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Abstract: In solving programming problems, it is difficult for beginners
to create a program from scratch. One way to navigate this difficulty is
to suggest the next word following an incomplete program. In the present
study, we propose a method for code completion characterised by two
principal elements: the prediction of the next within-vocabulary word and
the prediction of the next referenceable identifier. For the prediction of
within-vocabulary words, a neural language model based on an LSTM
network with an attention mechanism is proposed. Additionally, for the
prediction of referenceable identifiers, a model based on a pointer network
to a given incomplete program is proposed. For evaluation of the proposed
method, source code accumulated in an online judge system is used. The
results of the experiment demonstrate that in both statically and dynamically
typed languages, the proposed method can predict the next word to a high
degree of accuracy.
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This paper is a revised and expanded version of a paper entitled ‘Code
completion for programming education based on recurrent neural network’
presented at 2019 IEEE 11th International Workshop on Computational
Intelligence and Applications (IWCIA), Hiroshima, Japan, 9–10 November
2019.

1 Introduction

With the fourth industrial revolution bringing about various social and industrial
changes, the cultivation of human resources with information literacy, such as the ability
to use information and communication technology (ICT) for identifying and solving
problems, is increasingly required (Chung and Kim, 2016). Accordingly, the number of
students who study programming techniques at educational institutions, including high
schools and universities, is rapidly increasing. Furthermore, programming is becoming
a compulsory subject at elementary schools in many countries. Therefore, the need
for accurate and efficient programming education is clearly becoming increasingly
important.

One of the simplest ways to encourage the growth of new programming learners is
to let the learners solve many problems and become familiar with programming itself.
However, many beginners have trouble completing a program from scratch without any
hints for solving given problems, which can instead cause a decrease in their learning
efficiency. Therefore, it is necessary to help such beginners solve problems without
stress caused by cognitive hurdles or thinking for a long time without writing any code.
Toward this objective, we focus on providing a function for automatic code completion,
which suggests the most ideal candidate for the next word, while learners are writing
a program. This function can aid learners by discouraging pausing and spending a lot
of time only thinking about the problem. In addition, candidate words suggested by the
function encourage learners to come up with a solution to the problem, and learners can
make progress in learning programming more swiftly and efficiently.

Currently, there are many educational tools that provide programming problems to
learners. One commonly used tool is the online judge (OJ) system, which is an online
execution environment that allows learners to tackle many exercises and grades their
source code automatically (Wasik et al., 2018). Many OJ systems have been established
and are used by students and engineers around the world to acquire programming skills.
OJ systems compile and execute user-submitted programs and automatically evaluate
their accuracy and performance through various test cases and verification machines. In
addition, OJ systems provide a quantitative evaluation of program performance, such as
execution time and memory usage.

The Aizu Online Judge (AOJ) system is one of the major OJ systems developed
and operated by the University of Aizu (Watanobe, 2018, 2015). Thus far, AOJ contains
over 2,000 problems. More than 65,000 users have registered with AOJ, and around four
million source codes have been submitted. AOJ contains a variety of problems, such
as those pertaining to programming competitions (international collegiate programming
contest, high school programming contest, etc.) and those for learning (‘introduction
to programming’, ‘algorithms and data structures’, etc.). Each problem has limits on
CPU time and memory usage, and users can cultivate programming skills by solving
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problems under their limits. When users submit source code, AOJ immediately provides
the users with feedback (accepted/rejected) based on various test cases for the problem,
along with the limits. There are eight types of failure: compile error, judge not available,
runtime error, time limit exceeded, memory limit exceeded, output limit exceeded,
wrong answer, and presentation error. If the program does not fail in terms of any of the
eight conditions, then the program is judged as accepted. Users can repeatedly debug and
resubmit source code based on the feedback until their program is judged as accepted.
At present, however, many OJ systems, including AOJ, do not have functions to help
users write programs, such as automatic code completion and bug detection. Introducing
these functions into OJ systems would be a great help to many novice programmers.

In the present paper, we propose an algorithm of code completion that predicts the
next word when an incomplete program is given. The main situation is assuming a
learner is writing a program from scratch to solve a problem, and when he/she wants
to know the next word, the proposed algorithm can predict the next plausible word and
suggest it to the learner. The next word may be one of two types: a within-vocabulary
word or a referenceable identifier. A within-vocabulary word is a word within the
vocabulary constructed in pre-processing, including identifier names, reserved words,
and operators. An identifier is a user-defined symbol used to uniquely identify a program
element. It is possible to select the next referenceable identifier from the code snippet
because the identifier was either declared beforehand or was already used for operations
such as calculations. Therefore, the prediction of the next referenceable identifier is
expected to be improved by selecting the identifier directly from the code snippet instead
of the vocabulary. We propose two prediction models and one switching model: a
neural language model for predicting the next within-vocabulary word, a pointer model
for predicting the next referenceable identifier, and a switching model for determining
whether the next word is a referenceable identifier. The neural language model is based
on an LSTM network (Hochreiter and Schmidhuber, 1997) with an attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015), which is capable of learning long-term
dependencies. The attention mechanism solves the problem of forgetting the information
relating to a word that has been input long before or failing to capture the dependencies
between distant words. This mechanism has contributed to higher accuracy in various
tasks of natural language processing, such as machine translation (Jia, 2019), coherent
dialogue (Mei et al., 2016), and sentiment analysis (Wang and Liu, 2019). The pointer
model is based on a pointer network (Vinyals et al., 2015) to a given incomplete
program, which solves the problem of a variable-size vocabulary using a mechanism of
neural attention. This model uses attention as a pointer to select a word of the input
sequence converted from the incomplete program as the output. The switching model is
a binary classification model based on an LSTM network with an attention mechanism,
which determines which model to apply in predicting the next word. Experiments and
evaluations of the proposed approach are carried out using the AOJ dataset. When
considering code completion for a problem, we demonstrate that the proposed models
can suggest the next plausible word for solving the problem by learning the code
structures of the correct programs that are solutions for the problem. If there are many
accepted source codes for problems, then the algorithm is applicable not only to AOJ
but also to many other related systems.

