
200 Int. J. Security and Networks, Vol. 16, No. 3, 2021

Impact of post-quantum hybrid certificates on PKI,
common libraries, and protocols

Jinnan Fan, Fabian Willems and Jafar Zahed
Information Security Research Group,
School of Electrical Engineering and Computer Science,
University of Ottawa,
Ottawa, Ontario, Canada
Email: jfan084@uottawa.ca
Email: fabian.willems@uottawa.ca
Email: jzahe011@uottawa.ca

John Gray, Serge Mister and Mike Ounsworth*
Entrust,
Ottawa, Ontario, Canada
Email: John.Gray@entrust.com
Email: Serge.Mister@entrust.com
Email: Mike.Ounsworth@entrust.com
*Corresponding author

Carlisle Adams
Information Security Research Group,
School of Electrical Engineering and Computer Science,
University of Ottawa,
Ottawa, Ontario, Canada
Email: cadams@uottawa.ca

Abstract: In this work, we assessed the impact of post-quantum (PQ) cryptography on public
key infrastructure (PKI). First, we modified a commercially available certification authority
(CA) to issue ‘hybrid’ certificates (X.509 certificates with PQ extensions). Then we assessed
the impact of using these certificates on some existing protocols, including TLS, OCSP, CMP,
and EST, with open-source libraries OpenSSL and CFSSL, and with a commercially available
cryptographic toolkit. We found that most of the protocols and libraries we tested worked with
hybrid certificates, and some of the failures could be overcome with minor modifications to the
existing software. Our work differentiates from and extends previous work by focusing on the
impact of PQ algorithms on certificate issuance, revocation, and management protocols, which
are necessary for enterprises to manage PKI in their environments. The impact on TLS is also
investigated, allowing consistency with previous results to be evaluated.

Keywords: post-quantum cryptography; security; certification authority; certificate authority;
X.509 certificates; hybrid certificates; public key infrastructure; PKI; OpenSSL; transport layer
security; TLS; online certificate status protocol; OCSP; certificate management protocol; CMP;
enrollment over secure transport; EST.

Reference to this paper should be made as follows: Fan, J., Willems, F., Zahed, J., Gray, J.,
Mister, S., Ounsworth, M. and Adams, C. (2021) ‘Impact of post-quantum hybrid certificates
on PKI, common libraries, and protocols’, Int. J. Security and Networks, Vol. 16, No. 3,
pp.200–211.

Biographical notes: Jinnan Fan is a PhD student in Computer Science in the School of
Electrical Engineering and Computer Science, University of Ottawa. She has been working
with Dr. Carlisle Adams since 2018 and collaborated with several high-tech companies,
including Entrust. Her research interests include post-quantum cryptography, digital credentials
and privacy. She obtained her Master’s in Electrical and Computer Engineering from University
of Ottawa. Her Master’s thesis introduced a novel way to multi-show digital credentials, which
has been nominated for an award in 2019 within the Faculty of Engineering.

Fabian Willems currently studies for a Master’s in Electronic Business Technologies at
the University of Ottawa, Canada. His research interests include cryptography, information
privacy/security and computer security. Previously, he worked as an IT consultant and
IT administrator for multiple companies in Germany. He received a Diploma in Business
Administration with a focus on information technology from the University of Applied Sciences
FHDW in Bergisch Gladbach, Germany.

Copyright © The Author(s) 2021. Published by Inderscience Publishers Ltd. This is an Open Access Article distributed under the CC BY license.
(http://creativecommons.org/licenses/by/4.0/)

Impact of post-quantum hybrid certificates on PKI, common libraries, and protocols 201

Jafar Zahed is a Master’s student studying computer science at the University of Ottawa. Having
a great interest in cryptography, his master’s topic focuses on finding real-world applications
of homomorphic encryption. He has worked on several research projects in conjunction with
the University of Ottawa, such as training IBM Watson on cyber security, creating a decryption
tool for computer files infected by a particular ransomware, as well as determining the location
of that ransomware’s key generation algorithm, and using machine learning to distinguish APT
behaviour from user behaviour on an end-user workstation. He holds a Joint Honours BSc in
Computer Science and Mathematics from the University of Ottawa. He also currently works as
a programmer/analyst for the Government of Canada.

John Gray is a software architect and has been with Entrust. He is actively involved in
PKI development, architectural oversight and cryptographic protocol implementations. Having
a keen interest in quantum computation, he is active in researching engineering implications
of post-quantum cryptography and is a participating member in IETF discussions around
post-quantum transition strategies for public key infrastructure (PKI). He holds a BA in
Computer Science and a BMusA in Music Theory and Composition from Western University.

Serge Mister is a senior software security architect with Entrust where he focuses on the security
analysis of Entrust products and researches security issues and possible solutions in existing
computing environments. He has also co-authored several papers in the areas of s-box design,
substitution-permutation networks, and efficient implementation of elliptic curve cryptosystems.
He is currently involved in studying the impact of deploying post-quantum cryptographic
algorithms, including discussions with the IETF community on the use of post-quantum
algorithms in PKI environments. In the past he was involved with statistical testing of elements
of the CAST design procedure and with the Advanced Encryption Standard effort. He received
a Master’s degree from Queen’s University, Kingston, Canada after studying the cryptographic
strength of the alleged RC4 stream cipher.

Mike Ounsworth is a software security architect at Entrust. His day-job is primarily application
security architecture and penetration testing, with research projects in cryptography and
post-quantum cryptography. He is leading discussion at IETF around post-quantum transition
strategies for public key infrastructure (PKI), including primary and secondary authorship on
several internet drafts. He holds an MSc in Computer Science in Robotics and Artificial
Intelligence from McGill University, and an undergraduate degree in Computer Science with
concentrations in mathematics and physics from Queen’s University.

Carlisle Adams is a Professor in the School of Electrical Engineering and Computer Science
at University of Ottawa. Prior to his academic appointment in 2003, he worked for 13 years
in industry (Nortel, Entrust) in the design and standardisation of several cryptographic and
security technologies for the internet. His research interests and technical contributions span
applied cryptography, security, and privacy, including the CAST family of symmetric encryption
algorithms, secure protocols for PKI environments, access control in electronic networks, and
privacy enhancing technologies. He is a co-author of Understanding PKI: Concepts, Standards,
and Deployment Considerations, Second Edition, Addison-Wesley in 2003.

