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Abstract: Pedestrian detection sensors in road infrastructure and smartphone’s built-in sensors 
have been used to detect and track pedestrians for road safety. Nevertheless, although pedestrian 
detection sensors in road infrastructure can detect pedestrians’ high-precision position, they 
cannot acquire the accurate attribute information of pedestrians. On the other hand, smartphone 
sensors can send location information, user identifier, and the attribute information of a user, but 
it has a significant margin of error in GPS data. The defects of LiDAR and smartphone render 
acquiring a pedestrian’s high-precision location and attribute information simultaneously 
impossible. Currently, few studies on the simultaneous acquisition of pedestrian high-precision 
position and attribute information have been conducted. In this paper, the authors propose a 
pedestrian position and attribute information detecting system to extract both pedestrian  
high-precision position and attribute information in real-time based on LiDAR and smartphone 
sensor fusion. Moreover, an experiment is carried out to evaluate the system. 
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1 Introduction 
As everyone knows, driving automation system (DAS) is a 
typical safety-critical system. Accurate and timely 
acquisition of road information is the key to ensure road 
safety. As obtaining the location of pedestrians around 
autonomous vehicle (AV) is vital for collision avoidance, 
pedestrian high-precision position is an important part  
of road information. Meanwhile, pedestrian attribute 
information (e.g., age, language, health status, etc.) is 
essential for DAS to predict hazard and control AVs to 
accomplish their task safely according to the surroundings. 

Hazard prediction can be enhanced using the attribute 
information of a pedestrian. If DAS is implemented with a 
pedestrian high-precision position and attribute information 
detecting function, safer autonomous driving can be 
realised. For instance, when pedestrians are walking on a 
sidewalk near an autonomous driving vehicle, children, 
older people, and disabled people should be paid more 
attention to than regular pedestrians. Another example is 
detecting a pedestrian who wants to pass in front of the 
autonomous driving vehicle. If the attribute information 
implies that the pedestrian is an old person, as the old walk 
slower than the young, DAS should turn off the engine to 
avoid idling when stopped to save energy. 

Usually, communication between vehicle and pedestrian 
is based on driver’s facial expressions and gestures. 
Pedestrian information can also be effectively used for 
communication between pedestrians, cyclists, and vehicles. 
For example, when a vehicle gives way to another vehicle, 
or a vehicle gives way to pedestrians or cyclists who want to 
cross the road, usually the driver shows by expression and 
gesture that the car is stopped and that it is okay to proceed. 
However, since there is no driver in the automatic driving 
vehicle, DAS has to use the car window as a display or 
other means to convey the message. However, when the 

target of the message conveyed is a pedestrian with visual 
impairment, this may be ineffectual or even dangerous. 
Therefore, if the DAS can acquire detailed information 
about the pedestrian, other means to convey the message 
can be considered. Besides that, when pedestrian near AV is 
a foreigner, he or she may not understand the usual voice 
instructions given by the AV. If the pedestrian’s idiomatic 
language information can be obtained, DAS will give voice 
instructions in that language. In this way, the pedestrian’s 
attribute information can be used to predict the danger  
or achieve fine control according to the situation. 
Furthermore, high-precision location information and 
attribute information of pedestrians can be used for the 
integration of DAS and smartphone applications. The 
location and attribute information of pedestrians shall 
preferably be timely and accurate enough, to provide quick 
and proper mobility service. 

Although obtaining pedestrian high-precision position 
and attribute information simultaneously can be used to 
ensure road safety and provide rapid and proper mobility 
service, at present no research paper has been found on the 
topic. To fill this gap, the paper proposes a method to 
extract both pedestrian high-precision position and attribute 
information in real-time based on LiDAR and smartphone 
sensor fusion. It should be pointed out that the paper is a 
revised and expanded version of a conference paper (Zhou 
et al., 2021). 

The paper is organised as follows. Section 1 introduces 
the background and motivation of our research in this paper. 
Section 2 describes related work. Section 3 proposes a 
system to acquire high-precision position and attribute 
information of pedestrians. The data processing and 
pedestrian matching method of the proposed system are 
introduced in Section 4 and Section 5, respectively.  
Section 6 presents the experimental evaluation of the 
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proposed system. Finally, Section 7 summarises the paper 
by discussing the effectiveness and limitation of the 
proposed system and directing future work. 