The remainder of the present paper is organised as follows. In Section 2, we
discuss related research. Sections 3 and 4 describe data pre-processing and the model
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architecture, respectively. Section 5 evaluates the model and discusses the experimental
results. Finally, conclusions in this domain are presented in Section 6.

2 Related research

White et al. (2015) motivated deep learning for software language modelling and
showed how a particular deep learning model can remember its state to effectively
model sequential data, e.g., streaming software tokens. Their models show that deep
learning induces high-quality models compared to n-grams and cache-based n-grams on
a corpus of Java projects. Dam et al. (2016) proposed an approach to build a language
model for software code upon the powerful deep learning-based LSTM architecture that
is capable of learning long-term dependencies which occur frequently in software code.
Results from their preliminary evaluation show the effectiveness of LSTM, serving as a
concrete indication that LSTM is a promising model for software code.

In order to improve the performance of code completion tasks more, several
methods that extend neural language models described above have been proposed.
Bhoopchand et al. (2016) introduced a neural language model with a sparse pointer
network aimed at capturing very long-range dependencies. By augmenting this model
specialised in referring to predefined classes of identifiers, the model obtains a much
lower perplexity and a 5% increase in accuracy for code suggestion compared to an
LSTM baseline. Ginzberg et al. (2017) presented a deep learning approach to code
completion for non-terminals (program structural components) and terminals (program
text) that takes advantage of running dependencies to improve predictions. An LSTM
model was developed and augmented with several approaches to attention in order
to better capture the relative value of the input, hidden state, and context. Li et al.
(2017) proposed a pointer mixture network for better predicting out-of-vocabulary
(OoV) words in code completion inspired by the prevalence of locally repeated terms
in program source code and the recently proposed pointer copy mechanism. Based
on context, the pointer mixture network learns to either generate a within-vocabulary
word through a recurrent neural network (RNN) component or to regenerate an OoV
word from local context through a pointer component. Zhong et al. (2019) described a
code suggestion prototype system for JavaScript based on Jupyter Notebook to provide
completion for multiple successive code units. Their study has three principal elements:
providing a JavaScript pre-processing solution for feature extraction, applying several
deep learning technologies to support system performance, and designing a solution for
model deployment to provide post-processing methods that improve user experience.
All studies described above evaluate the performance of code completion in software
engineering by training and evaluating the proposed model using source code collected
from GitHub. In this study, we aim to make a contribution to programming education
using source code accumulated in OJ systems and related services. The proposed model
is inspired by a neural language model with a pointer network (Bhoopchand et al., 2016;
Li et al., 2017), and we demonstrate that the model outperforms a neural language model
alone (White et al., 2015; Dam et al., 2016) also in the field of programming education.

AOJ accumulates a large quantity of various data, such as statistical information
about the problems and the submission history of individual users, and the data
are used in a variety of research. Saito and Watanobe (2020) proposed a learning
path recommendation system based on a learner’s ability charts by means of an
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RNN. Intisar and Watanobe (2018a) proposed a method for the classification of OJ
programmers based on rule extraction from a self-organising feature map, cluster
analysis to estimate the difficulty of programming problems (Intisar and Watanobe,
2018b), and classification of programming problems based on topic modelling (Intisar
et al., 2019). Teshima and Watanobe (2018) presented bug detection methods for the
feedback system of an OJ system. Yoshizawa and Watanobe (2018) proposed a logic
error detection algorithm based on structure patterns, which are an index of similarity
based on abstract syntax trees, and error degree, which is a measure of appropriateness
for feedback. Matsumoto and Watanobe (2019) analysed two different approaches, a
static code analysis approach (Yoshizawa and Watanobe, 2018) and a deep learning
approach (Teshima and Watanobe, 2018), through accumulated source codes for solving
a programming task in an OJ system. Ohashi and Watanobe (2019) presented a method
by which to classify source code based on convolutional neural networks. For the
automatic generation of fill-in-the-blank programming problems, a method characterised
by two principal elements, selection of exemplary source code and selection of places
to be blanked, has been proposed (Terada and Watanobe, 2019). Rahman et al.
(2020) proposed a sequential language model that uses an attention-mechanism-based
LSTM neural network to assess and classify source code based on the estimated error
probability. Other research activities and challenges which take advantage of OJ system
to organise a learning ecosystem have been proposed in Watanobe et al. (2020).