1 Introduction

1.1 Motivation

Advances in quantum computing have raised concerns
about whether the industry is ready to move to
post-quantum (PQ) cryptographic algorithms, particularly
for public key infrastructure (PKI) use cases. Research work
in this area is necessary to prepare the market to meet the
challenges of a PQ world and help to move towards PQ
cryptography.

We have seen in the past that even ‘straight-forward’
cryptographic migrations, such as SHA-1 to SHA-256,
have proved to be complex, time consuming, and fraught
with compatibility issues for many enterprises and site
owners (SHA-256 Transition Lessons Learned, 2011). PQ

algorithms represent significantly greater agility challenges
due to their differences from traditional cryptography, such
as their much larger key sizes. The existing PQ technologies
need to be studied to foresee barriers and design elegant
migration strategies.

In this paper, we study the quantum-readiness of
selected PKI components. Our goal is to test the impact
of particular PQ algorithms on common infrastructures,
specifically focusing on the most significant change from
traditional cryptography: large public keys and digital
signatures. To carry out this research we employed ‘hybrid’
certificates as defined in an IETF Internet Draft for ‘hybrid’
certificates (Truskovsky et al., 2018) as this allowed for
studying the impact of certificate size on various PKI
protocols, using a draft standard that implements NIST’s
call for ‘dual modes’ (NIST, 2020), without needing to

202 J. Fan et al.

modify clients or protocols. This enables us to provide
information to the community on where problems may be
encountered and to suggest mitigation.

1.2 Related work

Public key cryptography is a core part of many security
protocols in use today, including the ubiquitous TLS
and X.509 certificates. The realisation of large-scale
quantum computers able to break traditional public key
algorithms such as RSA and elliptic curve cryptography
(ECC) is becoming increasingly likely, with one prominent
researcher in 2016 estimating a ‘1/7 chance of breaking
RSA-2048 by 2026, 1/2 chance by 2031’ (Mosca, 2016)
and in 2017 ‘1/6 chance within 10 years’ (Mosca, 2018). In
Quantum Threat Timeline (2019), 22 experts were asked to
give their opinion on the likelihood of a significant quantum
threat to public key security. In 10 years 10/22 (45%) of
these experts thought there was a 30% chance or greater,
in 15 years 11/22 (50%) thought there was a 50% chance
or more, and in 20 years 20/22 (90%) thought there was
a 50% chance or greater that a significant threat would
arise. This possibility necessitates the development and
adoption of PQ public key schemes (signature, encryption,
and key agreement) that have sufficient strength against
both quantum and classical attacks.

The design and standardisation of PQ public key
algorithms is underway, including NIST’s Post-Quantum
Cryptography Standardization project (NIST PQC) (NIST,
2016; Chen et al., 2016), the IETF RFCs describing
the XMSS Signature Scheme (Huelsing et al., 2018) and
the LMS Signature Scheme (McGrew et al., 2019), and
internet drafts such as Housley et al. (2019). The NIST
standardisation effort is scheduled to make draft standards
for several candidate algorithms available between 2022
and 2024. Twenty-six algorithm submissions (9 of which
are signature algorithms) are active candidates in round 2
of the project, at the time of writing.

The integration of PQ public key algorithms into
existing protocols has inspired some research as it presents
several challenges:

• PQ public key signature algorithms generally have
public keys and signatures that are significantly larger
than traditional public key schemes.

• PQ public key algorithms may require more
computation than traditional algorithms.

• The introduction of PQ public key algorithms may
cause backwards compatibility issues for systems that
cannot be upgraded in-place to support new
cryptographic algorithms (i.e., crypto agility).

• PQ public key algorithms may not be drop-in
replacements for traditional algorithms, as they may
impose additional constraints, such as the concerns
raised regarding dangers of stateful hash-based
signatures in the responses to NIST’s request for
comments on stateful hash-based signatures (Marks

et al., 2019), and the fact that NIST plans to
standardise multiple cryptographic algorithms where
each algorithm is only approved for certain use-cases
(Moody, 2018).

Also, the trade-offs between public key sizes, signature
sizes, computational costs, algorithm constraints, and
current confidence in algorithm security make it likely that
different algorithms or algorithm parameters will be chosen
for different applications.

ETSI has published a whitepaper (Pecen et al., 2015)
that includes a discussion of X.509 certificates, IPSec
(IKEv2), TLS, S/MIME, and SSH. This work summarises
how cryptography is used in the protocols, suggests what
needs to be changed to make the protocols quantum-safe,
and points to research on making the needed changes.
An internet draft (Truskovsky et al., 2018) has been
published proposing adaptations for X.509 certificates,
certificate signing requests, and certificate revocation
lists (CRL), that add support for PQ public keys and
signatures while remaining usable by legacy software.
Some of these adaptations have been deployed in prototypes
(Kampanakis et al., 2018) (including support for the EST
certificate enrollment protocol) and early commercial
applications (Press Release: CSS and ISARA Introduce
the First and Only Quantum-Safe, Full-Stack PKI, https://
www.keyfactor.com/press-releases/css-and-isara-introduce-
the-first-and-only-quantum-safe-full-stack-pki/). PQ key
agreement schemes have also been experimentally deployed
(Braithwaite, 2016; Langley et al., 2018).

The impact of increased public key and signature
sizes for PQ public key signature schemes has been
investigated in Bindel et al. (2017), which studied X.509
certificates, TLS, and S/MIME. The research found that
the tested libraries could successfully parse certificates
exceeding 1 MB in size, but despite this some popular
TLS implementations could not establish connections with
TLS servers having 90 kB certificates. For S/MIME, of the
five implementations tested, only Mozilla Thunderbird had
problems handling large certificates. Related source code
has been made available by the authors. Later research
Kampanakis et al. (2018) studied TLS, DTLS, QUIC, and
IPSec, and focused on assessing the impact that increased
protocol message size, the resulting transmission delays
and increased number of network packets would have
on these protocols. The research found that the increased
protocol message size could be successfully handled
by both the protocols and network. The experiments
with the HSS signature scheme showed non-negligible
performance cost to the adoption of PQ algorithms. In
Crockett et al. (2019) the TLS and SSH protocols were
adapted using various approaches for implementing PQ
and hybrid key exchange and authentication. Furthermore,
some researchers have focused on integration of PQ
cryptographic implementations into open-source libraries.
For example, Chang et al. (2014) presented a full
PQ SSL/TLS library using publicly available parameters,
created by adapting PolarSSL. Butin et al. (2017) provided
a prototype integration of the XMSS hash-based signatures

Impact of post-quantum hybrid certificates on PKI, common libraries, and protocols 203

(HBS) scheme with OpenSSL in order to bring PQ
authentication closer to practice. They implemented support
for TLS and S/MIME in OpenSSL and found that the use
case of S/MIME is much more amenable to HBS than the
use case of TLS.

