considered for future work since the cache considered was of minimal size
with existing storage constraints of mobile devices.

6 Conclusions

In the proposed work, the resource intensive task of an application is offloaded to an
optimal cloud server using MCDA algorithm considering four cloud servers located at
different regions. The experimental results are compared with theoretical analysis which
proves that AHP and TOPSIS are the viable solutions to find the optimal cloud server. To
further improve efficiency of the framework, caching scheme was implemented to
minimise the battery consumption and execution latency of the mobile device. Results
indicate that the proposed strategy can be used for applications seeking faster execution
and reduced battery consumption.

References
Akherfi, K., Gerndt, M. and Harroud, H. (2018) ‘Mobile cloud computing for computation

offloading: issues and challenges’, Applied Computing and Informatics, Vol. 14, No. 1,
pp.1–16 [online] https://doi.org/10.1016/j.aci.2016.11.002.

Al-Janabi, S., Al-Shourbaji, I., Shojafar, M. and Abdelhag, M. (2017) ‘Mobile cloud computing:
challenges and future research directions’, in 2017 10th International Conference on
Developments in Esystems Engineering (DeSE), IEEE, June, pp.62–67, DOI: 10.1109/DeSE.
2017.21.

Alsubhi, K., Imtiaz, Z., Raana, A., Ashraf, M.U. and Hayat, B. (2020) ‘MEACC:
an energy-efficient framework for smart devices using cloud computing systems’, Frontiers of
Information Technology & Electronic Engineering, Vol. 21, No. 6, pp.917–930.

Android (2017) Building an App with Offline Support [online] https://proandroiddev.com/build-an-
app-with-offline-support-1a32c6bab7d2 (accessed 15 January 2021).

Android (2019) Implementing Caching in Android [online] https://blog.mindorks.com/implement-
caching-in-android-using-rxjava-operators (accessed 15 January 2021).

Android (2021) Volley [online] https://developer.android.com/training/volley (accessed 2 January
2021).

Arun, C. and Prabu, K. (2017) ‘Applications of mobile cloud computing: a survey’, in 2017
International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE,
June, pp.1037–1041, DOI: 10.1109/ICCONS.2017.8250623.

Bangui, H., Ge, M., Buhnova, B., Rakrak, S., Raghay, S. and Pitner, T. (2017) ‘Multi-criteria
decision analysis methods in the mobile cloud offloading paradigm’, Journal of Sensor and
Actuator Networks, Vol. 6, No. 4, p.25, DOI: 10.3390/jsan6040025.

 Computational offloading framework 209

De, D., Mukherjee, A. and Roy, D.G. (2020) ‘Power and delay efficient multilevel offloading
strategies for mobile cloud computing’, Wireless Personal Communications, Vol. 112, No. 4,
pp.2159–2186 [online] https://doi.org/10.1007/s11277-020-07144-1.

Dinh, H.T., Lee, C., Niyato, D. and Wang, P. (2013) ‘A survey of mobile cloud computing:
architecture, applications, and approaches’, Wireless Communications and Mobile Computing,
Vol. 13, No. 18, pp.1587–1611 [online] https://doi.org/10.1002/wcm.1203.

Dutta, K. and Vandermeer, D. (2017) ‘Caching to reduce mobile app energy consumption’, ACM
Transactions on the Web (TWEB), Vol. 12, No. 1, pp.1–30 [online] https://doi.org/10.1145/
3125778.

Enzai, N.I.M. and Tang, M. (2014) ‘A taxonomy of computation offloading in mobile cloud
computing’, in 2014 2nd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering, IEEE, April, pp.19–28, DOI: 10.1109/MobileCloud.2014.16.

Fernando, N., Loke, S.W. and Rahayu, W. (2013) ‘Mobile cloud computing: a survey’, Future
Generation Computer Systems, Vol. 29, No. 1, pp.84–106 [online] http://dx.doi.org/10.1016/
j.future.2012.05.023.

Goudarzi, M., Zamani, M. and Haghighat, A.T. (2017) ‘A genetic‐based decision algorithm for
multisite computation offloading in mobile cloud computing’, International Journal of
Communication Systems, Vol. 30, No. 10, p.e3241.

Jadad, H., Touzene, A., Day, K. and Alzeidir, N. (2018) ‘A cloud-side decision offloading scheme
for mobile cloud computing’, International Journal of Machine Learning and Computing,
Vol. 8, No. 4, pp.367–371, DOI: 10.18178/ijmlc.2018.8.4.713.

Liang, R., Zhong, Y. and Xia, Q. (2018) ‘Energy-saved data transfer model for mobile devices in
cloudlet computing environment’, in 2018 IEEE 3rd International Conference on Cloud
Computing and Big Data Analysis (ICCCBDA), IEEE, April, pp.271–274, DOI: 10.1109/
ICCCBDA.2018.8386525.

Magurawalage, C.M.S., Yang, K., Hu, L. and Zhang, J. (2014) ‘Energy-efficient and
network-aware offloading algorithm for mobile cloud computing’, Computer Networks,
Vol. 74, pp.22–33 [online] https://doi.org/10.1016/j.comnet.2014.06.020.