3 Data pre-processing

Figure 1 shows the flow of conversion from source code into a sequence so that the
proposed models can receive input data in a unified format. First, in order to divide each
of the collected source code lines into a sequence of words, we tokenise each source
code using Tree-sitter, which is the universal parser of GitHub. When converting to the
sequence, unnecessary information, including whitespace, blank lines, and comments,
are all ignored. Whether to ignore line breaks and indents depends on the language
characteristics of the source code being converted. For example, line breaks and indents
are ignored if the code is written in C, but are not ignored in Python3, since line breaks
indicate statement breaks and indentation determines the scope in Python3.

There are several types of identifiers in each programming language. For example, C
has five types of identifiers: variable, function, argument, struct, and member. Similarly,
Python3 also has five types of identifiers: variable, function, argument, class, and
attribute. We normalise all identifiers in the sequence of words to express the types of
identifiers explicitly. That is, we replace each identifier name with a generic identifier
that indicates the corresponding identifier type concatenated with a number that makes
the identifier unique within its scope, such as $VAR06$, $FUNC02$, and $ARG04$. Note
that the numbers concatenated to each identifier type are in ascending order from 0 (e.g.,
$VAR00$, ..., $VAR99$), and only new identifiers defined within the file are replaced,
i.e., identifiers that reference external APIs or libraries are not changed.

For converting each word in the sequence into the corresponding ID, we construct
a vocabulary by concatenating a pre-determined word group and all of the collected
words. A pre-determined word group consists primarily of $PAD$ as padding, $OOV$
as OoV, $NUM$ as numerical constants, and $STRING$ as strings. Depending on the
language, the group also includes $CHAR$ as a character, $INDENT$ as an indent,
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and $OUTDENT$ as an outdent. We collect every word without duplication from every
sequence of words in the dataset, excluding literals. After concatenating the above two
word groups, each word is linked to a unique ID in ascending order from 0.

Figure 1 Flow of conversion from source code into sequence (see online version for colours)

Finally, each word for every sequence is converted into the corresponding ID according
to the constructed vocabulary. When we train the proposed models with one sequence
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of IDs w1, ..., wn, one sample consists of w1, ..., wi as the input and wi+1 as the target,
where i ∈ {1, ..., n− 1}. In other words, the proposed models are trained in a chain
reaction for one sequence of IDs.

4 Model architecture

4.1 Neural language model

Figure 2 shows the architecture of the model based on an LSTM network with an
attention mechanism focusing on the prediction of the next within-vocabulary word. The
sequence of IDs converted from an incomplete program constructed according to the
process described in Section 3 is denoted by w1, ..., wt, and the model predicts wt+1.
The sequence, as the input, first flows to the word embedding layer, in which each
word is mapped to a vector of real numbers. Due to data sparsity when representing
words with unique and discrete IDs, vector representations via word embeddings are
used, which helps partly to overcome this obstacle.

Figure 2 Architecture of neural language model (see online version for colours)
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The vector representation flows to the dropout layer, which randomly zeroes some of
the elements of the input vector with probability p using samples from a Bernoulli
distribution. This is an effective technique for the regularisation and prevention of the
co-adaptation of neurons (Hinton et al., 2012).

The dropped-out vector representation flows to the layer of an LSTM network,
which is a special kind of RNN. The RNN is a type of neural network that operates
on sequential data. The disadvantage of generic RNNs is that, because of vanishing
gradients, RNNs fail to derive context from time steps that are substantially prior. In
contrast, an LSTM network is able to remember long-term dependencies by enhancing
the repeating module. Several gates that control the contribution of each memory unit
help the network to remember better. A standard LSTM cell is defined by

ht = f(xt, ht−1) (1)

where xt is the current input vector, ht−1 is the previous hidden state, and ht is the
current hidden state, which will be used to compute the prediction at time step t.

Next, an attention mechanism is applied to the hidden states obtained at all time
steps in order to learn which words in the input are related to the output. Formally,
by computing the relation between the last hidden state ht and the external memory of
previous hidden states, which is denoted by Mt = [h1, ..., ht] ∈ Rk×t, where k is the
unit size of the hidden state, we obtain an attention distribution at ∈ R1×t. Then, by
computing the weighted sum of the external memory Mt with the attention distribution
at, we obtain a context vector ct ∈ Rk as follows:

et = vT tanh(WMMt + (Whht)1
T
t ) (2)

at = Softmax(et) (3)
ct = Mta

T
t (4)

where v ∈ Rk and WM ,Wh ∈ Rk×k are trainable parameters, and 1t represents a
t-dimensional vector of ones. The softmax function rescales an n-dimensional input
vector so that the elements of the n-dimensional output vector lie in the range [0, 1]
and sum to 1 and is defined as follows:

Softmax(xi) =
exp(xi)∑n
j=1 exp(xj)

(i = 1, ..., n) (5)