The simplest way to use PQ algorithms with X.509
certificates would be to place PQ public keys and signatures
directly in the existing certificate fields. Certificates
constructed in this way (‘pure PQ certificates’) could only
be used with applications that understand the PQ algorithms
used. The PQ certificates constructed in this paper follow
the IETF Internet Draft for ‘hybrid’ certificates (Truskovsky
et al., 2018), later branded as ‘ISARA CatalystTM Agile
Digital Certificate Technology’ (Isara Catalyst, 2019).
Hybrid certificates place PQ data1 – public keys, algorithm
identifiers, and signatures, into non-critical X.509 v3
certificate extensions. A different approach is described
in an early stage IETF Internet Draft, which combines a
collection of PQ and ‘classical’ algorithms into a single
‘composite’ algorithm, with individual public key and
signature objects encapsulating multiple keys and signatures
(Ounsworth and Pala, 2019). In this paper, we used the
hybrid format because the non-critical certificate extension
mechanism allows us to study the impact of PQ certificate
sizes without making any source-code modifications to
the software being studied other than to the certification
authority (CA). Therefore, this experiment is studying the
backwards compatibility impact of increased certificate size
on non-PQ-aware PKI components and the ease with which
PQ algorithm support can be added.

1.3 Our contributions

This paper makes the following contributions:

1 Modifying a CA to issue hybrid certificates: By
following the IETF Internet Draft (Truskovsky et al.,
2018), our modified CA is designed to be capable of
issuing hybrid certificates, which contain both an RSA
and a PQ public key and signature.

2 Evaluating the backwards compatibility of various
protocols using PQ hybrid certificates: We test
existing protocols using constructed hybrid certificates
of varying sizes. Based on the test results, we
highlight the protocols that will not require changes
and also determine the maximum certificate size that
will not have backwards compatibility issues with the
software we tested.

Our work differentiates from and extends previous work
by focusing on the impact of PQ algorithms on certificate
issuance, revocation, and management protocols, which
are necessary for enterprises to manage PKI in their
environments. The impact on TLS is also investigated,
allowing consistency with previous results to be evaluated.

Our experiments share some common ground with the
experiments in Bindel et al. (2017) and Kampanakis et al.
(2018). The results for Java-based TLS match the results

in Bindel et al. (2017), who claim that Java completed
TLS connections with extensions of size 1.3 MiB (3.4
MiB confirmed in our experiments). They also claim that
OpenSSL can handle an 80 KiB extension but not a 90
KiB extension, while the largest compatible certificate size
has been determined as 100 KiB in our experiments. Also,
the failures of the OpenSSL TLS client observed in this
work match the results in Kampanakis et al. (2018), which
claims that 135 KB certificate chains with 16 Kb keys were
failing at the OpenSSL client. Moreover, we determined
the specific maximum certificate size (100 KiB) that the
OpenSSL TLS client will accept and observe that this
maximum size can be extended.

The differences between this paper and Bindel et al.
(2017) and Kampanakis et al. (2018) are as follows.

Table 1 Comparisons with previous work

Certificate Real PQ Tested Maximum

format extensions protocols sizes
determined

Bindel et al. Second certificate 5 TLSv1.2, 5

(2017) in extension CMS,
S/MIME

Kampanakis Truskovsky HSS TLSv1.2, 5

et al. (2018) et al. (2018) IKEv2,
DTLS,
QUIC

This paper Truskovsky SPHINCS+ TLSv1.2, X
et al. (2018) OCSP,

CMP,
EST

As shown in the table, only Kampanakis et al. (2018)
and this paper follow the hybrid certificate format of
Truskovsky et al. (2018) and test a real PQ algorithm.
Furthermore, our experiments complement both Bindel
et al. (2017) and Kampanakis et al. (2018) by evaluating
other protocols (i.e., OCSP, CMP, and EST).

2 Methodology

This section will introduce the scope of this paper and the
procedure of our experiments.

Generally, as our contributions, we create a proof
of concept CA to issue public key certificates using
PQ cryptographic algorithms, and then determine the
impact of the resulting certificate size on various
software components that are used in a PKI environment,
standard protocols, and common libraries. If applicable, we
provide recommendations of changes or workarounds for
popular libraries and protocols in order to address their
compatibility issues.

Specifically, the procedure of our experiments is as
follows:

1 Select one PQ algorithm that is currently going
through the NIST PQC competition, and select a

204 J. Fan et al.

parameter set for that algorithm representing ‘large’
bandwidth for that algorithm.

2 Design and create the software components needed to
prototype a CA with a PQ private key based on the
selected algorithm and parameter set, which means
that the CA would be able to issue and sign
certificates using the CA’s PQ key. The certificates
created are hybrid certificates because they contain
two public keys and signatures: one PQ and one
conventional (e.g., RSA or ECC).

3 Once each end entity certificate has been generated,
assess the impact of using that certificate on the
following certificate lifecycle protocols:

• transport layer security (TLS)

• online certificate status protocol (OCSP)

• certificate management protocol (CMP)

• enrollment over secure transport (EST).

When testing, look at whether or not the certificate
size impacts the ability to issue or use the certificate
in various scenarios; also measure performance
characteristics. Note that the clients and servers
implementing these protocols were not modified, so
they do not ‘understand’ the PQ signature or key, and
will ignore them during X.509 processing because
they are in non-critical certificate extensions. We are
purely testing for failures and performance impacts
caused by the large certificate size.

Note that in all the experiments, only the end entity
certificate contained additional PQ data. Some protocols,
such as OCSP and TLS, exchange chains of certificates,
and implementations may have limits not just on the size
of individual certificates, but on the size of the chain
or message that contains the chain. Thus, for example,
even if our experiment shows that a protocol works with
SPHINCS+, it may be that problems would arise for a long
certificate chain.

The rest of the paper is organised as follows: Section 3
describes the structure of the hybrid X.509 certificates, the
modification we made to the CA to generate PQ hybrid
certificates, and the generated hybrid certificates used in
the experiments. Section 4 describes the experimental setup
and results of using the hybrid certificates over various
protocols. Section 5 summarises the findings. Section 6
provides some future experimental directions.