2 Preliminaries 
This section explains the research related to pedestrian 
detection and pedestrian attribute information extraction. 

2.1 Dynamic map 
Our study in the paper is a part of an ongoing project of 
Nagoya University called Dynamic Map (DM2.0) platform 
(Shimada et al., 2015) which aims at integrating and sharing 
traffic-related information for autonomous driving and 
traffic situation analysis. As shown in Figure 1, DM2.0 
platform has a four-layer architecture: highly dynamic data, 
transient dynamic data, transient static data, and permanent 
static data. 

Figure 1 Four-layer structure of the dynamic map platform (see 
online version for colours) 

 

As one of the contents of highly dynamic data, pedestrian 
real-time location and attribute information are undoubtedly 
of great significance to autonomous driving, road safety, 
and traffic condition analysis. Nevertheless, to the best of 
authors’ knowledge, there are no existing methods or 
guidelines for simultaneous detection of pedestrian  
high-precision location and attribute information. We 
therefore conducted a literature review to capture the latest 
research progress (see Section 2.2). 

2.2 Related work 

2.2.1 Pedestrian detection and tracking 
Approaches to detect and track pedestrians have attracted 
the interest of many scholars. Premebida et al. (2007) 
proposed an architecture to detect, track, and classify 
entities by using in-vehicle LiDAR and monocular vision. 
Subsequently, they presented a multi-sensor-based 
pedestrian detection method in an urban scenario using 
exclusive LiDAR-based features (Premebida et al., 2009). 
Cho et al. (2014) developed a moving object detection and 
tracking system to detect pedestrians, cyclists, and vehicles 
based on radar, LiDAR, and vision sensors. Kang and Han 

(2015) proposed a smartphone-based pedestrian dead 
reckoning approach to track pedestrians using data from 
inertial sensors embedded in smartphones. Zhou et al. 
(2015) proposed an activity-sequence-based indoor 
pedestrian localisation approach using smartphones. Kwon 
et al. (2016) presented a LiDAR and radar sensor fusion 
scheme for detecting partially hidden pedestrians. Lahmyed 
and Ansari (2016) designed a LiDAR and vision-based 
pedestrian detection system. Jin et al. (2016) presented a 
method to reduce erroneous pedestrian detection by moving 
vehicles. Lin and Lin (2016) proposed a fusing approach to 
improve the reliability of pedestrian detection using a 3D 
sensor and a camera. Chavez-Garcia and Aycard (2016) 
presented a fusion approach to detect and track moving 
objects using radar, LiDAR, and camera sensors. Wang  
et al. (2017) proposed a pedestrian detection and counting 
method to detect pedestrians using machine learning. Ghosh 
et al. (2017) presented an approach to detect pedestrians 
when they are close together or occluding one another using 
deep convolutional neural network. Kwon et al. (2017) 
proposed a LiDAR-radar sensor fusion scheme to detect 
pedestrians. Shin et al. (2017) presented a track 
management method to solve the discontinuous tracking 
problem caused by occlusions. Matti et al. (2017) developed 
a pedestrian detector for AV that exploits LiDAR data and 
visual information. Wu et al. (2017) proposed a pedestrian 
detection approach based on LiDAR and camera sensor 
fusion. Navarro et al. (2017) presented a machine learning 
method to detect pedestrian for autonomous vehicles using 
high-definition 3D range data. Zhang et al. (2018) proposed 
a multi-class pedestrian detection network for pedestrian 
detection in a distorted field of vision. Zeng et al. (2018) 
proposed a smartphone fusion location method optimised by 
indoor/outdoor pedestrian detection. Nauth et al. (2019) 
designed a smart pedestrian detection method using 
ultrasonic signals analysis. Han et al. (2020) proposed a 
deep small-scale sense network to detect small-scale 
pedestrians who are relatively far from cameras in practical 
applications. 