In order to obtain a distribution for the next word, we obtain the information about the
next word based on the last hidden state ht concatenated with the context vector ct. The
output vector h̃t ∈ Rk is projected into the vocabulary space, and we apply a softmax
function in order to obtain the final probability distribution ot ∈ RV for the next word
wt+1 as follows:

h̃t = tanh
(
Wc

[
ht

ct

])
(6)

ot = Softmax(WV h̃t + bV ) (7)

where Wc ∈ Rk×2k and WV ∈ RV×k are trainable projection matrices, bV ∈ RV is a
trainable bias vector, and V represents the size of the vocabulary.
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Figure 3 Architecture of pointer model (see online version for colours)

4.2 Pointer model

Figure 3 shows the architecture of the model based on a pointer network to a given
incomplete program focusing on the prediction of the next referenceable identifier.
The sequence of IDs constructed in Section 3 as the input flows in the order of the
word embedding layer, the dropout layer, and the LSTM network layer, similar to the
neural language model described in Subsection 4.1. Then, instead of the memory Mt

consisting of all hidden states, the memory M ′
t consisting only of hidden states where

the corresponding word input at the time step is an identifier, is used as the attention
window. If there are multiple identical identifiers in the input sequence, only the hidden
state corresponding to the last appearing identifier is kept in the memory M ′

t . Similar
to the attention mechanism described in Subsection 4.1, we obtain a pointer distribution
dt ∈ RL, where L is the length of the memory M ′

t by computing the relation between
the last hidden state ht and the memory M ′

t , as follows:

et = vT tanh(WMM ′
t + (Whht)1

T
L) (8)
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dt = Softmax(et) (9)

The ith term of the distribution dt indicates the probability that the next identifier is the
input word corresponding to the hidden state of M ′

t [i].

Figure 4 Architecture of pointer mixture model (see online version for colours)

4.3 Switching model

The switching model determines whether the next word is a referenceable identifier, i.e.,
this model takes the role of switching between the neural language model and the pointer
model. Similar to the neural language model described in Subsection 4.1, the sequence
of IDs constructed in Section 3 as the input flows in the order of the word embedding
layer, the dropout layer, and the LSTM network layer. Then, h̃t ∈ Rk obtained according
to equations (2), (3), (4), and (6) is projected into a scalar value, and we apply a sigmoid



88 K. Terada and Y. Watanobe

function to obtain the probability st ∈ [0, 1] indicating the probability that the next word
wt+1 is a referenceable identifier, as follows:

st = σ(Wsh̃t + bs) (10)

where Ws ∈ R1×k and bs ∈ R1 are trainable parameters.
As shown in Figure 4, if st is less than or equal to the threshold, i.e., the probability

that the next word is a referenceable identifier is low, the next word is predicted using
the neural language model alone; otherwise, the next word is predicted using both
the neural language model and the pointer model. In the former case, the vocabulary
distribution ot of the neural language model obtained in Subsection 4.1 is used as is
for the prediction of the next word. In the latter case, in addition to the vocabulary
distribution ot of the neural language model, the pointer distribution dt obtained through
the pointer model in Subsection 4.2 is also taken into account in the prediction of
the next word. In order to calculate the weighted sum of each distribution by st, the
pointer distribution dt is transformed into the vocabulary space as o′t ∈ RV . Note that
all identifier names are normalised in practice, such as height, weight, and bmi in
Figure 4, are normalised to MEMBER00, MEMBER01, and VAR00, respectively. The final
distribution pt ∈ RV for the next word is calculated as follows:

pt =

{
ot if st ≤ 0.5

(1− st)ot + sto
′
t if st > 0.5

(11)

where st denotes the probability to use the output of the pointer model and 1− st
denotes the probability to use the output of the neural language model.

5 Evaluation

5.1 Dataset

AOJ supports 18 different programming languages, including C, C++, Java, Ruby, and
Python. We evaluate the proposed approach on two datasets: C as a statically typed
language and Python3 as a dynamically typed language. These languages are widely
used for beginners to get started with programming, and so the number of accumulated
programs for each of these two languages is higher than that of other languages.

Table 1 Problem information for ITP

Problem ID Topic Summary

ITP1 1 A Getting Print ‘Hello World’ to standard output.
ITP1 1 B started Calculate the cube of a given integer x.
ITP1 1 C Calculate the area and perimeter of a given rectangle.
ITP1 1 D Convert a given integer S [seconds] to h:m:s.
ITP1 2 A Branch on Print small/large/equal relation of two given integers a and b.
ITP1 2 B condition Given three integers, print ‘yes’ if a < b < c, otherwise ‘no’.
ITP1 2 C Print three given integers in ascending order.
ITP1 2 D Determine whether the circle is arranged inside the rectangle.
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Table 1 Problem information for ITP (continued)

Problem ID Topic Summary

ITP1 3 A Repetitive Print ‘Hello World’ to standard output 1,000 times.
ITP1 3 B processing Print a given integer x for each dataset in the specified format.
ITP1 3 C For each dataset, print two given integers in ascending order.
ITP1 3 D Given three integers, print the number of divisors of c in [a, b].
ITP1 4 A Computation Calculate and print a/b and its remainder as different data types.
ITP1 4 B Calculate the area and circumference of a circle for given radius r.
ITP1 4 C Given two integers a, b and an operator op, print the value of

a op b.
ITP1 4 D Print the min/max/sum for a given sequence of n integers.
ITP1 5 A Structured Draw an H [cm] × W [cm] rectangle with a single ‘#’.
ITP1 5 B program I Draw an H [cm] × W [cm] frame with a single ‘#’.
ITP1 5 C Draw an H [cm] × W [cm] chessboard by placing ‘#’ and ‘.’

