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Abstract: Data in organisations is often spread across various Information and Communication 
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this paper, a systematic approach is followed to design a system, which integrates data silos by 
using a common ontology. This paper highlights the problems being addressed, the approach 
selected to develop the system, along with the implementation of two use cases to support user 
activities in an aerospace company. 
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1 Problem statement 

Digitalisation is a stepwise process for most companies, thus it 
needs to build on existing Information Technology (IT) 
infrastructure and the installed Information and 
Communication Technology (ICT) tools and systems. These 
tools and systems are often not fully compatible with each 
other. This results in isolated solutions suitable to activities of 
only one group of users. To manage this diverse spread of 
multiple systems, approaches such as Product Lifecycle 
Management (PLM) and Enterprise Resource Planning (ERP) 
aim towards integrating them. The main advantage of 
connected systems is increased traceability of data across the 
lifecycle of the product. This in turn helps in managing 
products of mass customisation, achieving higher quality, 
reducing project failure rates, managing production and 
delivering efficiently (Liu et al., 2010). These benefits result in 
minimising overall manufacturing costs, which is an important 
goal of manufacturing industries. In addition, an efficient 
distribution of data across organisations globally can be 
achieved, which in turn leads to a seamless collaboration across 
teams (Zammit et al., 2017). A further desired benefit in the 
aerospace industry is the possibility to enable a much better 
understanding of product characteristics and their variations. 

While the potential benefits are significant (Peruzzini et al., 
2012), obstacles faced in practical implementation of corporate 
PLM systems often impede widespread use. Finding common 
ground in understanding the concepts and agreeing on the 
semantics is a major challenge for the implementation and 
usage of a holistic, integrated data landscape including PLM 
and ERP. In addition, customisation of system landscape and 
interfaces for individual user activities is expensive. However, 
the core goal that has to be achieved is a ‘centralised single 
version of the truth’ (Zammit et al., 2017, p.63). In this paper,  
 
 
 

we focus on three factors, which pose a challenge to the 
implementation of such connected systems, which is also 
visualised in Figure 1 (Gogineni et al., 2019). 

1) Business environment diversity: PLM and ERP systems 
are usually designed around a static, monolithic company 
and business process model, furthermore these systems are 
optimised for data consistency. However, companies are 
facing a continual evolution of their business environment: 
other companies are acquired and integrated, new 
customer and regulatory requirements emerge, the 
business model evolves, etc. These evolutions require 
company processes and their supporting IT systems to 
adapt quickly. Often, the required timelines for 
implementation of these changes exceed the change 
management capability of existing enterprise systems. As 
a result, current company IT ecosystems often consist of 
various systems holding auxiliary data in addition to the 
key enterprise systems. This spread of data leads to 
difficulties in searching for the right and up-to date 
information. This is not just tedious for users, but also 
demotivating and suboptimal. The spread of data also 
hampers the reusability of data. Within Rolls-Royce 
additional data and information are captured outside the 
large enterprise systems by step-wise digitisation of 
systems and processes, as well as by the introduction of 
modern, digital work concepts like Scrum. Bringing data 
from various systems together and creating a useful 
information for the engineers is a complex endeavour that 
requires support by means of an intelligent and novel 
approach.   

2) Heterogeneity of data: Existing information is often 
available in various formats depending on the tool which 
manages the data. The formats might be proprietary  
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formats, adding to the difficultly of interoperability. 
Hence, to achieve connectivity across tools, it is important 
to work with heterogeneous data format conversion and 
integration (Holler et al., 2016; Zammit et al., 2017). Such 
integration not only enables data usage across the product 
lifecycle but also helps in linking product development 
information with other functional groups. Within aero-
engine design and manufacturing, the functional groups 
need to be highly specialised due to the complexity of the 
product. However, the focus on the specialist’s issues 
sometimes prevents cross-functional thinking when using 
available data and information. If those are of different 
formats the cross-functional collaboration becomes even 
harder. Therefore, overcoming the heterogeneity of the 
data is becoming a key enabler for the necessary cross-
functional design, manufacturing and systems engineering 
within an aerospace company.  

The cross-functional and cross-site design and 
manufacturing give rise to the third challenge of  

3) Distributed development and production: On data level, it 
requires a connected and up-to date industrial environment 
and, in addition, an optimised usage of digitalised data 
artefacts. Data are important assets that support decision 
making. From a user point of view, a wide variety of 
individuals with different backgrounds, expertise, views, 
perspectives and goals come together. This is where a 
collaborative and customised groundwork needs to be 
established. From an organisational point of view, various 
drivers that are often opposed to each other intermingle 
(e.g. market requirements, customer needs, design 
specifications, production restrictions and quality 
requirements). These drivers need to be understood across 
all organisations involved, interlinked and managed on a 
common defined data level. Although PLM systems are 
constantly expanding their range of functions or models, 
they fall behind when it comes to providing user-specific 
or customisable functionality in a cross-functional design, 
manufacturing, purchasing or service context (Peruzzini  
et al., 2012). Within Rolls-Royce, those requirements and 
drivers will need to be understood as a whole within an 
increasingly competitive environment in order to achieve 
more sustainable product and service attributes within the 
aerospace industry.   

Summarising the activities that have taken place in the project 
Cockpit 4.0 (EFRE funded), this paper describes the goal and 
approaches chosen for this project, whose aim was to achieve 
the advantages of integrated PLM. These advantages should be 
realised by small-scale implementations rather than large-scale 
changes and implementation efforts. Nevertheless, the benefits 
also needed to be scalable through customisation to fulfil user 
needs and their activities. This combination for challenges led 
to the research interest in developing a modular architecture 
based on semantic technologies that can be directly integrated  
 
 

into existing company infrastructures. Hence, this paper 
includes a detailed methodological development of the modular 
architecture and the associated assistance system. 