3 Creation of hybrid certificates

3.1 SPHINCS+

NIST PQC was initiated by the National Institute
of Standards and Technology to solicit, evaluate, and
standardise one or more PQ (quantum-resistant) public
key cryptographic algorithms (NIST, 2016). Hash-based

signatures are the first PQ signature algorithms seeing
public adoption (Huelsing et al., 2018; McGrew et al.,
2019).

SPHINCS-256 (Bernstein et al., 2015) is a high-security
PQ hash-based signature scheme, which provides 128-bit
security even against attackers equipped with quantum
computers and can be a drop-in replacement for current
signature schemes because of its stateless property.
Signatures are approximately 41 KB, public keys are
approximately 1 KB, and private keys are approximately
1 KB.

Figure 1 X.509 certificates today

Figure 2 Hybrid certificates: X.509 certificate extension

SPHINCS+ advances the SPHINCS signature scheme.
Particularly, it reduces the signature size (e.g., 30 KiB).2
SPHINCS+ from round 1 of the NIST PQC was the
current hash-based algorithm in the NIST competition at the
beginning of our experiments.

We used one instantiation (sphincs-sha256-256f) of the
round 1 version of SPHINCS+ in our hybrid certificates
because it is the largest SPHINCS+ parameter set that uses
the SHA family of hash functions. It has a public key +

Impact of post-quantum hybrid certificates on PKI, common libraries, and protocols 205

signature size of 64 + 49,216 bytes. sphincs-sha256-256f
is a fast (‘f’ for ‘fast’) SPHINCS+ implementation based
on the hash function SHA-256 for NIST security level 5
(Bernstein et al., 2017).

3.2 Hybrid certificate format

In the hybrid certificate format (Truskovsky et al., 2018),
all PQ data (public keys and signatures) is in non-critical
X.509 certificate extensions, so protocols can process
these certificates even without supporting PQ cryptographic
algorithms.

A simplified view of the format of X.509 certificates
used today (which only contain a single public key and a
single signature) and the hybrid certificate with non-critical
X.509 certificate extensions are shown in Figures 1 and 2.

As we can see, there are three PQ extensions in the
hybrid certificates:

• Subject alt public key info: Carries the alternative
(PQ) public key bits and the algorithm identifier
specifying the public key type.

• Alt signature algorithm: Contains the identifier for the
alternative (PQ) signature algorithm used by the CA.

• Alt signature value: Contains the alternative (PQ)
signature bits.

In the X.509 standard version 3 (Cooper et al., 2008), the
body of the certificate, called a tbsCertificate (‘tbs’ for
‘to be signed’), contains all the fields in Figure 1 except
the last two (the conventional RSA signature by the CA
over the tbsCertificate and its identifier). As for hybrid
certificates in Figure 2, the preTBSCertificate is created
by removing the third PQ extension, AltSignatureValue, and
the signature field from the tbsCertificate. The ‘inner’
PQ signature (AltSignatureValue) will be computed over the
preTBSCertificate. The ‘outer’ RSA signature will be
over the tbsCertificate including all the PQ extensions,
even the PQ signature bytes (AltSignatureValue).

To verify the PQ signature in the PQ extensions, the
tbsCertificate field is extracted from the certificate
and the AltSignatureValue extension and signature fields
are removed, resulting in a preTBSCertificate. Then
using the algorithm specified in the AltSignatureAlgorithm
extension of the preTBSCertificate and the alternative
public key from the CA’s SubjectAltPublicKeyInfo
extension, verify the alternative signature.

3.3 Modification of a CA

We constructed a prototype hybrid CA by modifying an
existing conventional one, the entrust security manager
product. The hybrid CA can generate hybrid end entity
certificates and sign the end entity certificates using PQ
algorithms. This modified CA uses a new external software
component, which we named pqcrypto, to sign certificates
with a PQ algorithm.

Figure 3 Hybrid certificates creation ‘pipeline’
(see online version for colours)

Figure 3 shows an overview of the modified CA. The
creation pipeline of certificates has been modified so that
immediately before signing the tbsCertificate, it would
be transited as a byte array to pqcrypto which will insert the
PQ extensions into the tbsCertificate, and then transit
it back to the CA to be signed.

Within the pqcrypto module, we are using the reference
implementation submitted to NIST, sphincs-sha256-256f
(SPHINCS+ Team, 2018) which is a C-based
SHA256-SPHINCS implementation.

We have implemented a Java application that can verify
the PQ extensions in a hybrid certificate as described in
the IETF draft (Truskovsky et al., 2018). However, for
the experiments using certificates containing PQ extensions
in this paper, the PQ extensions were present in the
certificates, but not actually used, because we were studying
the backwards compatibility of unmodified clients and
servers as they exist today.

3.4 Hybrid certificates of various sizes

Our modified CA is capable of issuing the following types
of hybrid certificates:

• Conventional: No alternative (PQ) algorithm
extensions are inserted.

• Hybrid-size-only: The three PQ extensions are added
to the generated certificates. The content of the
subject alt public key info and alt signature value
extensions is set to random data of a configurable
size. The alt signature algorithm extension is set to a
fixed proprietary object identifier value.

• Hybrid-sphincs+: Three extensions are added to the
generated certificates. The content of these extensions
corresponds to a valid SPHINCS+ signing algorithm
and includes a genuine SPHINCS+ signature, with a
fixed proprietary object identifier value in the alt
signature algorithm extension.

Hybrid certificates of varying sizes were produced
with the modified CA in order to test the backwards
compatibility and performance of applications that use
various cryptographic protocols involving certificates.

The certificates we used for testing are shown in
Table 2. Note that the results in the table are for NIST PQC
round 1 candidates.

For each end entity certificate, the PQ extensions
were generated having each of the sizes shown in the

206 J. Fan et al.

table above. As for ‘P’ and ‘G’, each of them just
contains the alternative (PQ) extensions of the respective
sizes of random data, not the ‘real’ PQ public key
and signature generated by picnicl5ur or GeMSS256.
These two algorithms were chosen as they represent the
largest public key size (GeMSS256) and signature size
(picnicl5ur) of all NIST PQC first round candidates, which
complements SPHINCS+ which represents the largest
hash-based signature.

Since lattice-based schemes do not represent an extreme
in either public key or signature size, they were not
explicitly studied, but are expected to work wherever the
larger algorithms do.