alternately.
ITP1 5 D Write a program equivalent to the specified program w/o go to

statements.
ITP1 6 A Array Print a given sequence in the reverse order.
ITP1 6 B Print the missing cards out of the given n playing cards.
ITP1 6 C Given tenant/leaver notices, report the number of tenants for each

room for 4 buildings, each with 3 floors, each with 10 rooms.
ITP1 6 D Print the product of an n×m matrix A and an m× 1 vector b.
ITP1 7 A Structured Given a list of student scores, evaluate the grade for each student.
ITP1 7 B program II Print the number of combinations of three distinct integers that sum

to x.
ITP1 7 C Given an r × c table, print it and include a sum for each row/

column.
ITP1 7 D Print the product of an n×m matrix A and an m× l matrix B.
ITP1 8 A Character Convert upper/lower case letters to lower/upper case for a given

string.
ITP1 8 B Print the sum of digits of a given integer.
ITP1 8 C Count the number of each alphabetical letter, ignoring the case.
ITP1 8 D Find a pattern p in a ring-shaped text s.
ITP1 9 A String Print the number of times a word W appears in the text T .
ITP1 9 B Shuffle a deck of n cards (a string) and print the final state.
ITP1 9 C Read two cards n times, and report the final score of the game.
ITP1 9 D Perform commands, including reverse and replace, to a given string.
ITP1 10 A Math Calculate the distance between two points: P1(x1, y1), P2(x2, y2).
ITP1 10 B functions For the given two sides of a triangle and the angle between them,

calculate the area, circumference, and height of the triangle.
ITP1 10 C Calculate the standard deviation of the scores s1, s2, ...sn.
ITP1 10 D Calculate the Minkowski’s distance, where p = 1, 2, 3 and ∞.
ITP1 11 A Structure Construct a dice from given integers and simulate rolling the dice.
ITP1 11 B and class Print the number on the right side of the rolled dice.
ITP1 11 C Determine whether two given dice are identical.
ITP1 11 D Determine whether all of the given n dice are different.
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Table 2 Accuracies of next word prediction for the C language for each problem in ITP

Problem ID Programs Tokens
Accuracy

Neural language model Pointer mixture model
w/o attention w/ attention w/o attention w/ attention

ITP1 1 A 7,646 120,689 95.98% 95.99% - -
ITP1 1 B 6,292 226,485 95.68% 95.66% 95.72% 95.71%
ITP1 1 C 5,637 284,953 94.84% 94.78% 94.90% 94.81%
ITP1 1 D 4,452 287,492 92.01% 91.98% 92.14% 92.08%
ITP1 2 A 4,510 290,332 95.98% 95.98% 95.99% 95.99%
ITP1 2 B 4,309 258,454 96.49% 96.43% 96.47% 96.43%
ITP1 2 C 3,728 503,755 93.46% 93.48% 93.85% 93.86%
ITP1 2 D 3,247 312,330 93.11% 93.03% 93.17% 93.11%
ITP1 3 A 3,661 124,184 94.91% 94.81% 94.87% 94.78%
ITP1 3 B 3,106 191,049 91.15% 91.32% 91.36% 91.43%
ITP1 3 C 2,994 277,141 92.05% 92.01% 92.43% 92.45%
ITP1 3 D 2,860 221,352 93.19% 93.46% 93.41% 93.51%
ITP1 4 A 2,983 188,169 94.51% 94.61% 94.63% 94.70%
ITP1 4 B 2,405 117,917 92.31% 92.25% 92.40% 92.34%
ITP1 4 C 2,173 271,423 93.95% 94.18% 94.42% 94.43%
ITP1 4 D 2,286 290,739 88.81% 89.33% 89.94% 90.00%
ITP1 5 A 2,445 254,663 94.04% 94.34% 94.33% 94.53%
ITP1 5 B 2,321 342,523 92.51% 92.82% 93.09% 93.19%
ITP1 5 C 2,249 338,190 91.77% 92.48% 92.38% 92.81%
ITP1 5 D 1,136 134,685 89.37% 89.23% 89.84% 89.57%
ITP1 6 A 2,158 229,710 92.21% 92.43% 92.69% 92.83%
ITP1 6 B 1,812 497,960 90.88% 92.94% 92.61% 93.15%
ITP1 6 C 1,780 421,611 92.55% 93.36% 93.92% 94.05%
ITP1 6 D 1,515 305,383 93.12% 94.12% 94.24% 94.50%
ITP1 7 A 1,785 348,264 91.16% 92.82% 92.09% 92.92%
ITP1 7 B 1,773 261,458 89.94% 90.30% 90.87% 90.94%
ITP1 7 C 1,535 391,939 90.89% 92.87% 92.38% 93.11%
ITP1 7 D 1,309 386,090 93.41% 94.20% 94.51% 94.79%
ITP1 8 A 1,036 111,878 87.18% 86.98% 87.92% 87.75%
ITP1 8 B 1,071 109,338 87.09% 88.03% 88.44% 88.71%
ITP1 8 C 909 125,232 85.91% 86.89% 87.76% 87.91%
ITP1 8 D 761 107,209 84.14% 84.57% 86.15% 86.17%
ITP1 9 A 731 120,317 86.08% 87.52% 87.65% 88.06%
ITP1 9 B 616 117,161 82.39% 83.79% 85.50% 85.81%
ITP1 9 C 636 97,581 84.12% 85.06% 86.83% 86.89%
ITP1 9 D 495 141,168 78.43% 81.09% 84.50% 85.57%
ITP1 10 A 1,333 108,838 90.93% 90.93% 91.33% 91.23%
ITP1 10 B 716 89,370 86.00% 87.52% 88.17% 88.58%
ITP1 10 C 1,093 180,592 85.61% 88.24% 88.66% 89.05%
ITP1 10 D 1,008 294,048 86.46% 89.62% 89.06% 90.06%
ITP1 11 A 449 156,300 84.22% 88.63% 88.80% 90.15%
ITP1 11 B 345 171,160 78.11% 84.42% 82.76% 85.90%
ITP1 11 C 275 149,206 77.86% 82.02% 82.12% 84.18%
ITP1 11 D 209 127,074 71.01% 75.50% 77.33% 80.25%
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Table 3 Accuracies of next word prediction for the Python3 language for each problem in ITP