Figure 1 Challenges of digitalisation in manufacturing industries 

 

This paper is structured such that Section 2 presents the 
current activities and research addressing the challenges, 
followed by Section 3, presenting the scientific approach 
chosen for further research and development of the 
solutions. Section 4 handles the practical implementation of 
collecting requirements and generating use cases. Section 5 
illustrates the implemented architecture and focuses on the 
development of the prototypical solution. Section 6 presents 
the Machine Learning (ML) applications and preliminary 
results. The implementation of the demonstrator is detailed 
in Section 7. The evaluation of the prototype/demonstrator 
is detailed in Section 8. Section 9 describes findings. 
Finally, Section 10 summarises the essential aspects of the 
paper and provides outlook for the future and conclusions. 

2 State-of-the-art 

Different paradigms have emerged for next generation 
manufacturing systems, considering the heterogeneity of data 
from concepts such as smart manufacturing, cyber-physical 
production systems, Industry 4.0 (I40) or cloud manufacturing 
(Moghaddam et al., 2018; Zeid et al., 2019). In addition, 
architectural concepts such as the Reference Architecture 
Model for Industry 4.0 (RAMI4.0), Industrial Internet 
Reference Architecture (IIRA) or National Institute of 
Standards and Technology (NIST) are growing rapidly. These 
are overall architectures for interoperable manufacturing 
divided in different layers, views or classifications (depending 
on the different components used, functions or processes) and 
descriptions of their interference (Grangel-González, 2019; 
Moghaddam et al., 2018; Zeid et al., 2019). Although the  
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architectures provide a good starting point to consider the 
important elements, they are abstract and lack in providing 
detailed implementation recommendations, especially on 
existing architectures of enterprises. 

Out of the manifold possibilities to handle and integrate 
heterogeneous data, we concentrate on ontology-based 
applications, since ontologies allow to structure semantics in 
data. They are a popular solution for cross-enterprise and –
application information modelling, to integrate heterogeneous 
data from different domain specific sources (Cruz and Xiao, 
2005). They define concepts as simplified abstract view of the 
world, their mutual relations and provide basis for logical 
reasoning through axioms or rules (Mizoguchi, 2003). An 
ontology can be described as ‘explicit specification of a shared 
conceptualisation’ (Staab and Studer, 2009; Studer et al., 
1998). 

In relation to PLM concepts, capturing Product Lifecycle 
(PLC) data is a key element. There have been several high-
level PLC ontologies achieved by mapping and integration of 
domain specific ontologies (e.g. Bruno et al., 2015, 2016; Otte 
et al., 2019; Usman et al., 2011). However, in the Cockpit 4.0 
project we wanted to follow domain based prototypical 
implementation, hence we follow the bottom-up approach. This 
is further discussed in Section 3. A PLC approach would build 
on the results of this and would thus at best be an extension of 
existing research questions. 

There have been different approaches to develop domain 
ontologies such as those (Mountantonakis and Tzitzikas, 2019). 
focusing on a certain main aspect in the process (e.g. data  
set type, functions to provide, integration substance, integration 
or other auxiliary services) and others (Grangel-González, 
2019) which survey on the suitability for standards  
and standardisation. Concerns highlighted for the majority  
of applications are the scalability of the investigated approaches 
(Mountantonakis and Tzitzikas, 2019) and lack of specificity  
to individual problems/use cases of different domains, 
reasoners or rule engines for transformation, validation and 
domain knowledge discovery (Grangel-González, 2019). 

For developing individualised use case-based ontologies, 
different general approaches in architectural design for 
Ontology-Based Data Integration (OBDI) can be summarised 
as follows: (Ekaputra et al., 2017; Wache et al., 2002). In a 
single ontology approach, all data sources are integrated into 
one global ontology. A multiple ontology approach integrates 
each data source into a separate local ontology, which will be 
aligned to each other using semantic mappings. A hybrid 
approach also considers different local ontologies, although 
they will not be aligned independently, but share a common  
 

domain vocabulary. The Global as View approach is rather 
similar to this, but the local ontologies will be integrated into a 
global ontology transformed with rules. As the project 
concentrated on a focused domain-based implementation, the 
single ontology approach was chosen, which also has the 
flexibility to be integrated into a global ontology later on. 

To access and handle huge amounts of data, Ontology-
Based Data Access (OBDA) is a paradigm growing in 
prominence. OBDA maps data sources into semantically 
structured architectures, (Ekaputra et al., 2017; Kharlamov  
et al., 2015). Reasoning is carried out on terminological level 
and not on the data itself, which is why neither incompleteness 
nor scaling of data poses problems in this approach. Likewise, 
the data is only mapped in virtualised form. This offers 
advantages concerning storage and the possibility to manage 
and maintain the original individual sources separately while 
also providing the user with a global up to date and unified 
vocabulary at the same time (Pan et al., 2017). 

There have been several attempts at industrial 
implementation of ontologies (Adams et al., 2000; Ast et al., 
2014; Handler, 2010), which demonstrate the main advantage 
of connecting existing data with meaningful relationships. 
However, the cited authors highlight the importance of having 
a common understanding of the individual domains, integrating 
the domains of interest into the global perspective, including 
domain experts in the development process and working with 
ontology engineers to develop the concept. 

The necessity of such implementations to be closer in 
context to the end user is gaining importance (Alegre et al., 
2016). Providing information in context to the activities carried 
out and the relevance to the problem being handled are a part of 
the concept contextualisation in the field of IT. There is  
some initial research in this field but fewer evaluated 
implementations (Erkoyuncu et al., 2017; Roy et al., 2016). 