2.2.2 Pedestrian feature recognition 
There are also quite a few published studies on extraction 
and analysis of pedestrian features. Hariyono et al. (2014) 
proposed a method to detect pedestrians from a single 
camera mounted on the vehicle then classify the location of 
the pedestrian for the driver assistance system. Li et al. 
(2018) developed a smartphone-based system that detects 
the walking behaviour of pedestrians by leveraging the 
sensors and front camera on smartphones, improving the 
safety of pedestrians staring at smartphone screens. Tung 
and Shin (2018) proposed a system to detect distracted 
walkers by using a smartphone’s built-in sensors and 
applications. Wu et al. (2020) proposed a tracking enhanced 
detection method to recognise people using their 
smartphones while walking. Junejo and Ahmed (2020) 
presented a multi-branch convolutional neural network that 
uses depthwise separable convolution layers to conduct 
pedestrian attribute recognition. Wong et al. (2021) 
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proposed a methodology of pedestrian tracking and attribute 
recognition based on computer vision and deep learning, 
facilitating the analysis of pedestrian walking behaviour. 
The studies tend to extract the state of pedestrians rather 
than their specific attributes. Additionally, most of the 
methods to obtain pedestrian attribute information have 
used techniques such as video recognition and deep 
learning. Although these techniques can extract pedestrian 
attributes, they are not always accurate and reliable. For 
example, computer vision can distinguish ethnic differences 
of pedestrians, but it is unable to tell pedestrian’s nationality 
and preferred language. 

2.2.3 Pedestrian safety 
Pedestrians are vulnerable road users who need proactive 
protection in a hazardous environment. Yoshida et al. 
(2015) designed a system to predict and prevent  
bicycle-pedestrian collision by using smartphone built-in 
GPS. Jang and Lee (2017) proposed an analysis system to 
assess pedestrian–vehicle interaction risk levels using drone 
videos. Pottier et al. (2017) designed a pedestrian detection 
strategy to anticipate vehicle–pedestrian collision in urban 
areas by using capacitive probe. Lv et al. (2019) presented a 
method to generate high-resolution traffic trajectories from 
roadside-deployed LiDAR to predict vehicle–pedestrian 
conflicts. Zhao et al. (2019) presented a modified naive 
Bayes approach to conduct probabilistic prediction of 
pedestrian crossing intention using roadside LiDAR data. 
Ulak et al. (2021) proposed a pedestrian safety index for 
public transportation bus stops, to identify high-risk 
locations in a proactive manner. Zhu et al. (2021) proposed 
an agent-based framework for evaluating pedestrian safety 
at unsignalised crosswalks. Gruden et al. (2021) analysed 
the effects of digital distraction (e.g., smartphone) on 
pedestrians as they approach unsignalised intersections 
located on roundabout entrances and exits. 

In summary, although there have been many studies on 
pedestrian detection and tracking, pedestrian feature 
recognition, and pedestrian protection, none of them can 
extract the real-time high-precision position and detailed 
attribute information of pedestrians at the same time. To put 
forward such a method to narrow the gap is the motivation 
of our research in the paper. 

3 PAIDS: the pedestrian position and attribute 
information detecting system 

The section introduces the architecture and processes of our 
proposal: the pedestrian position and attribute information 
detecting system (PAIDS). 

3.1 System architecture 
Figure 2 presents the system architecture of PAIDS. The 
system depends on the DM2.0 platform. The smartphones 

used in PAIDS are Google Pixel 4XL, the operating system 
is Android 10, and the application used to connect Android 
operating system and the robot operating system (ROS) is 
ROS-all-sensors. The LiDAR used is Velodyne VLP-16. 
The operating system used in the edge computer is  
Ubuntu 16.04 LTS. The ROS version is Kinetic Kame that 
corresponds to Ubuntu 16.04. LiDAR is connected to the 
edge computer through Ethernet. Smart devices and the 
edge computer, and the edge computer and DM2.0 platform, 
are connected by wireless networks. 