Problem ID Programs Tokens
Accuracy

Neural language model Pointer mixture model
w/o attention w/ attention w/o attention w/ attention

ITP1 1 A 3,729 19,774 99.61% 99.58% - -
ITP1 1 B 2,916 51,926 94.60% 94.49% 94.61% 94.45%
ITP1 1 C 2,530 108,856 92.85% 92.91% 93.02% 93.07%
ITP1 1 D 2,147 110,542 90.23% 90.30% 90.30% 90.25%
ITP1 2 A 1,982 119,256 94.63% 94.85% 94.64% 94.84%
ITP1 2 B 1,899 98,394 95.35% 95.35% 95.35% 95.37%
ITP1 2 C 1,739 116,956 89.01% 88.84% 89.56% 89.49%
ITP1 2 D 1,565 123,671 90.81% 91.06% 91.11% 91.34%
ITP1 3 A 1,844 32,611 96.98% 97.10% 96.99% 97.10%
ITP1 3 B 1,562 83,275 91.76% 91.71% 91.92% 91.88%
ITP1 3 C 1,468 113,564 90.87% 90.90% 91.22% 91.27%
ITP1 3 D 1,458 96,299 93.23% 93.35% 93.70% 93.66%
ITP1 4 A 1,306 65,392 90.80% 90.54% 90.94% 90.80%
ITP1 4 B 1,304 52,191 90.01% 89.95% 90.14% 90.12%
ITP1 4 C 1,273 142,240 92.31% 92.59% 92.95% 93.13%
ITP1 4 D 1,351 84,797 90.11% 90.64% 90.86% 91.16%
ITP1 5 A 1,259 97,187 91.21% 91.22% 91.52% 91.49%
ITP1 5 B 1,000 113,685 89.07% 89.04% 89.84% 89.82%
ITP1 5 C 1,091 147,355 87.68% 88.42% 88.79% 89.20%
ITP1 5 D 709 64,114 88.11% 89.16% 88.72% 89.52%
ITP1 6 A 1,133 60,692 89.13% 89.53% 89.42% 89.52%
ITP1 6 B 916 162,798 82.50% 84.84% 84.74% 85.79%
ITP1 6 C 824 169,392 86.53% 88.36% 88.67% 89.37%
ITP1 6 D 834 122,695 88.36% 90.99% 91.49% 92.18%
ITP1 7 A 865 146,197 91.99% 93.08% 93.01% 93.38%
ITP1 7 B 758 93,019 86.58% 86.77% 87.52% 87.72%
ITP1 7 C 735 131,379 82.07% 83.53% 85.74% 86.23%
ITP1 7 D 645 132,934 85.57% 89.36% 90.25% 91.79%
ITP1 8 A 750 28,222 85.90% 85.52% 86.36% 86.02%
ITP1 8 B 772 41,897 88.08% 88.37% 88.87% 88.90%
ITP1 8 C 559 59,524 82.80% 84.06% 85.00% 85.57%
ITP1 8 D 684 38,052 84.90% 85.66% 84.86% 85.35%
ITP1 9 A 655 49,605 85.92% 86.51% 86.94% 87.26%
ITP1 9 B 626 56,549 85.40% 85.66% 86.64% 86.79%
ITP1 9 C 595 63,318 87.53% 88.51% 88.55% 89.13%
ITP1 9 D 530 102,318 84.00% 86.50% 86.07% 87.51%
ITP1 10 A 637 37,122 87.64% 87.01% 87.59% 87.08%
ITP1 10 B 551 63,014 85.03% 87.29% 86.91% 88.36%
ITP1 10 C 523 52,939 84.59% 85.74% 86.74% 87.05%
ITP1 10 D 490 89,204 79.20% 83.36% 83.20% 85.27%
ITP1 11 A 455 141,287 82.28% 86.11% 85.90% 87.80%
ITP1 11 B 321 146,048 75.24% 78.99% 78.09% 80.90%
ITP1 11 C 245 118,269 74.18% 77.67% 77.23% 80.08%
ITP1 11 D 148 76,336 70.36% 78.24% 73.24% 79.28%



92 K. Terada and Y. Watanobe

For both C and Python3, all of the accepted source codes for each problem in
introduction to programming (ITP), which is a problem set for novice programmers, are
collected from the AOJ database. Table 1 shows the problem information for ITP, each
with ID, topic, and summary. Source codes with more than 1,000 program words are
excluded from the dataset.