3 Research approach 

As mentioned in Section 2, to develop a domain-based 
implementation of a single ontology from heterogeneous data 
sources, to integrate the domain experts from the start and to 
encourage contextualisation a systematic development 
approach was followed. Hence, for the prototypical 
implementation the Design Science Research Methodology 
(DSRM) for information systems was selected. This method 
was deemed suitable as it encompasses the applied research 
nature of the project. In addition, DSRM provides a 
methodological guideline to design, develop and evaluate the 
system (Peffers et al., 2007). 
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Figure 2 Research approach steps (Gogineni et al., 2019) 

 
 

Based on the six steps of DSRM, the approach followed in 
the project is shown in Figure 2 (Gogineni et al., 2019). It is 
also important to notice that the process was highly agile 
and iterative, as indicated by the grey arrows in Figure 2. 
Evaluations and interviews with the users and the Rolls-
Royce Deutschland team provided feedback for adjustments 
of the design to fulfil requirements. Development was 
coordinated with the help of an agile project management 
tool. Considering the end user requirements for continuous 
improvement, by familiarising and involving the user with 
the new prototype/demonstrator is one of the advantages of 
this development approach, which is especially beneficial in 
terms of change management principles. 

The main Research Questions (RQ) of the project are 
(Gogineni et al., 2019): 

 RQ1: How to integrate heterogeneous data sources from 
ICT? 

 RQ2: How to use intelligence in terms of algorithms to 
provide value added smart services along industrial 
processes? 

 RQ3: How can relevant context-sensitive knowledge be 
generated and presented to improve processes? 

4 Requirements collection and generation of  
use cases 

The first step in the development consisted of a set of 
workshops whose purpose was to understand the needs for the 
new system from different user perspectives. The workshops 
were held with 25 experts from various departments in Rolls-
Royce Deutschland. The departments included design, 
production planning, supplier quality, production and service. 
To translate the requirements for development, 79 raw user 
stories were collected in the workshops. These were further 
grouped and prioritised. This led to the development of five 
generalised user stories which were subsequently developed  
 

into five detailed use cases of interest for the project. The 
complete process of generation of use cases is illustrated in 
Figure 3 (Gogineni et al., 2019). The use cases were further 
detailed with interviews of relevant users. As shown in the 
bottom second half right of Figure 3, the interviews were 
guided using this template. 

In the project, two use cases were chosen for the 
development of the prototypical system. This decision was 
based on the availability of data, prioritisation based on 
impact generated and ability to evaluate. The two use cases 
are namely: Voice of the Fitter (VoF) case and Concessions 
case. Each of them is detailed in the subsections below. 

4.1 VoF use case 

In Rolls-Royce Deutschland, a special team was formed called 
the Voice of the Fitter, to manage problems faced by fitters 
during the assembly of the engine. The VoF process  
was introduced based on the recognition that regular 
communication routes for problems are not sufficient to meet 
the timing needs of the assembly line. This can lead to 
unwanted build stops and potentially delayed delivery of the 
product. When a fitter faces a problem (missing part, missing 
tools, etc.) that they cannot solve by themselves, they approach 
the VoF Team. This dedicated team of logistics experts take up 
the problem and investigate to find a solution for the issue. The 
team often has to search through various databases to find the 
root cause of the problem and then take the necessary actions. 
This process often has to take place quickly, as the problems on 
the assembly line can lead to build stops and subsequently to 
major losses in time and cost. 

Hence, this use case was categorised into: Feedback 
from assembly. The defined user statement for the use case 
is: I am working in plant logistics and want to quickly find 
information needed to resolve an assembly issue. In this 
project however, only the VoF team was considered. In 
Table 1, information collected from the VoF team to further 
define the use case is shown. 
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Figure 3 Use case generation (Gogineni et al., 2019) 

 
 

Table 1 Further information about the VoF use case 

General information about the use case 

Name Feedback from assembly 

Description I am working in plant logistics and want to 
quickly find information need to resolve an 
assembly issue. 

Expected utility /  
benefit  

Resolution of assembly issues in shorter time 
and with higher quality. 

Frequency Approximately 100 cases / week 

Trigger A new case is created from VoF team 

Premises All the data required to evaluate are present 
in digital format and on accessible systems.  

Role VoF – Team 

4.2 Concessions use case 

Nonconforming parts from suppliers or from the internal 
supply chain must be controlled in order to avoid unintended 
installation in the engine. For high-value parts it is common to 
control the acceptance of parts with minor non-conformances 
under concession by a qualified authority. A special team 
called the concessions team works on checking these parts to 
assess the degree of deviation. Based on the degree of deviation 
the parts are categorised and further actions are recommended. 
Understanding the functional impact of the non-conformances 
and defining necessary actions means the assessment requires 
experience and reliable data. This requires the team to access 
original design information, the actual part information and the 
historical cases to make the right decision. In Table 2, 
information collected from the concessions team to further 
define the use case is shown. 

 
 

Table 2 Further information about the Concessions use case 

General information 

Name Concession 

Description I am a designer and want to evaluate a 
concession application in order to decide 
about the further usage of the part.  

Expected 
utility/ benefit  

Eased evaluation of concessions, access of 
historic evaluations of same or similar 
issues.  

Frequency Approximately 150 concessions / week 

Trigger A concession is raised for evaluation 

Premises All the data required to evaluate are present 
in digital format and on accessible systems. 

Role Designer, Producibility Lead, Non-
Compliance Agency 

5 Demonstrator design and development 

Based on the use case descriptions it was clear that the existing 
data sources across various systems had to be integrated, 
processed and provided to the end user of the demonstrator. 
The prototypical implementation is referred to as a 
demonstrator in this paper. This led to the development of the 
system architecture with five layers as illustrated in Figure 4 
(Gogineni et al., 2019). In addition, blocks illustrated in grey 
boxes indicate the key research topics which have to be 
addressed across these layers to develop a user friendly and 
effective demonstrator. 

The layers are individually detailed in the subsections 
below, using the bottom-up approach, starting with the data 
layer. A microservice architecture was chosen for the  
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development of the backend. The reason being its flexibility 
for agile development of individual code blocks. This leads 
to the isolation of faults and enables collaborative 
development of the application (Nemer, 2019). The 
microservice architecture of the demonstrator is shown in 
Figure 5, where the front end communicates with a gateway. 
The gateway in turn links to the individual microservices 
developed for various functionalities. The Java based 
application was developed using the Spring Boot framework 
for the backend and Vue.js for the frontend. 