Figure 2 System architecture of PAIDS (see online version  
for colours) 

 

 

3.2 System processes 
The system process flow of PAIDS is shown in Figure 3. 
LiDAR data processing and smartphone data processing are 
performed simultaneously. Point cloud data is received from 
the LiDAR and then down-sampling is implemented. 
Ground point cloud is removed to extract non-ground point 
cloud for accurate object clustering. We use several human 
feature filters to extract pedestrians from the detected 
LiDAR clusters. After pedestrian detection, normal 
distributions transform (NDT) scan matching converts 
LiDAR coordinates to the Japanese plane rectangular 
coordinate (a world coordinate used in Japan). At the same 
time, GPS data is received from the pedestrian’s smartphone 
sensor. We convert the raw GPS data from longitude and 
latitude values to the same coordinate system of converted 
LiDAR point cloud data. Next, the converted GPS position 
of the smartphone is matched with the pedestrian’s position 
detected by LiDAR to calculate the probability that the 
detected pedestrian is the smartphone user, and the accuracy 
of matching is improved by GPS and IMU sensor fusion. 
The result of the pedestrian position matching is sent to the 
DM2.0 platform, to be linked with the personal attribute 
information registered by the system user and published to 
AVs for road safety. 
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Figure 3 System processes of PAIDS (see online version for colours) 

 

  

 
4 LiDAR data and smartphone sensor data 

processing 
The section describes the detailed implementation method 
of PAIDS based on ROS. 

4.1 LiDAR data processing 
We implement three ROS nodes to process LiDAR point 
cloud data. The ROS nodes are used to extract non-ground 
point cloud for accurate object clustering, to conduct NDT 
scan matching to transform the point cloud data from the 
LiDAR coordinate system into the global coordinate 
system, and to cluster and extract objects from the point 
cloud, respectively. 

We adopt ray ground filter (Himmelsbach et al., 2010), 
a point cloud segmentation algorithm to remove ground 
points. The brief process of the algorithm is as follows: 

1 Subscription and pre-processing of point cloud data: 
Gain access to original point cloud data by subscribing 
to the relevant ROS topic, and down sample the 
original point cloud. 

2 Clipping and filtering point cloud after down-sampling: 
Set the upper threshold of height for point cloud 
clipping according to the height of the LiDAR and the 
estimated maximum height of pedestrians. 

3 Segmentation of ground and non-ground point cloud: 
Sort the adjacent points on the same LiDAR ray by 
radius value (distance from point to LiDAR) and then 
judge whether the slope of the adjacent two points is 
greater than the preset slope threshold, to determine 
whether the points are ground points or not. 

 

We transform the LiDAR point cloud data from the LiDAR 
coordinate system into the global coordinate system using 
high-precision 3D map data and NDT scan matching. 
Although the Point Cloud Library (PCL) includes the 
function of NDT matching, we implement the ndt_omp, a 
high-speed matching method using multithreading and 
novel search algorithms, to achieve higher real-time 
performance. 

Thereafter, we use EuclideanClusterExtraction function 
of PCL for Euclidean clustering. Since the maximum 
sensing distance of the Velodyne VLP-16 LiDAR is about 
100 metres, we remove the point cloud data with a distance 
of 100 metres or more from the LiDAR for better 
processing performance. In addition, distance sensors such 
as 3D-LiDAR have the characteristic that the density of the 
point cloud becomes sparser in areas farther from the 
sensor; therefore, different clustering distance thresholds are 
used in regions with different distances from the LiDAR to 
achieve better object detection accuracy. Next, we extract 
pedestrians from the detected object cloud by using human 
feature filters, which will be introduced in detail in  
Section 5. We send the detect pedestrians’ LiDAR data to 
the DM2.0 platform via a dedicated communication  
API. The LiDAR data format is jsk_recognition_msgs/ 
BoundingBoxArray.msg. 

4.2 Smartphone data processing 
To receive GPS data from multiple smartphones, we 
implement a script program to monitor all ROS topics, and 
then use a regular expression to extract ROS topics 
containing {device_id}/android/fix to subscribe to the GPS 
position message of each smartphone by specifying 
{device_id} as a parameter in the callback function of the 
ROS node. Since the acquired GPS position data is in the 
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format of longitude and latitude, it is converted to the 
Japanese plane rectangular coordinate so that it can be 
matched with LiDAR data. 