Table 2 The approximate* size of the experimental hybrid
certificates in bytes

PQ public key PQ signature Certificate

N N/A N/A 1,029
S 64 49,216 50,434
P 65 209,478 210,692
G 3,603,792 104 3,605,052

Notes: N for ‘certificate with no PQ extension’
S for ‘a hybrid certificate with sphincs-sha256-256f

extensions (real SPHINCS+)’
P for ‘a hybrid-size-only certificate with picnicl5ur size

extensions’
G for ‘a hybrid-size-only certificate with GeMSS256 size

extensions’.
*different certificates were used with different protocols,
and the size of different certificates with the same PQ
extensions slightly varies due to the information included
in the certificates (e.g., the name in the certificate,
and other extensions needed for the protocol).

4 Experimental setup and results

In this section, we will use the certificates listed in Table 2
for experiments. The experimental setup and results are
provided. Also, the test results are summarised in Table 3
in the next section.

4.1 TLS

The TLS protocol negotiates cryptographic parameters and
uses them to establish a secure communication channel. The
current version TLS 1.3 was defined in Rescorla (2018).
However, at the time of writing, TLS 1.3 is still in early
adoption and not all of the tested clients support it, so
testing was done with TLS 1.2 (Dierks and Rescorla, 2008).

To study whether the TLS 1.2 connection between
servers and clients is able to handle hybrid certificates of
different sizes, we tested using a commercially available
Java toolkit, Entrust Authority Security Toolkit for the Java
Platform, and the OpenSSL command line tool.

1 Java TLS: A commercially available Java toolkit, the
Entrust Security Toolkit for the Java Platform, was

used on Java 1.7 64-bit to exercise the Oracle Java
TLS implementation through the JSSE API. The
toolkit contains two TLS samples: a simple TLS
server and a simple TLS client. The results show that
the TLS 1.2 handshake succeeds with all four tested
sizes of hybrid certificate. Note that the time
consumed for the TLS handshake to complete
increases as the certificate size increases, from less
than 1 second (119 ms) with no PQ extensions to
1815 ms with GeMSS256 size extensions, even
though we are not invoking the PQ cryptographic
algorithm. It was expected that the length of time
would increase as the certificate size increased. We
did not further analye the performance characteristics
introduced by larger certificates, network latency and
protocol overhead as these things are discussed in
detail in Kampanakis et al. (2018).

2 OpenSSL TLS: A TLS server was started using
OpenSSL 1.0.2p 14 August 2018 on Windows 8.1
Enterprise and a client was started using OpenSSL of
both version3 1.0.2k-fips 26 January 2017 and 1.1.1b
26 February 2019 on CentOS 7.

It was observed that the server and client functionality
are able to establish a TLS connection when using
a real SPHINCS+ extension (TLSv1.2 handshake with
cipher ECDHE-RSA-AES256-GCM-SHA384). However,
when using the hybrid certificate with picnicl5ur size and
GeMSS256 size extensions, the connection could not be
successfully established (TLSv1.2 handshake with no cipher
as the client stopped establishing the connection while
reading the server certificate). We were able to connect to
the OpenSSL server using a Java-based TLS client.

A stock OpenSSL 1.1.1b 26 February 2019 was
debugged to identify the maximum certificate size that
could be used successfully with an OpenSSL client. The
maximum size of TLS response accepted by the client was
found to be 100 ∗ 1,024 = 102,400 bytes by default. The
API function SSL CTX set max cert list4 can be used
to allow the TLS client to connect even when a larger
certificate has been used (e.g., the maximum size for TLS
response could be set to 250,000 bytes to handle a single
picnicl5ur size certificate, or 4,000,000 bytes to handle
a single GeMSS256 size certificate, or more to handle
a chain). The OpenSSL 1.1.1b 26 February 2019 TLS
client was modified to call SSL CTX set max cert list
and re-compiled then the TLS client was re-tested. The
updated client successfully connected for all four tested
certificate sizes.

4.2 OCSP

OCSP is an internet protocol used for obtaining the current
revocation status of an X.509 digital certificate without
requiring CRLs, described in Santesson et al. (2013). OCSP
is more likely to provide timely revocation information than
with CRLs.

Impact of post-quantum hybrid certificates on PKI, common libraries, and protocols 207

4.2.1 OCSP with command line tools

An overview of how we used our hybrid certificates with
OCSP is shown in Figure 4. The client creates an OCSP
request, which may or may not be signed with a hybrid
certificate (step 1), and sends the OCSP request to the
OCSP responder (step 2). Then the responder will create an
OCSP response which is signed with its hybrid certificate
(step 3), and send back the OCSP response to the client
(step 4). All signatures in this experimental setup use only
the entity’s RSA key, but the messages transmitted in
steps 2 and 4 contain certificates with PQ extensions, so
they are larger than normal.

Figure 4 OCSP with the use of hybrid certificate

In order to study the impact of certificate size on both
the OCSP client and responder, we tested the OpenSSL
1.0.2k-fips 26 January 2017/1.1.1b 26 February 2019 and
CFSSL5 1.3.2 as command line servers on CentOS 7 while
OpenSSL 1.0.2p 14 August 2018 was used as a command
line client on Windows 8.1 Enterprise. We found that
the OCSP servers (responders), as implemented by both
tools, work for all of the four sizes of hybrid certificates.
The OpenSSL server works for the OCSP requests with
or without a signature signed by the client using its
‘conventional’ RSA key, which is stored in a hybrid
certificate. In the signed case, this hybrid certificate will
be sent along with the signed OCSP request to the OCSP
responder. Note that the CFSSL server was only tested with
OCSP requests without a signature since the OCSP server
does not support signed OCSP requests.

However, the OpenSSL OCSP client functionality fails
when picnicl5ur-size and GeMSS256-size extensions are
returned. A generic error message ‘error querying OCSP
responder’ was displayed by the client.

A stock OpenSSL 1.1.1b 26 February 2019 was
debugged to identify the maximum certificate size that
could be used successfully with an OpenSSL OCSP client.
Similar to the TLS findings in Section 4.1, the maximum
size of OCSP response was found to be set to 100 ∗
1,024 = 102,400 bytes by default. We determined that
the API function OCSP set max response length6 allows
the OCSP client to process a larger certificate (e.g.,
the maximum size for OCSP responses could be set to
250,000 bytes to handle a single picnicl5ur size certificate,
or 4,000,000 bytes to handle a single GeMSS256 size
certificate, or more to handle a chain). Then the OpenSSL

1.1.1b 26 February 2019 OCSP client was modified
to include a call to OCSP set max response length,
re-compiled and re-tested. The modified client successfully
performed OCSP for all four tested certificate sizes.