Figure 4 Demonstrator architecture (Gogineni et al., 2019) 

 

Figure 5 Complete architecture of the demonstrator 

 

The functions the microservices carry out are further 
explained in the relevant layers of the demonstrator in the 
following subsections. 

5.1 Data and data structuring layer 

Over the years, the IT estate at Rolls-Royce has experienced 
many of the transformations and diversifications described 
in the introduction. In addition to the challenges faced by 
many industrial companies, aerospace products have 
extremely long life cycles – often spanning decades – 
during which design and configuration data need to remain 
available. As a result, the IT environment contains both 
legacy and current IT systems and applications, which leads 
to a heterogeneous data landscape. Furthermore, many data 
sources contain unstructured data such as design reports and 
problem resolution sheets. However, the data has to be 
structured to be used in a semantic context. Based on the use 

cases requirements it was clear which information should be 
integrated into the ontology. 

As the demonstrator is designed for presentation of data 
from various sources in context to the user, it is important to 
identify and understand the data which is to be presented. 
Figure 6 illustrates the steps followed to support the 
discovery of data, data structuring and the development of 
the semantic middleware layer. Hence, each of the elements 
in the figure is discussed in this subsection and in Sub-
section 5.2. 

Figure 6 Ontology development steps 

 

Data source identification was already a part of capturing 
the use case details mentioned in Section 4. Based on 
interviews of the users, the information systems the users 
would require to access were captured. This enabled the 
identification of the main data sources which delivered the 
information required for the activities. 

Data understanding was the second step, where the data 
sources were analysed to understand their structure, form of 
storage (relational type, document type, etc.) and relationships 
among the various data sources. To develop the ontology, main 
terms and concepts of the domain provided initial pointers to 
identify the classes of the ontology. 

Data mapping is necessary in complex IT ecosystems to 
capture the relationship between the various data sources. 
An Entity-Relationship (ER) model was used, that captured 
actual physical entities, like parts, as well as data entities in 
the company databases. Owing the complexity of some of 
the enterprise systems, only the relevant subsets of their data 
models were included in the data mapping. 

The model helped to clarify roles and cardinalities as 
well as data duplication in the source systems. One example 
was the attribute ‘part number’, which – even though unique 
on business level – was replicated as a stand-alone copy or 
even permitted as a free-text field. This required significant 
synchronisation and data consolidation work during the pre-
processing. 

A section of the ER diagram is shown in Figure 7. It 
shows three of the entities: Part Physical, VoF Case and 
Concession, and their attributes. The Primary Keys (PK) 
and Foreign Keys (FK) are shown in bold. 
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Data structuring uses the results of the data mapping to 
determine which tables from the existing data sources might be 
usable as a direct export and where additional pre-processing is 
necessary. This is also relevant for the architecture and the 
Extract-Transform-Load (ETL) strategy of any data warehouse 
that may be used for buffering data for the semantic 
middleware. 

Where useful tables exist, a direct query to the source 
database is an option, provided a sufficient query performance 
can be guaranteed. Where data transformations or data 
cleansing is required, the data should be stored in a data 
warehouse, which was modelled with a MariaDB database in 
the case of the demonstrator. An Enterprise Service Bus was 
used to create an abstraction layer for the deep queries from the 
semantic middleware. 

In the case of the demonstrator, the entity Part Physical was 
created to reflect serialised parts that could be used to connect 
to VoF cases and concessions. However, this entity used ETL 
extracts of the standard MARA (General Material Data) and 
MARC (Plant Data for Material) tables from the SAP ERP 
system as a basis. The Concession entity was based on the SAP 
QMEL (Quality Notification) table. In this case, some 
significant transformations were necessary in order to limit the 
data scope and simplify querying for the middleware. 

5.2 Semantic middleware layer 

This layer connects the data sources from various systems with 
the frontend. The semantic middleware layer is further divided 
into elements such as modelling of the ontology, ontology 
mapping, reasoning and ontology storage. These elements are 
illustrated and highlighted in Figure 8. In addition, the 
association with the layers above and below the semantic 
middleware layer are also illustrated. The tools used for every 

element are also shown next to its respective element in the 
Figure 8. For example, for the modelling of the ontology, 
Protégé software was used. The choices for the tools selected 
were based on their open source compatibility, scalability, ease 
of integration into the selected software stack of the 
demonstrator and availability of guidelines and examples. 

Figure 7 Snippet of ER-Model 

 

Figure 8 Semantic middleware layer architecture 
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Each of the elements mentioned in the semantic middleware 
layer are detailed in the next paragraphs. 

Ontology modelling was performed by following and 
applying transformation rules (Louhdi et al., 2013; Ren et al., 
2012). The transformations enabled the identification of 
classes, object properties and data properties of the ontology 
from entities and attributes of the database. A corresponding 
example to each aspect of the transformation is given in  
Figure 9. Semantic nets are usually described in Resource 
Description Framework (RDF), a data model using triple 
patterns for knowledge description. A triple pattern thereby is 
built comparable to a simple sentence construction in the form: 
subject, predicate, object. The subject in ontological terms is 
also called the domain, a predicate is a property describing a 
relation and the object is called range of a property. Based on 
the type of relation, there are object properties (connecting 
classes to other classes) and data properties (connecting  
classes to datatypes) (Stuckenschmidt, 2011). An example  
of a triple pattern is shown in Figure 9. Concession 
:Concession_has_Part Part_Phys, where the Concession class 
is the domain of the object property :Concession_has_Part and 
the Part_Phys class is the range of the object property,  
vice-versa for the object property :Part_has_Concession. 