To calculate the probability that the detected cluster is a 
smartphone user of our proposed system, we use a bivariate 
normal distribution of GPS data as shown in Table 1. μ1 is 
the expected value of the x-coordinate (plane rectangular 
coordinate), μ2 is the expected value of the y-coordinate 
(plane rectangular coordinate), σ1 is the variance of the  
x-coordinate, σ2 is the variance of the y-coordinate, and ρxy 
is the correlation coefficient of the x and y coordinates. We 
use a custom ROS message (see Table 1) and the dedicated 
communication API to send pedestrians’ GPS data and 
LiDAR data to the DM2.0 platform. 

Table 1 Definition of ROS custom message for GPS data 

Device ID Header Frame ID μ1 μ2 

String Long String Double Double 
Device ID σ1 σ2 ρxy 
String Double Double Double 

5 Pedestrian detection and identification 
As shown in Figure 4, among the LiDAR clusters, in 
addition to pedestrian objects, there are also a lot of garbage 
data which interferes with pedestrian detection and 

matching. Therefore, it is necessary to screen LiDAR 
clusters to extract pedestrians. In the LiDAR data 
processing of the previous section, to extract pedestrians 
from LiDAR point cloud data we calculated and saved the 
features of the detected objects while clustering. This 
section describes the human feature filters we designed to 
extract pedestrians from the detected objects, and the 
matching method to link pedestrians’ high-precision 
position with their personal attribute information. 

Filters 1~4 are designed for the number of points in the 
LiDAR point cloud cluster, the size of the detected cluster, 
the standard deviation value of the points’ coordinates of the 
cluster, and the shape of detected cluster, respectively. The 
filters’ thresholds are determined while tuning to reach a 
relatively good filtering effect. Table 2 presents the details 
of the filters. And the quantitative evaluation results of the 
filtering effect are presented in the next section. 

After pedestrian extraction by cluster filters, matching is 
conducted using the converted LiDAR data and GPS data 
(see Figure 5). Pedestrian matching is employed to collate 
and link the position of an object detected by LiDAR  
with the GPS position information transmitted by the 
pedestrian’s smart device. Next, the probability that the 
detected object is a pedestrian with the received GPS 
location is calculated and published as a ROS topic. The 
calculation method of the probability that a GPS source 
pedestrian exists in a certain range is integrated into the 
probability density function in the range. 

Figure 4 Pedestrian detection with and without object filters (see online version for colours) 

 

 
 

Figure 5 Matching of LiDAR data and smartphone data (see online version for colours) 
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Table 2 Human feature filters to extract pedestrians 

Filter Feature Obstacles to be filtered 

1 Number of points in 
LiDAR data 

Buildings, large vehicles 

2 Size Buildings, vehicles 
3 Standard deviation of 

LiDAR data 
Buildings, vehicles, 
motorcycles, bikes 

4 Body type (proportional 
between body and head 
size) 

Cylinders (e.g., roadside 
trees and wire poles) 

We considered integrating probability density function that 
represents the existence probability of a pedestrian and 
employed the two-dimensional normal distribution. Normal 
distribution is used because the random variables of the 
coordinates where GPS actually existed follow the normal 
distribution of the coordinate and variance values 
transmitted by the GPS. The reason why we use  
two-dimensional instead of three-dimensional is that the 
vertical sensing accuracy of smartphone GPS is quite low. 
The z-coordinate (altitude) is therefore discarded and only 
the horizontal planar x-coordinate and y-coordinate 
positions are used. Furthermore, the integral is 
approximated by calculating the volume of a cuboid whose 
bottom surface is a 1 m × 1 m square and height is the value 
of the probability density function corresponding to the 
average x, y coordinate value. 