4.2.2 OCSP with browsers

An overview of web browsers performing OCSP revocation
checking is shown in Figure 5:

1 The web browser (client) connects to a website over
the HTTPS protocol.

2 The web server sends back the certificate, which
contains the URL (address) of the OCSP responder in
the certificate’s authority info access (AIA) extension.

3 The browser sends an OCSP request to the
corresponding OCSP responder.

4 The responder sends back the OCSP response which
is signed with one of the hybrid certificates from
Table 2. Note that only the messages transmitted in
this step (step 4) are larger than standard ones
because of the PQ extensions.

In our study of web OCSP implementations, we tested
Mozilla Firefox 66.0.3 (32-bit) and Internet Explorer
(IE) 11.0.9600.19326 as the OCSP clients on Windows
8.1 Enterprise. The OpenSSL 1.1.1b 26 February 2019
command line tool on CentOS 7 was used both for the
OCSP responder and for the web server hosting the web
page fetched in the web browser to trigger an OCSP
request. The status of the web certificate was set to
‘revoked’ for the purpose of identifying whether or not
the OCSP response was correctly interpreted by the web
browser. Because some web browsers by default ignore
errors when fetching OCSP responses, if a ‘valid’ status
had been returned, it would have been hard to determine
whether or not the OCSP response was in fact correctly
processed. In our test, if the OCSP response was correctly
interpreted, a ‘revoked’ error massage would be displayed
by the web browser. Before testing, the CA root certificate
needed to be imported into the browsers’ certificate store.
Also, the OCSP caches on both Firefox and IE needed to
be deleted before each test. We did not test on Google
Chrome because OCSP checks are disabled by default in
recent versions (Langley et al., 2012).

Figure 5 OCSP with the web browser

We found that the IE client works for all four
sizes of OCSP response. However, it was observed
that the Firefox functionality fails when picnicl5ur-size
and GeMSS256-size extensions are returned. A generic

208 J. Fan et al.

error message SEC ERROR OCSP MALFORMED RESPONSE was
displayed by the web browser. It seems like there is a limit
for the certificate size in Firefox, since the same response
sizes are accepted by IE.

To identify the maximum size of OCSP responder
certificate (or certificate chain) that is successfully
handled by the Firefox OCSP client, a proprietary
tool was used that allows real-time interception and
modification of transmission control protocol (TCP)
packets. Specifically, we deleted portions of different
sizes in the large returned certificate extensions in
real time when receiving the OCSP response, and
found the size for which Firefox’s error message
changed from SEC ERROR OCSP MALFORMED RESPONSE to
SEC ERROR OCSP SERVER ERROR (this second response
likely arises because the certificate has an invalid signature
due to our modification, but it shows that the certificate
is now being processed). With this technique we found
that 216 – 1 (65,535) bytes is the maximum size of OCSP
response which the Firefox OCSP client accepts.

We also noticed by observing the HTTP messages with
Wireshark7 that IE uses an HTTP GET request, while
Firefox is using an HTTP POST request. Both request
methods POST and GET are allowed in Santesson et al.
(2013), Appendix A1.

We observed that the OpenSSL 1.0.2k-fips 26 January
2017 can only handle the POST form of OCSP queries as
documented.7 OpenSSL 1.1.1b 26 February 2019 was found
to be able to handle both of the methods, even though the
documentation has not been updated.

4.3 CMP

CMP is an internet protocol used by a client system to
obtain X.509 certificates from a server (i.e., a CA) in PKIs,
which is described in the standards document (Adams et al.,
2005).

In this experimental setup, the non-PQ-aware CMP
client generates a certificate request (CMP initialisation
request message) containing an RSA public key, and the
CA responds with a CMP initialisation response message
containing two certificates (one signing and one encryption
containing a server-generated key) with the additional PQ
extensions for the end entity.

We tested with the size of the PQ extensions from 0
to GeMSS256 size, using CMP with our internal software
and toolkit, Entrust Authority Security Manager and Entrust
Authority Security Toolkit for the Java Platform. The results
show that there were no issues with certificate creation for
any of the requested sizes.

4.4 EST

EST is a simple, yet functional, CMP in PKIs, described in
Pritikin et al. (2013).

We tested whether the client system can successfully
receive all four sizes of hybrid certificates from Table 2
using EST from the CA, as implemented in Entrust

Authority Administration Services. The main steps are
shown in Figure 6. The results show that the CA can
successfully issue X.509 certificates with PQ extensions,
and the client can successfully receive them at all tested
sizes. There was no noticeable increase in execution time,
despite the increase in certificate size.

Figure 6 Obtaining X.509 certificates over EST
(see online version for colours)

4.5 macOS issue

We also noticed that, on macOS High Sierra, the act of
opening hybrid certificate files in the Finder application
takes a significant amount of memory. As shown in
Figure 7, the memory usage for rendering a certificate is
quadratic (R2 = 0.999) in the size of the certificate, and
even a modestly-sized PQ certificate exhausted both the
RAM and virtual disk space available to the system.

Figure 7 Memory usage when parsing hybrid certificates in
MacOS certificate viewer (see online version
for colours)

The X.509 certificate could not be displayed (viewing
certificates in a macOS finder window) when the hybrid
certificate had a size larger than picnicl5ur (i.e., 210,692
and 3,605,052 bytes shown in the figure), by which point
the ‘keychain access’ process was reported to be using
around 75 GB of RAM and was non-responsive.

The MacBook Pro used in this test was equipped with a
2.8 GHz Intel Core i7 processor and 16 GB of 2,133 MHz
LPDDR3 memory and had approximately 104 GB of free
disk space at time of testing.

5 Discussion

The experimental results for the backwards compatibility of
hybrid certificates on different standard protocols, TLSv1.2,

Impact of post-quantum hybrid certificates on PKI, common libraries, and protocols 209

OCSP, CMP, and EST, using different tools have been
summarised in Table 3.