a) Transforming entities: Entities are transformed into classes 
or subclasses depending on if they are strong entity or 
weak entity. For the use cases only strong entities were 
transformed into classes. To ensure no overlapping, 
classes were disjointed. For example, in the concessions 
use case, the concession entity is transformed to 
Concession class in the ontology (cf. Figure 9). 

b) Transforming basic attributes: This applies to simple 
attributes that are not primary keys. The attributes provide 
further information about an entity (e.g. concession type 
attribute provides information about a concession as 
shown in Figure 7). In ontological terms, such attributes 
are represented by data properties. Its domain is the 
corresponding class and the range refers to its datatype in 
the database represented in xsd standard (XML schema 

definition language, e.g. xsd:string). An attribute/entity 
with ‘NOT NULL’ constraint is transformed into a 
property/class with min cardinality. Unique attributes are 
set as functional property (functional means a property can 
only have one value). By applying these rules, for 
example, the attribute ‘Description’ of the concession 
entity is transformed into a data property, which can 
contain null values and is not unique (shown in Figure 9). 

c) Transforming PK and FK: PK and FK indicate a relation 
between the respective classes in the ontology. This is 
transformed into object properties in ontologies. Object 
properties have a unidirectional characteristic, while ER 
relations can be both unidirectional as well as bidirectional 
(in case of M:N relations, see Figure 7). To capture the 
binary characteristic the property has to be enhanced with 
an InverseOf property. As an example, the relation (object 
property) between Concession and Part Physical is shown 
in Figure 9. A PK as key attribute is set as functional and 
max cardinality restriction is set to 1 (as it is a unique 
value). 

d) Naming convention: Each class, data and object property 
has to be identifiable. Therefore, unambiguous name 
assignment ensures distinctiveness in transformation of 
ER to ontology. To ensure this, as an example for the data 
properties the corresponding entity was prefixed in the 
name.  

e) Transforming cardinality in relations: Referring to 
cardinalities on the crow’s feet in Figure 7, when 
represented by ‘ ’ symbol, then it is transformed into a 
min cardinality constraint. For example, a concession must 
correspond to a part. This is not always the case in Rolls-
Royce, since a concession also can apply to an assembly. 
However, for the current use case, only the connection to 
physical parts is implemented requiring a min cardinality. 
Other cardinality constraints, on the other hand are 
represented by ‘ ’ symbol, meaning e.g. a part can have 
a concession.  

Figure 9 Examples of applied transformation rules 
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The final modelled ontology is shown in Figure 10. Only a few 
data properties of the implemented ontology are shown  
(in green) for better readability. In addition to the classes 
already discussed before, a new class is introduced called 
Line_item which is associated with the concessions class. Line 
items are individual revisions of a particular concession and are 
documented using a separate tool and database. 

Ontology mapping was the next step to connect the data 
with the ontology itself. This was done using the OBDA tool 
called Ontop, which is compatible with the modelling tool 
Protégé. As stated in Section 2, OBDA combines the 
advantage of Relational Databases (RDB), which is 
scalability, and those of ontologies, such as low maintenance 
and its dynamic nature (Pan et al., 2017). This is achieved by 
the fact that mapping avoids duplication of data and connects 
to the up-to-date data in the original source. A mapping 

describes relation of the elements in the ontology and the 
original data source. This is represented in the form of a 
virtual RDF graph. This graph can be queried using SPARQL 
(SPARQL Protocol and RDF Query language), which in turn 
is translated into Structured Query Language (SQL) to access 
RDB source data (Calvanese et al., 2016). Calvanese et al. 
(2016) provided comprehensive insights on the functions of 
Ontop. An example of a mapping used in the concessions use 
case is shown in Figure 11. In general, the mapping contains 
one part describing the location of the data sources in the 
database (RDB) through SQL queries (cf. lower half of the 
ontop mapping in Figure 11). The other part defines how the 
data has to be associated with the ontology (cf. upper half of 
the ontop mapping in Figure 11). This mapping can be 
accessed through the SPARQL query triggered by the 
frontend. 

Figure 10 Implemented ontology 

 

Figure 11 Mapping example 
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Ontology reasoning facilitates investigating if the ontology and 
its mapping follow the defined rules. However, there were 
certain challenges during the reasoning phase.  As the ontology 
is designed using Ontology Web Language (OWL), it assumes 
the Open World Assumption (OWA) for drawing inferences. 
The assumption assumes that falsity of a statement cannot be 
deduced from the absence of truth alone (Staab and Studer, 
2009). Therefore, a reasoner will not conclude inconsistency 
from missing individuals or properties, because it assumes that 
the needed information could be present somewhere else. This 
affects especially the min cardinality restriction. In case of 
missing information in the position of a PK or FK in a situation 
where a min cardinality restriction exists, the reasoner does not 
throw an exception error because of the OWA. This was the 
case for Line_item and Concession classes. To avoid the 
construction of inconsistent classes, meaning violating the min 
cardinality restriction, the source data was mapped into 
superclasses in the concession and line item case  
(cf. Figure 10). The superclasses (Line_item_data and 
Concession_data) contain all but the key data properties of 
respective class in the ER model needed for the relation. The 
domain of those key attributes was set to the actual Line_item 
and Concession class. Any data set mapped into the ontology 
that does contain all key attributes will then automatically be 
reasoned as entity of the actual class. 

An example in the concession use case: A dataset that 
contains a data property Concession_num is not considered 
as an entity of the Concession class as long as it does not 
hold a value for the data property Concession_Part_num, 
since a Concession is restricted to have at least one 
Part_Phys. As long as this is not met, the data set will be 
considered as a collection of data from some incomplete 
concession and cannot be added to the Concession class at 
this time. An advantage of considering the incomplete data 
set is that, these can be identified and completed to enhance 
the quality of the data. 

Ontology storage is facilitated through a tool called 
Eclipse RDF4J. In compatibility with the Ontop plugin, the 
type of store generated is called an Ontop virtual RDF store. 
The RDF4J tool enables the creation, storage, reasoning and 
interaction with RDF data. In addition, it acts as a SPARQL 
endpoint on an Apache Tomcat server, which can be 
accessed by the demonstrator (Eclipse RDF4J). Functions to 
connect and interact with the virtual store are defined in the 
ontology microservice of the demonstrator. 