5.2 Experimental setup

The three models described in Section 4 were developed in PyTorch (Paszke et al.,
2019), with hyperparameters set by experience. The size of the vector representation
for the word embedding is 100, the dropout probability for an element is 0.2 for the
neural language model and the pointer model, and 0.5 for the switching model. The unit
size of the hidden state for the LSTM network is 200. In order to train the models, a
mini-batch stochastic gradient descent (SGD) is applied using the Adam optimisation
algorithm with a learning rate of 0.001 (Kingma and Ba, 2014). In order to validate the
training process for the neural language model and the pointer model, the cross-entropy
loss (CEL) function is applied to each model as a loss function, which is defined by

E = −
K∑

k=1

yk log pk (12)

where K is the number of classes, y is a binary indicator (0 or 1) denoting whether
the class label k is the correct classification for the observation, and p is the predicted
probability that the observation is of class k. In order to validate the training process
for the switching model, the binary cross-entropy loss (BCEL) function is applied to the
model as a loss function, which is defined by

E = −y log p− (1− y) log(1− p) (13)

where y is a binary indicator (0 or 1) denoting whether the next word is a referenceable
identifier, and p is the predicted probability that the next word is a referenceable
identifier. For each problem in AOJ, we collected programs that are solutions for the
problem and shuffled them, then used 50% of them for training, 20% for validation, and
30% for testing. For example, assuming 1,000 programs are collected in the problem
ITP1 1 A, we shuffle them and use 500 programs for training, 200 programs for
validation, and 300 programs for testing. The models are prepared, trained and evaluated
independently for each problem. For example, in the case of the problem ITP1 2 A, the
untrained models go through the training process using the training and validation data
for ITP1 2 A and are evaluated using the test data for ITP1 2 A. Their trained models
are never used in any other problems than ITP1 2 A. The batch size is 32 with one
program as one data entry, and each model is trained for 100 epochs. The parameters
at the epoch with the lowest loss score for validation data are used for the evaluation.

5.3 Experimental results and discussion

In order to verify the accuracy improvement of next word prediction by incorporating an
attention mechanism and a pointer network into a conventional neural language model,
we examine the following four models:
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• Neural language model alone without the attention mechanism.

• Neural language model alone with the attention mechanism.

• Pointer mixture model, which consists of the neural language model without the
attention mechanism, the pointer model, and the switching model.

• Pointer mixture model, which consists of the neural language model with the
attention mechanism, the pointer model, and the switching model.

Tables 2 and 3 show the accuracies of next word prediction for C and Python3 source
codes, respectively, for each problem in ITP. Each row shows the problem ID, the total
number of collected programs, the total number of program tokens, and the accuracy of
each of the four models on the set of programs for testing. Note that italic text indicates
the highest accuracy within the line, and accuracies for the pointer mixture model in
ITP1 1 A are omitted because identifiers are not used for the problem.

As shown in Table 2, the results focusing on the C language indicate that, for most
problems, the pointer mixture model can predict the next words with higher accuracy
than the neural language model alone, i.e., incorporating a pointer network makes it
possible to predict the next referenceable identifiers more appropriately. Regarding the
degree of accuracy improvement with respect to each problem topic, incorporating a
pointer network increased the accuracy by 0.07% on average in ITP1 1, whereas the
accuracy was increased by 3.72% on average in ITP1 11. This suggests that while
a program for solving a problem becomes more complicated as the difficulty of the
problem increases, a pointer network to the attention window composed only of the
identifier information can address this complexity and assist in predicting the next
referenceable identifiers. In approximately 75% of the problems, the accuracy of the
next word prediction is improved by incorporating an attention mechanism. Since the
improvement in accuracy has not been confirmed to a great extent, especially for topics
ITP1 1 and ITP1 2, the higher the difficulty of problem topics, the more an attention
mechanism tends to improve accuracy. The same is true within a problem topic because
the difficulty level within that topic basically increases in order from problem A to
problem D. For example, in topics ITP1 8 and ITP1 10, the improvement in accuracy
has not been confirmed only in problem A. In comparison with the degree of accuracy
improvement for each problem topic, in ITP1 11, which is the most difficult problem
topic, incorporating an attention mechanism and a pointer network into the neural
language model alone without an attention mechanism increased accuracy by 7.32%
on average, which has brought the greatest improvement in all topics. Based on this
observation, the pointer mixture model is very likely to improve the accuracy of word
prediction, not only for problems for novice programmers, such as ITP, but also for
problems for intermediate programmers that require knowledge of algorithms and data
structures.