Table 3 Experimental results over various protocols using X.509
hybrid certificates

Protocols and toolkits Sizes tested Failure occured
N S P G at (bytes)*

TLSv1.2 Server OpenSSL -
Java -

Client OpenSSL H# H# 100 ∗ 1,024 + 1
Java -

OCSP Server OpenSSL -
CFSSL -

Client OpenSSL H# H# 100 ∗ 1,024 + 1
Firefox # # 216

IE -
CMP -
EST -

Notes: Sizes: N (1 KB), S (50 KB), P (210 KB), G (3.6 MB).
Size details in Table 2.
*‘-’ denotes no failures at any of the tested sizes. success, # failure and H# failures could be
overcome with a minor code change to the
application to set a larger max message size.
Note that failure values are the overall size of the TLS
or OCSP response message, not specifically the certificate.

We can see from the table that:

• OpenSSL’s TLSv1.2 server implementation works
with all tested certificate sizes; OpenSSL’s TLSv1.2
client implementation by default works with hybrid
certificates of the size needed for the
sphincs-sha256-256f extensions (102,400 byte limit
found to be set by default in the libraries) but the
maximum size is able to be modified by calling an
API as described in Subsection 4.1.

• Java TLSv1.2 (invoked through a Entrust Authority
Security Toolkit for the Java Platform sample
application) works at all tested certificate sizes.

• OCSP servers (both OpenSSL and CFSSL) work with
all tested certificate sizes; IE’s OCSP client works
with all tested certificate sizes; Firefox’s OCSP client
fails for certificates larger than 216 – 1 = 65,535
bytes; the OpenSSL OCSP client works with hybrid
certificates of the size needed for the
sphincs-sha256-256f extensions (102,400 byte limit
found to be set by default in the libraries) but the
maximum size is able to be modified by calling an
API as described in Subsection 4.2.

• CMP (Entrust Authority Security Manager and
Entrust Authority Security Toolkit for the Java
Platform) works with all tested certificate sizes.

• EST (in Entrust Administration Services) works with
all tested certificate sizes.

In conclusion, most of the protocols and libraries we tested
work smoothly with the hybrid certificates, and some of the
failures can be overcome with minor modifications to the
existing software.

6 Future work

This paper aims to provide guidance to the community
about the impact of particular PQ algorithms, and
specifically the impact of the resulting hybrid certificate
sizes, on common infrastructures. In order to provide more
examples of safe migration paths where they exist and
recommend changes (mitigation) based on the discovered
issues, here are some possible directions to expand the
experiments:

• Create a publicly accessible CA that can generate
demo PQ certificates for the community to test. There
are several possible avenues:

a Extend the CA to provide pure PQ certificates
instead of hybrid certificates, redoing size
analysis.

b Extend the CA to provide composite certificates
following the internet draft (Ounsworth and Pala,
2019), redoing size analysis.

c Extend the original certificate generation by
implementing additional PQ algorithms or
parameter sets (e.g., Dilithium [Ducas12019]).

d In addition to the end entity certificates being
hybrid, the CA certificate should also be a hybrid
certificate with two keys: one PQ and one
conventional (e.g., RSA or ECC).

• Test other protocols and data formats, for example,
Simple Certificate Enrollment Protocol (SCEP),
Security Assertion Markup Language (SAML),
eXtensible Markup Language (XML) Signatures, etc.

• Provide migration and implementation guidelines for
protocols that require design or architecture changes
in order to support PQ algorithms either alone or in a
hybrid mode.

• Implement the CA verifier and client verifiers to
support the verification of PQ extensions in hybrid
certificates.

• Improve the measurement of execution time by
applying, for example, JMeter, and determine
algorithmic or implementation causes of observed
slowdown that results from increased certificate size.

• Include other protocol-specific testing metrics (e.g.,
bandwidth, number of packets, increased congestion,
etc.).

• Further study performance and compatibility impacts
to TLS.

210 J. Fan et al.

a On commonly used web browsers.

b On internet of things (IoT) devices; particularly
studying the feasibility of PQ cryptography in
severely memory and bandwidth contrained
environments.

Acknowledgements

The authors gratefully acknowledge financial support for
this work provided by MITACS through the MITACS
Accelerate Program.

References

Adams, C., Farrell, S., Kause, T. and Mononen, T. (2005) Internet
X.509 Public Key Infrastructure Certificate Management
Protocol (CMP), RFC 4210, RFC Editor, September [online]
http://www.rfc-editor.org/rfc/rfc4210.txt (accessed 14 August
2019).

Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T.,
Niederhagen, R., Papachristodoulou, L., Schneider, M.,
Schwabe, P. and Wilcox-O’Hearn, Z. (2015) ‘SPHINCS:
practical stateless hash-based signatures’, in Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, Berlin, Heidelberg, April,
pp.368–397.

Bernstein, D.J., Dobraunig, C., Eichlseder, M., Fluhrer, S.,
Gazdag, S.L., Hülsing, A., Kampanakis, P., Kölbl, S., Lange, T.,
Lauridsen, M. et al. (2017) SPHINCS+ Submission to the NIST
Post-Quantum Project, December.

Bindel, N., Herath, U., McKague, M. and Stebila, D. (2017)
‘Transitioning to a quantum-resistant public key infrastructure’,
in International Workshop on Post-Quantum Cryptography,
Springer, pp.384–405.

Braithwaite, M. (2016) ‘Experimenting with post-quantum
cryptography’, in Google Securtiy Blog, July.

Butin, D., Wälde, J. and Buchmann, J. (2017) ‘Post-quantum
authentication in OpenSSL with hash-based signatures’, in
2017 Tenth International Conference on Mobile Computing and
Ubiquitous Network (ICMU), IEEE, pp.1–6.

Chang, Y-A., Chen, M-S., Wu, J-S. and Yang, B-Y. (2014)
‘Postquantum SSL/TLS for embedded systems’, in 2014 IEEE
7th International Conference on Service-Oriented Computing
and Applications, IEEE, pp.266–270.

Chen, L., Jordan, S., Liu, Y-K., Moody, D., Peralta, R.,
Perlner, R. and Smith-Tone, D. (2016) Report on Post-Quantum
Cryptography, US Department of Commerce, National Institute
of Standards and Technology.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R.
and Polk, W. (2008) Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile, RFC
5280, RFC Editor, May [online] http://www.rfc-editor.org/rfc/
rfc5280.txt (accessed 14 August 2019).

Crockett, E., Paquin, C. and Stebila, D. (2019) ‘Prototyping
post-quantum and hybrid key exchange and authentication in
TLS and SSH’, in NIST 2nd Post-Quantum Cryptography
Standardization Conference 2019, August, To Appear.