5.3 Query layer 

This layer provides the frontend with requested data from 
the semantic middleware layer. Frontend activities trigger 
functions of query generation in the ontology microservice 
accessible over the gateway (see Figure 5). Queries 
generated will be sent to a SPARQL-Endpoint. 

To narrow down query results, there are different filter 
options to choose on the frontend. Some of these options are: to 
select the part of interest, adjust the date range for filtering, to 
select state of the issue and to find cases through a text search 
option. Based on the selected criteria, issues are displayed on 

the affected part using dots or squares. Issues here are VoF 
cases or concessions cases. 

In addition to the actual issues, the VoF interface contains 
queries which look for historic cases with similar parts, 
problem identification or concessions. The concessions use 
case interface contains queries to extract detailed information 
about the concession from another data source (line items), 
historic concession cases on the same part or similarly detailed 
concessions. Also the queries provide information for ML 
algorithms for classification based on historical decisions for 
the user. An example of the SPARQL query is shown in  
Figure 12. The first part (a) provides the description and ID of 
historic VoF cases with the same problem identification 
(<ProblemID>) as the selected case. The second part (b) 
provides a query template for concessions with generic 
variables. This can be modified accordingly, based on 
information required by the front-end (User). 

Figure 12 SPARQL-Queries for (a) VoF and (b) Concessions 
case 

(a) prefix :<http://www.semanticweb.org/fraunhofer/ 
Cockpit4.0#> 
SELECT DISTINCT   
?VoF_Case_ID ?VoF_Case_Description 
WHERE{  
?VoF_Case a :VoF_Case;  
:VoF_Problem_Identification ‘<ProblemID>’; 
:VoF_Case_ID ?VoF_Case_ID; 
:VoF_Case_Description ?VoF_Case_Description. 

} 
(b) prefix :<http://www.semanticweb.org/fraunhofer/ 

Cockpit4.0#> 

SELECT DISTINCT   
?<Variable[1]> ?<Variable[2]> 
WHERE{  
?L :Line_item_Meldung ‘<Meldung>’;  
:<Dataproperty[1]> ?<Variable[1]>; 
:<Dataproperty[2]> ?<Variable[2]>. 

} 
 

5.4 Application layer 

To support a portable, accessible and flexible front end 
application, a web-based user interface was chosen. A web-
based interface was also preferred due to the extensive number 
of semantic web-technologies which are already available.  
To design the application layer the requirements were based 
on: functional user requirements, user experience,  
design for knowledge presentation, design for interaction and 
visual/aesthetic requirements. The requirements were 
implemented as minimum viable products. This was  
evaluated with the end users. An agile process was followed  
for collecting new requirements and evaluating the 
implementation. This helped in achieving the optimal front end 
for the end user. Based on the initial requirements from the use 
cases the important elements of the web-interface were 
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established to be the: 3D-model of the part, the issue located on 
the model, information about the issue, context relevant 
information about the issue and the ability to select and filter. 
The web-based frontend was developed using Vue.js. The 
choice was made after having compared with Angular and 
React.js. The advantages were the compatibility with the 
backend tool (Spring Boot), wide spread implementation hence 
leading to extensive documentation of examples and relatively 
simpler syntax to learn. In addition, these standards enable 
using templates which reduces time of development and 
support standardised development. 

6 Machine learning 

The Machine Learning (ML) requires functions and co-
working of several layers and is therefore applicable across 
the layers of the demonstrator. The following paragraphs 
further detail the approaches used and the results obtained 
through machine learning. 

In order to assist the VoF team in finding a solution to an 
existing assembly problem, three different ML approaches 
have been implemented into the demonstrator. These 
approaches are based on the same data as the ontology. There 
are two relevant tables: 

 The VoF cases representing the historical cases, which the 
VoF team has encountered and solved. 

 The VoF comments which stores one to many comments 
for almost every VoF case. 

One way of helping the VoF team is to show them similar 
cases to their current open one. The idea behind this is that 
historic cases, which are similar to the current one, could help 
in finding a solution. Especially the connected comments might 
provide hints regarding how a similar problem was solved 
before. To implement the first approach the data was prepared. 
This included merging the tables, deleting or replacing missing 
values, turning categorical attributes into numerical ones, 
scaling the data and finally using UMAP (McInnes et al., 2018) 
for dimension reduction. 

As a next step, several clustering models were trained 
with different algorithms like DBSCAN, HDBSCAN 
(Campello et al., 2013) and k-Means. The clustering results 
were compared regarding their quality. This was rated with 
different scores such as the silhouette score proposed by 
Rousseeuw (1987). The best clustering generated by  
k-Means was chosen to be implemented into the demonstrator. 

The second approach is to predict the duration of an open 
case. This could help the VoF team to prioritise their work – a 
case where a long duration is predicted could have a higher risk 
of causing a build stop, thus those cases should be focused on. 
The data were prepared in almost the same way as for the 
previous approach, except that a different scalar and no 
dimension reduction were used. Furthermore the label for the 
training was calculated from the start and end timestamp and 
the data were split into a training and a test set. After that 
different regression models were trained with the training  
data set: linear regression, lasso regression, support vector 

regression (all with scikit learn (Buitinck et al., 2013)) and a 
model tree (Wong, 2018). For the evaluation of the trained 
models the test data set was used and for each model the root 
mean squared error was calculated. The model tree performed 
best and had the lowest root mean squared error. 