As shown in Table 3, the results focusing on Python3 indicate that the accuracy
improvement of next word prediction has been confirmed in approximately 85% of
the problems by incorporating a pointer network into the neural language model and
in approximately 75% of the problems by incorporating an attention mechanism. In
ITP1 11, the pointer mixture model with an attention mechanism has an average 6.5%
increase in accuracy compared to the neural language model alone without an attention
mechanism, which has brought about the greatest improvement in all topics. In addition,
the pointer mixture model with an attention mechanism tends to have the highest
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accuracy among the four models as the problem topic progresses. From this, not only in
statically typed languages, such as C, but also in dynamically typed languages, such as
Python3, the more difficult a problem, i.e., the more complicated the program to solve
the problem, the more an attention mechanism and a pointer network can contribute to
improving the accuracy of next word prediction.

Tables 2 and 3 show that the pointer mixture model can serve as a code completion
for all kinds and difficulties of problems with a higher accuracy than the conventional
neural language model. However, when the code completion system is introduced into
an e-learning system, there is a risk that learners are too dependent on the system to
get the learning effect. As a premise, the model is supposed to be used in situations
that could result in significantly reducing learning efficiency, such as when a learner
wastes time being struggle and has no ideas. Actuality, user interfaces with the feedback
functionalities are responsible for limiting and controlling the disclosure of the code
completion. In addition to the interface, an embedded feedback system can compensate
for the risk. Although the detail of the user interface and feedback system is out of
scope of this paper, we present some suggestions as examples below:

• To provide some constraints to prevent learners from relying too much on a code
completion system. For example, only when a learner does not type for a certain
period of time, the system should show obtained suggestions.

• To provide a feedback system to enhance a learning effect. For example, after a
submitted program is accepted by the judge, the feedback system can show the
program with blank lines which are originally completed by the system and give a
chance to fill in all the blanks as a review.

Figure 5 Example of code completion for the C language program for problem ITP1 7 C in
AOJ (see online version for colours)

(a) Pointer mixture model
(without attention)

(b) Pointer mixture model
(with attention)
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5.4 Case study

Figures 5 and 6 show code completion examples of C language programs for the
problems ITP1 7 C and ITP1 8 D in AOJ, respectively. On the left side of each figure,
an incomplete program for solving the problem is shown, and the models are required to
correctly predict the next word (‘[’ in Figure 5 and ‘patn’ in Figure 6). The translucent
code following the blank indicating the next word is only an example of a solution after
the models have correctly predicted the next word. In other words, only the code before
the blank exists in practice. On the right side of each figure, the results of the proposed
models predicting the next word are shown as probability distributions, each of which
shows the top five predictions.

Figure 6 Example of code completion for the C language program for problem ITP1 8 D in
AOJ (see online version for colours)

(a) Neural language model
(without attention)

(b) Neural language model
(with attention)

(c) Pointer mixture model
(without attention)

(d) Pointer mixture model
(with attention)
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In Figure 5, the task of the problem is to read the number of rows r, columns c, and
a table of r × c integer elements and to print a new table, which includes the total
sum for each row and column. The switching model has correctly predicted that the
next word is not a referenceable identifier, i.e., the output probability has been st ≤
0.5, so the pointer mixture model has applied the neural language model alone for next
word prediction. The model without an attention mechanism incorrectly predicts ‘=’ as
the next word, whereas that with an attention mechanism can correctly predict ‘[’ as
the next word with high probability, i.e., can understand that the variable table is a
two-dimensional array and some processing will be performed on one element in the
ith row of the array variable. As such, previous information can be effectively used to
predict the next word by incorporating an attention mechanism.

In Figure 6, the task of the problem is to read a ring-shaped text s and a pattern p,
and print ‘yes’ in a line if p is in s, otherwise ‘no’. Regardless of whether an attention
mechanism is incorporated, the neural language model alone fails to predict the next
word, whereas the pointer mixture model can correctly predict the next word ‘patn’
with high probability. This indicates that the switching model correctly predicts that the
next word is a referenceable identifier, and the pointer mixture model can predict the
next word with an emphasis on the pointer model.

6 Conclusions

Herein, we have presented a methodology for code completion that has two key
constituents: the prediction of the next within-vocabulary word and the prediction of
the next referenceable identifier. We have proposed a model for the former based on
an LSTM network with an attention mechanism, a model for the latter based on a
pointer network to a given incomplete program, and a model for switching between
the former and latter models. The proposed algorithms have been demonstrated using
data from AOJ. As a result, in the field of not only software engineering but also
programming education, the pointer mixture model succeeded in predicting both the
next within-vocabulary word and the referenceable identifier with higher accuracy
than the conventional neural language model alone in both statically and dynamically
typed languages. The present research can be expected to contribute to support for
programming learning for beginners. In addition, the proposed prediction method is
very likely to be applicable to source code in a variety of other languages, regardless
of whether the language is statically or dynamically typed, such as Java and Ruby.
Generally, the algorithm can be applied to code completion tasks not only in AOJ but
also in other OJ systems, where accumulated source codes are available.
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