As shown in Figure 6, by integrating the probability 
density function representing the two-dimensional normal 
distribution in a certain range on the x-y plane, the 
probability that a pedestrian exists in that area can be 
obtained. The probability density function of the  
two-dimensional normal distribution uses the x and y 
coordinates obtained from the GPS data as the average 
value (μ1, μ2), variance σ1 of the x-coordinate, variance σ2 

of the y-coordinate, and the correlation coefficient ρ (see 
Table 1). The formula is as follows: 
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Figure 6 Integral region of the probability density function  
(see online version for colours) 

 

 

To calculate the approximate value of the probability that a 
LiDAR cluster is a pedestrian of a GPS source, let the 
number of clusters within 3σ from the LiDAR position be n; 
then, the approximate value of the probability that the 
cluster i is a pedestrian of a GPS source can be obtained as 
follows: 

1
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 (2) 

Figure 7 Integration of pedestrian high-precision position and attribute information 
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Nevertheless, single person identification is not able to be 
realised when there are multiple pedestrians in a small area 
at the same time. For example, when five pedestrians gather 
together within the detection area of the system, we can 
only state that the probability of each pedestrian’s existence 
is about 20%, but we cannot determine which person is the 
one we are interested in. Therefore, we use Kalman filter to 
conduct IMU and GPS sensor fusion to fix the pedestrian’s 
velocity and course to obtain the pedestrian’s posture for 
single person recognition (Sola, 2017). We then compare 
the fixed velocity and course with those of the clusters 
detected by LiDAR. The GPS source and LiDAR cluster 
that have the nearest posture are cross-matched to determine 
each pedestrian. The result of pedestrian position matching 
will be sent to the DM2.0 platform, to be related to the 
pedestrian attribute information in database and published to 
AVs (see Figure 7). 

6 Experiments and results 
We conducted three groups of experiments on a section of 
sidewalk of our university campus to evaluate the proposed 
system on cluster filtering, pedestrian existence probability 
calculation and single person matching, respectively.  
Figure 8 shows the experimental site, experiment devices 
and one of the experiment scenes. 

Five groups of experiments were carried out to evaluate 
the filtration of using the four human feature filters 
separately and simultaneously (see Figure 9). We 
cumulatively counted the total number of pedestrians and 
obstacles every three seconds, and then investigated the 
number of detected pedestrians and obstacles to evaluate the 
filtering effect. Table 3 shows the experimental results. The 
results indicate that the four filters can filter non-pedestrian 
objects, and the filtering effect order is: all filters > filter 2  
> filter 4 > filter 1 > filter 3. However, application of the 
filters will also lead to an increase in the miss detection  
rate. In particular, when the four filters are applied 
simultaneously, the miss detection rate is about 15.8%. 

To verify the pedestrian matching function, we collected 
four datasets 1–4 that evaluate the detection of multiple 
pedestrians in close proximity, single pedestrian, single user 
of the proposed system/non-user, and multiple users of the 
proposed system/non-users, respectively. We counted the 
cumulative number of pedestrians and the number of correct 
pedestrian matches. Figure 10 presents the pedestrian 
matching accuracy. From the results, it is obvious that the 
matching effect is the best when there is only a single 
pedestrian. When there are multiple pedestrians, matching 
accuracy will decrease. We consider that the reason is 
pedestrians’ body occlusion. Furthermore, when there are 
non-system users, the accuracy will also decrease. 
Therefore, it is necessary to popularise the system to attract 
more users for better matching accuracy. 

Figure 8 Experiment devices and experiment scene (see online version for colours) 
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Figure 9 Experimental results of LiDAR cluster filtering (see online version for colours) 

No filters Filter 1, 2, 3, 4 and all 
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Table 3 Evaluation of cluster filtration for pedestrian 
detection 

Filter ID 1 2 3 4 All 
filters 

No. of pedestrians 24 23 22 23 19 
No. of detected 
pedestrians 

21 22 21 22 16 

No. of detected 
obstacles 

75 7 73 43 0 

Correct detection rate 87.5% 95.7% 95.5% 95.7% 84.2% 
Missed detection rate 12.5% 4.3% 4.5% 4.3% 15.8% 
False detection rate 312.5% 30.4% 331.8% 187.0% 0.0% 

Figure 10 Pedestrian matching accuracy (see online version  
for colours) 

 

Figure 11 Single person identification accuracy (see online 
version for colours) 

 
Note: Dataset 2 is collected for single pedestrian 

detection, so experimental results of this dataset 
are not included in the average accuracy rate. 