Malavolta, I., Chinnappan, K., Jasmontas, L., Gupta, S. and Soltany, K.A.K. (2020) ‘Evaluating the
impact of caching on the energy consumption and performance of progressive web apps’,
in Proceedings of the IEEE/ACM 7th International Conference on Mobile Software
Engineering and Systems, July, pp.109–119.

Noor, T.H., Zeadally, S., Alfazi, A. and Sheng, Q.Z. (2018) ‘Mobile cloud computing: challenges
and future research directions’, Journal of Network and Computer Applications, Vol. 115,
pp.70–85 [online] https://doi.org/10.1016/j.jnca.2018.04.018.

Odu, G.O. (2019) ‘Weighting methods for multi-criteria decision making technique’, Journal of
Applied Sciences and Environmental Management, Vol. 23, No. 8, pp.1449–1457,
DOI: 10.4314/jasem.v23i8.7.

Othman, M., Madani, S.A. and Khan, S.U. (2013) ‘A survey of mobile cloud computing
application models’, IEEE Communications Surveys & Tutorials, Vol. 16, No. 1, pp.393–413,
DOI: 10.1109/SURV.2013.062613.00160.

PowerTutor (2009) A Power Monitor for Android-based Mobile Platforms [online] http://ziyang.
eecs.umich. edu/projects/powertutor/documentation.html (accessed 20 February 2014).

Safavat, S., Sapavath, N.N. and Rawat, D.B. (2020) ‘Recent advances in mobile edge computing
and content caching’, Digital Communications and Networks, Vol. 6, No. 2, pp.189–194
[online] https://doi.org/10.1016/j.dcan.2019.08.004.

Saha, S. and Hasan, M.S. (2017) ‘Effective task migration to reduce execution time in mobile cloud
computing’, in 2017 23rd International Conference on Automation and Computing (ICAC),
IEEE, September, pp.1–5.

 210 K. Sindhu and H.S. Guruprasad

Sarvabhatla, M., Konda, S., Vorugunti, C.S. and Babu, M.N. (2017) ‘A network aware energy
efficient offloading algorithm for mobile cloud computing over 5G network’, in 2017 IEEE
International Conference on Cloud Computing in Emerging Markets (CCEM), IEEE,
November, pp.69–74.

Sindhu, K. and Guruprasad, H.S. (2020) ‘Mobile device performance enhancement using
computational offloading’, International Journal of Advanced Science and Technology,
Vol. 29, No. 5, pp.5607–5617.

Singla, C. and Kaushal, S. (2015) ‘Cloud path selection using fuzzy analytic hierarchy process for
offloading in mobile cloud computing’, in 2015 2nd International Conference on Recent
Advances in Engineering & Computational Sciences (RAECS), IEEE, December, pp.1–5.

Somula, R.S. and Sasikala, R. (2018) ‘A survey on mobile cloud computing: mobile computing
+ cloud computing (MCC = MC + CC)’, Scalable Computing: Practice and Experience,
Vol. 19, No. 4, pp.309–337.

Thanapal, P. and Durai, M.S. (2018) ‘Energy saving offloading scheme for mobile cloud
computing using CloudSim’, International Journal of Advanced Intelligence Paradigms,
Vol. 10, Nos. 1–2, pp.45–62.

Velasquez, M. and Hester, P.T. (2013) ‘An analysis of multi-criteria decision making methods’,
International Journal of Operations Research, Vol. 10, No. 2, pp.56–66.

Whaiduzzaman, M., Gani, A. and Naveed, A. (2015) ‘Towards enhancing resource scarce cloudlet
performance in mobile cloud computing’, Computer Science & Information Technology, p1,
DOI: 10.5121/csit.2015.50401.

Whaiduzzaman, M., Gani, A., Anuar, N.B., Shiraz, M., Haque, M.N. and Haque, I.T. (2014)
‘Cloud service selection using multicriteria decision analysis’, The Scientific World Journal,
Vol. 2014, p.10 [online] https://doi.org/10.1155/2014/459375.

Wu, H. (2018) ‘Multi-objective decision-making for mobile cloud offloading: a survey’, IEEE
Access, Vol. 6, pp.3962–3976, DOI: 10.1109/ACCESS.2018.2791504.

Wu, H., Wang, Q. and Wolter, K. (2012) ‘Methods of cloud-path selection for offloading in mobile
cloud computing systems’, in 4th IEEE International Conference on Cloud Computing
Technology and Science Proceedings, IEEE, December, pp.443–448.

Zhao, H., Chen, M., Qiu, M., Gai, K. and Liu, M. (2016) ‘A novel pre-cache schema for high
performance Android system’, Future Generation Computer Systems, Vol. 56, pp.766–772
[online] https://doi.org/10.1016/j.future.2015.05.005.

Zhao, Y., Wat, P., Laser, M.S. and Medvidović, N. (2018) ‘Empirically assessing opportunities
for prefetching and caching in mobile apps’, in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, September, pp.554–564
[online] https://doi.org/10.1145/3238147.3238215.

Zhou, B., Dastjerdi, A.V., Calheiros, R.N., Srirama, S.N. and Buyya, R. (2015) ‘A context sensitive
offloading scheme for mobile cloud computing service’, in 2015 IEEE 8th International
Conference on Cloud Computing, IEEE, June, pp.869–876, DOI: 10.1109/CLOUD.2015.119.