The third machine learning approach was based on the 
experience that the results of some ontology queries are 
returning several hundreds of cases. So the goal for the last 
approach is to sort the results regarding their relevance, 
which would help the VoF team to find helpful cases faster. 
One way of estimating the relevance is to calculate the 
textual similarity between the case descriptions. If they are 
more similar, it is assumed that the cases are closer to each 
other. For this reason, three different natural language 
processing pipelines were set up: 

 The first one uses a bag of words like Manaa and 
Abdulameer’s (2018) approach with Jaccard (Niwattanakul 
et al., 2013) as a distance measure 

 The second one uses a self-trained word2vec model 
(Mikolov et al., 2013) and Word Mover’s Distance 
(Kusner et al., 2015) 

 The third one uses the word2vec model (Mikolov et al., 
2013), which is pre-trained on Google News, and Word 
Mover’s Distance 

In order to estimate the most suitable approach, some results 
have been rated by an expert. The second, self-trained 
model was chosen to be the most accurate. 

For the concessions use case, an ML model was trained to 
aid the concessions team in gathering essential information 
quicker. The model is used during a first assessment of the 
concession. In this phase the team estimates whether a 
diversion from a specific nominal tolerance is acceptable. 
Therefore, the team needs to find other concession cases that 
are similar to the current one and put them into context. If the 
actual value’s deviation from the nominal value is smaller than 
for the other accepted cases, the concession is likely to be 
accepted. This is also represented in a graph to facilitate 
quicker decision making. 

To speed up the search for relevant cases a k-nearest 
neighbour model was trained. During the pre-processing 
irrelevant data was dropped, some important missing 
information such as the examined nominal and actual value 
were extracted from a description text for each concession. The 
nominal and actual values that could not be extracted from the 
description were imputed with scikit-learn’s (Buitinck et al., 
2013) IterativeImputer, using single imputation with a Random 
Forest model with 50 trees to estimate the missing values. All 
data was then scaled and fed into the k-nearest neighbour 
model (shown in Figure 15 number 4). 

For evaluation purposes, a questionnaire with two types 
of questions was created. In the first task an expert rated a 
concession for similarity to five other concessions, these 
had to be sorted from most similar to least similar. One of 
these concessions was the nearest neighbour according to 
the k-nearest neighbour model and the other four were 
chosen randomly. Two experts evaluated four examples and 
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they always selected the case as the most similar which was 
chosen by the k-nearest neighbour model as well. 

In the second task the expert rated the accuracies of the 
nearest neighbours that were suggested by the model. Four 
different concessions with their five nearest neighbours 
were presented to the experts. Both experts considered 18 
out of those 20 proposals from the k-nearest neighbour 
model as a good pick. Overall, the evaluation seems to 
prove the quality of the model. 

7 Demonstrator implementation 

The VoF case was implemented first, followed by the 
concessions case. The intention was to test the possibility of 
extending the demonstrator for different applications. The 
test was successful, the same backend architecture was used 
by adding the microservices relevant to concessions. The 
frontend was duplicated and made accessible using a login 
page as shown in Figure 13. 

The general requirements for the frontend were the 
display of (as to see in Figures 14 and 15): 

 

1) a 3D-model of the part 

2) the issue located on the model 

3) information about the issue  

4) context relevant information about the issue 

5) filter and selection criteria. 

The frontends could also be independently coded with 
features relevant to the use case. This can also be seen 
comparing Figures 14 and 15. 

Figure 13 Login page to select the relevant use case 

 

Figure 14 VoF case frontend 

 

Figure 15 Concessions case frontend 
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The major differences between the two frontends are the 
options to query the ontology and the machine learning 
features, as they depend on the end user’s needs. In the VoF 
case there are five query options (as blue buttons) in the box 
annotated with the number 3 in Figure 14. The options 
allow the user to access contextual information such as: 

 Part number query fetches all the issues belonging to 
the part number under investigation. This provides the 
user an overview of all the problems on a particular part 
during assembly. 

 Problem identification query finds all issues with the same 
problem category. This makes it possible for the user to 
view previous solutions or know who they can contact to 
solve the current issue with similar circumstances.  

 Problem identification query with part number is a 
query similar to the previous query, but additionally 
filtered on a certain part number. Hence, the user can 
access information needed to solve an issue applicable 
to an explicit part.  

 Concession query provides the user all VoF cases 
related to the same concession as the current one. If a 
Part Physical has a concession, the concession itself 
can hold information about problem solving. 

 Cluster query provides the user with similar issues to 
the VoF issue under investigation, which is based on 
the machine learning clusters.  

The results of the above queries are displayed in the 
contextual information field (number 4 in Figure 14) on the 
frontend. If a result is of particular interest, further detailed 
information can be viewed by clicking on the contextual 
cases that are shown in a popup window. 

Contextual information about concessions is based on 
whether the issue is related to a concession or to a line item. 

For concessions there are four queries to support the 
user: 

 Part number query provides information about other 
concessions related to the same part. 

 Description query provides information about other 
concessions that were similarly described (using NLP 
algorithms). 

 Plant query finds concessions from the same plant as a 
certain concession. Plant-specific concessions can thus 
be managed and resolved more quickly. 

 Supplier query provides concessions with the same part 
supplier as the current concession. Certain trends or 
characteristics may be identifiable of individual suppliers 
and their related concessions. 

If a concession is related to line items, they can be selected 
for further information and for a k-nearest-neighbours 
query:  
 

 K-nearest-neighbours query is based on the machine 
learning model as mentioned in Section 6. The query 
result shows the most similar line items, and is visualised 
in a graph (upper right corner of Figure 15). The graph 
helps in judging where the actual measurement lies and 
what decisions were made previously. Hence, saving time 
and efforts during the decision making process.    

8 Demonstrator evaluation 

The development was conducted in agile sprints. This led to 
the evaluation of the demonstrator with the VoF team two 
times with an interval of approximately six months between 
them. The evaluation was done through a combination of a 
qualitative interview with feedback and followed by a 
usability study questionnaire. The interviews helped in 
capturing the positives and negatives of the demonstrator. 
The negatives and further improvement suggestions enabled 
the development of the demonstrator to suit the user 
requirements further. The questionnaire was used to capture 
the Perceived Usefulness, Perceived Ease of Use and User 
Acceptance (Davis, 1989). 