The results of single person identification are presented in 
Figure 11. The results show that when pedestrians are close 
to each other (dataset 1), it is difficult to identify them. This 
is because the method to identify a single pedestrian is to 
compare and match their speed and course; when they walk 
side by side, the speed and direction tend to be the same, 
which makes it difficult to distinguish the pedestrians from 

each other. In this case, more personal feature information 
(e.g., height, body size) is needed to identify pedestrians. 

7 Conclusions and future work 
7.1 Conclusions 
The paper proposed and evaluated a system to extract 
pedestrian high-precision position and attribute information 
using LiDAR and built-in sensors of smart devices. First, 
we used ROS to subscribe to and obtain raw LiDAR point 
cloud data, GPS, and IMU data. Subsequently, we designed 
several ROS nodes to realise the coordinate transformation 
and clustering of LiDAR and GPS data. We also developed 
a node that matches the pre-processed LiDAR and GPS data 
and outputs the coordinates and probability of a pedestrian’s 
correct identification and location. Moreover, to determine 
the identity of a single pedestrian, we used GPS&IMU 
sensor fusion to capture the speed and course of the 
pedestrian to improve the accuracy of matching. Finally, we 
conducted an experiment to confirm whether the proposed 
system can detect pedestrians and analysed the experimental 
data. From the results, matching is proved to be possible. 
Furthermore, because matching accuracy may decline due 
to the existence of obstacles other than pedestrians,  
we designed four human feature filters to exclude  
non-pedestrian clusters from the matched objects, and the 
matching accuracy increased. We summarise the 
characteristics of the system as follows: 

• PAIDS calculates the probability that a LiDAR cluster 
is a GPS source by integrating probability density 
function 

• human feature filters are designed and used in PAIDS 
to extract pedestrians from LiDAR clusters 

• sensor fusion is implemented for accurate position 
detection. 

Since the result of literature survey shows that there are no 
existing approaches to extract pedestrian position and 
attribute information at the same time, we cannot compare 
our system with similar methods. However, the 
experimental results indicate that our system can be put into 
operation. 

7.2 Limitations and future work 
Although matching accuracy improved by applying filters 
related to cluster size, shape, and discrete condition, the 
miss detection rate also increased as a consequence of 
applying the filters. This implies that the threshold values 
are strictly defined, and sometimes pedestrians are 
incorrectly excluded. To improve the correct detection rate 
and reduce the false detection rate of the filters, further 
tuning and refining the threshold value of the filter are 
necessary. Obtaining the attribute information of the target 
pedestrian from the DM2.0 platform beforehand and using it 
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in the filters may also be a good idea to identify specific 
pedestrians. 

In addition, when the distance between the LiDAR and 
pedestrians is too close or too far, when pedestrians are 
close to obstacles, when pedestrians are in a blind-spot of 
LiDAR, or when pedestrians gather together, missing 
detection occurs. Furthermore, in situations with a large 
number of pedestrians, or if the GPS error is large, the 
proposed system may not be able to match pedestrians 
correctly. Because the traffic conditions of the university are 
relatively simple, conducting experiments under more 
complex traffic conditions is necessary. Further experiments 
to evaluate the proposed system and improve matching 
accuracy are the future directions of our research. 

At present, pedestrians are using the ROS-all-sensors 
application (available in android application market) to 
communicate with ROS. The application can only send 
device ID and sensor data. System administrators have to 
register user’s device ID and attribute information into the 
database of DM2.0 platform via a dedicated user 
management system. Therefore, developing applications 
that can directly send sensor information and detailed user 
information is also one of our tasks in the future. 
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Appendix 
Geospatial Information Authority of Japan (2013) provides 
the method of computation to convert longitude and latitude 
to Japanese plane rectangular coordinate. 

Input φ: x-coordinate (longitude), λ: y-coordinate 
(latitude). 

Output x – x-coordinate (plane rectangular coordinate),  
y – y-coordinate (plane rectangular coordinate). 
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φ0, λ0 are latitude value and longitude value of the origin of 
plane rectangular coordinate, respectively. F is the 
reciprocal flattening, and a is the semimajor axis length of 
the earth. m0 is the scale factor on the x axis of the plane 
rectangular coordinate. 