Dierks, T. and Rescorla, E. (2008) The Transport Layer Security
(TLS) Protocol Version 1.2, RFC 5246, RFC Editor, August
[online] http://www.rfc-editor.org/rfc/rfc5246.txt (accessed 14
August 2019).

Housley, R. (2019) Use of the HSS/LMS Hash-based Signature
Algorithm in the Cryptographic Message Syntax (CMS),
Internet-Draft draft-ietf-lamps-cms-hash-sig-09, IETF
Secretariat, August [online] http://www.ietf.org/internet-drafts/
draft-ietf-lamps-cms-hash-sig-09.txt (accessed 14 August 2019).

Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J. and Mohaisen, A.
(2018) XMSS: eXtended Merkle Signature Scheme, RFC 8391,
RFC Editor, May.

Isara Catalyst (2019) December [online] https://www.isara.com/
catalyst/ (accessed 14 August 2019).

Kampanakis, P. (2018) ‘Towards backward-compatible post-quantum
certificate authentication’, in Cisco Blog > Security, April.

Kampanakis, P., Panburana, P., Daw, E. and Van Geest, D.
(2018) ‘The viability of post-quantum X.509 certificates’, IACR
Cryptology ePrint Archive, Vol. 63.

Langley, A. (2012) ‘Revocation checking and Chrome’s CRL’,
in ImperialViolet Blog, February [online] https://www.
imperialviolet.org/2012/02/05/crlsets.html (accessed 14 August
2019).

Langley, A. (2018) ‘Post-quantum confidentiality for TLS’, in
ImperialViolet Blog, April [online] https://www.imperialviolet.
org/2018/04/11/pqconftls.html (accessed 14 August 2019).

Marks, L. et al. (2019) ‘Stateful hash-based signatures’, in
Public Comments on Misuse Resistance, February [online]
https://csrc.nist.gov/CSRC/media/Projects/Stateful-Hash-Based-
Signatures/documents/stateful-HBS-misuse-resistance-public-
comments-April2019.pdf (accessed 14 August 2019).

McGrew, D., Curcio, M. and Fluhrer, S. (2019) Leighton-Micali
Hash-Based Signatures, RFC 8554, RFC Editor, April.

Moody, D. (2018) ‘Let’s get ready to tumble. The NIST
PQC ‘competition’, in Proc. of First PQC Standardization
Conference, April, pp.11–13.

Mosca, M. (2016) Managing the Quantum Risk to Cybersecurity,
Technical Report, University of Waterloo, Intitute of Quantum
Computing, April.

Mosca, M. (2018) Preparing for the Quantum Era, Keynote Talk,
CryptoWorks21, Waterloo, Canada, 18 August [online] https://
crypto.iacr.org/2018/affevents/qsci/medias/Michele_Mosca.pdf.

NIST (2016) Post-Quantum Cryptography Standardization,
December.

NIST (2020) Post-Quantum Cryptography FAQs, June.
Ounsworth, M. and Pala, M. (2019) Composite Keys and

Signatures for Use in Internet PKI, Internet-Draft
draft-ounsworth-pq-composite-sigs-01, IETF Secretariat, July
[online] http://www.ietf.org/internet-drafts/draft-ounsworth-pq-
composite-sigs-01.txt (accessed 14 August 2019).

Pecen, M. et al. (2015) Quantum Safe Cryptography and Security: An
Introduction, Benefits, Enablers and Challenges, White Paper,
European Telecommunications Standards Institute, June.

Press Release: CSS and ISARA Introduce the First and
Only Quantum-Safe, Full-Stack PKI, April [online]
https://www.keyfactor.com/press-releases/css-and-isara-introduce-
the-first-and-only-quantum-safe-full-stack-pki/ (accessed 14
August 2019).

Pritikin, M., Yee, P. and Harkins, D. (2013) Enrollment Over Secure
Transport, RFC 7030, RFC Editor, October.

Impact of post-quantum hybrid certificates on PKI, common libraries, and protocols 211

Quantum Threat Timeline (2019) October [online] https://
globalriskinstitute.org/publications/quantum-threat-timeline/
(accessed 14 August 2019).

Rescorla, E. (2018) The Transport Layer Security (TLS) Protocol
Version 1.3, RFC 8446, RFC Editor, August.

Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S.
and Adams, C. (2013) X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol – OCSP, RFC 6960, RFC
Editor, June [online] http://www.rfc-editor.org/rfc/rfc6960.txt
(accessed 14 August 2019).

SHA-256 Transition Lessons Learned (2011) Federal Public Key
Infrastructure Policy Authority, May [online] https://web.
archive.org/web/20151106011516/https://www.idmanagement.
gov/sites/default/files/documents/SHA256_Transition_Lessons_
Learned.pdf (accessed 14 August 2019).

SPHINCS+ Team (2018) Reference Implementation [online] https:
//sphincs.org/software.html (accessed 14 August 2019).

Truskovsky, A., Lafrance, P., Van Geest, D., Fluhrer, S.,
Kampanakis, P., Ounsworth, M. and Mister, S. (2018)
Multiple Public-Key Algorithm X.509 Certificates,
Internet-Draft draft-truskovsky-lamps-pq-hybrid-x509-00, IETF
Secretariat, March [online] http://www.ietf.org/internet-drafts/
draft-truskovsky-lamps-pq-hybrid-x509-00.txt (accessed 14
August 2019).

Notes

1 Strictly, the mechanism allows placing any second public
key and signature in the extensions; it is not restricted to
PQ cryptography.

2 More details are available at the authors’ website
https://sphincs.org/ (access 5 August 2019).

3 The version of OpenSSL 1.0.2k-fips 26 January 2017 we
used is within CentOS 7 and might have been modified or
fixed to fit the operating system, while the version 1.1.1b
26 February 2019 was directly downloaded from the
website of the OpenSSL project and installed on CentOS 7.

4 The API could be called right after, for example,
https://github.com/openssl/openssl/blob/master/apps/s_client.
c\#L1734 (access 5 August 2019).

5 CFSSL is an open source PKI/TLS toolkit, available at
https://github.com/cloudflare/cfssl (access 5 August 2019).

6 The API could be called right after, for example, https:
//github.com/openssl/openssl/blob/master/apps/ocsp.c\#L1555
(access 5 August 2019).

7 Wireshark is a widely-used network protocol analyser,
available at https://www.wireshark.org/\#download (access 5
August 2019).

8 The manpage is available at https://www.openssl.org/docs/
man1.0.2/man1/openssl-ocsp.html (access 5 August 2019).