The summary results of the questionnaire for the VoF case 
are: Perceived Usefulness with 4.6, Perceived Ease of Use with 
3.9 and User Acceptance with 5 out of 5. The concessions use 
case implementation was evaluated twice with an interval of 
two months between each evaluation. Two members of the 
team were involved for both evaluations. The combined ratings 
on the questionnaire for the three categories were Perceived 
Usefulness with 4.56, Perceived Ease of Use with 4.2 and User 
Acceptance with 4.75 out of 5. 

In addition, a performance test was conducted with the 
concessions team to measure the time taken to carry out a 
couple of tasks on the demonstrator and on their existing 
system. The tasks included finding an open concession, its 
relevant information, historic information of similar cases and 
making a decision about the open case. With the demonstrator, 
the decision about the case was made in approximately two 
minutes and thirty seconds, whereas with the existing system it 
took approximately four minutes for the same case. The users 
also expressed the benefit of saving time, and suggested 
integration of further queries to automate daily tasks. 

The results show that users perceive the demonstrator to be 
useful, thus it has a high user acceptance. As it is still a 
demonstrator, the features are not fully implemented to the 
preferences of the users. Hence, there is room for improvement 
with respect to the ease of use. In addition, the feedback from 
the users indicated a possibility to use the same concept by 
different teams. An example given was for service engineers to 
manage service issues. 

The demonstrator has also proven to be scalable as five 
major data sources were integrated into it, see Figure 16 for 
further numbers. The ontology has also been extended with 
the new data sources. 
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Figure 16  Data integrated into the demonstrator 

 

Even with an increasing number of data sources throughout 
the development of the demonstrator, it has reacted in a 
robust manner. This is despite the significantly larger 
ontology queries and machine learning models. 

9 Findings 

For the research questions defined in Section 3, the project 
delivered initial evaluated answers. For RQ1, which looks 
for solutions to integrate heterogeneous data, the approach 
followed to clean and transfer the data into an intermediate 
database was the first solution. This was complemented by 
integration of an enterprise service bus which enables direct 
access of data in the desired format. The advantages of 
ontology mapping enable connecting enterprise data with 
the semantic middleware layer. 

Section 6 describes different ways machine learning 
algorithms can be used to provide value-added services to the 
users which provides answers to RQ2. A larger data set and 
evaluations from the end-users assisted in selecting suitable 
algorithms and also to improve their accuracies. However, a 
need to further standardise options for free text fields was 
identified as an improvement for future processes. This would 
further help machine learning algorithms to improve their 
accuracies. 

The complete system and research approach followed in 
the project illustrates how context relevant data can be 
generated and presented to the user, which is relevant for RQ3. 
The integration of the end-user in the process of development is 
crucial. Discussing with end-users possessing varying degree 
of experiences provides useful insights about the target group. 
The end-users assisted in defining the requirements for such a 
semantically connected system. The benefits of connecting 
different data sources and providing them with contextualised 
data were found to be advantageous in carrying out daily tasks. 
Furthermore, providing information through a centralised 
ontology provides flexibility for the development of new 
features on the existing software stack. This is relevant, as an 
industrial environment is dynamic and processes evolve  
with time. A modular and flexible software stack enables 

customisation with reduced effort, leading to quicker 
implementation. The software stack was selected and designed 
to suit the needs of multiple applications and end users. It was 
also observed that the same architecture could be used for 
multiple use cases, hence making it reusable. Therefore, an 
information system based on ontologies can be used as a 
tactical tool to bridge the time until the enterprise systems are 
updated or even as a strategic information platform. 

The system also encouraged end users to suggest 
creative front end features, which would help them carry out 
tasks quicker by using contextualised data in suitable 
graphical representations. 

10 Conclusions 

This paper presents the systematic design and development of a 
prototypical system to integrate semantic technologies into 
existing industrial infrastructure. In addition, the advantages of 
machine learning implementation on such applications  
are also discussed. The system supports functionalities  
such as interconnection of heterogeneous data sources, 
contextualisation of data for end users applications and 
adaptation to existing IT-infrastructure. There are currently 
efforts being made to further integrate the system into the work 
environment and current processes (at Rolls-Royce 
Deutschland). Owing the flexibility of the architecture, it is 
possible to integrate the system using various methods and 
tools. Some of the options are deploying it as a dedicated on-
premise IT solution, running it through a cloud platform or by 
customising existing PLM platforms such as Teamcentre. One 
of the information system’s key benefits is the ability to rapidly 
integrate information from a number of bespoke IT systems 
and link them to enterprise data. This enables an early 
realisation of business benefits while a strategic update of the 
data infrastructure is being developed. 

The presented results are a first step towards bringing data 
and information from various data sources within design and 
production together. The method enables Rolls-Royce to 
connect information from design, production and aftermarket 
and – as a result – to improve design, product characteristics as 
well as production method. The influence of production 
variation on the final product characteristics can now be better 
described, and production methods can be optimised 
understanding their impact on the design and in-service 
behaviour. However, integrating such new developments into 
the daily activities of designers and manufacturing engineers 
requires further planning and careful integration of these 
capabilities into existing workflows. Both, processes and 
toolsets will need to be adapted to enable the improvements for 
all potential users. 

The project opened up additional research questions such 
as consideration of a more diverse set of heterogeneous data 
sources, applying machine learning directly on ontologies and 
testing of scalability of the system with a larger ontology to 
name a few. 

With further digital transformation of the business, a wider 
source of data and systems will become available requiring 
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more integration. Additionally, the implementation of 
interpretation methods, evaluation methods and potential chat-
bot systems will drive the future development of semantic 
information systems. The future challenge towards a broader 
implementation of true systems engineering consists of 
understanding the variety of available data (structured and 
unstructured) and correlating such data and information. 
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