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1 Introduction 
A credit-rating agency classifies economic entities 
according to their creditworthiness. Among other features, 
such a rating determines the interest rate paid by the entity 
when borrowing money. For example, the Standard and 
Poor (S&P) consider nine non-default credit classes. In 
descending order of creditworthiness they are referred to as: 
AAA, AA, A, BBB, BB, B, CCC, CC and C. Defaulted 
entities are labelled by D (a more subtle classification 
involves more classes: AA+, R, NR, etc. Also it may indicate 
an ‘outlook’ for a credit class. We do not discuss such 
refinements.). Merging CCC, CC and C into a single credit 
class C, a reduction with seven levels is often studied in 
research papers and textbooks. 

We consider M > 1 non-default credit classes.  
They are numbered in descending order of creditworthiness 
by 1, 2, …, M. Defaulted entities are indexed by  
M + 1. In particular, there are investment-grade and  
non-investment-grade debtors or assets if M = 2. The former 
comprises the credit classes AAA, AA, A and BBB of the 
standard S&P’s classification, while the latter is formed by 
the debtors rated at BB, B, CCC, CC and C. 

The agency reconsiders periodically its ratings.  
Then some of the entities may receive a higher mark of 
creditworthiness while the others may be downgraded. That 
is, the classification evolves in time. A balance of the 
migrations over a period of time is given by transition 
counts. 

Within the CreditMetrics approach, a transition matrix P 
is estimated from the counts (see Gupton et al., 1997). The 
entry Pi,j of P is interpreted as the probability that a debtor 
belonging to the credit class i at time t will move to the 
credit class j at time t + 1. A defaulted debtor never returns 
to business. Therefore, PM+1,j = 0 for j = 1, 2, …, M and 
PM+1,M+1 = 1. In other words, M + 1 is an absorbing state of 
this time-homogeneous, discrete-time, finite Markov chain. 
Typically, only first M rows of P are quoted. We refer to 
this M × (M + 1) sub-matrix as a migration matrix. 

Since the economic environment is common for all 
debtors, their credit-rating migrations are affected by the 
same market forces. Consequently, the migrations are 
dependent. Considering only two macroeconomic scenarios, 
contraction and expansion, the models employing  
regime-switching are used. See Bangia et al. (2002) for a 
description of them. In a similar vein, Fei et al. (2012) 
envisage three macroeconomic scenarios: expansion, ‘mild’ 
recession and ‘severe’ recession. A still more detailed 
analysis distinguishes among the market conditions 
affecting different credit classes. Then, assuming for each 
credit class two possibilities, favourable and adverse 
economic conditions, there are 2M scenarios to analyse. 
Assigning 1 to a favourable outcome and 0 to an adverse 
outcome, these economic scenarios can be represented as 
binary strings v with M positions. Denote by {0, 1}M the set 
of all such vectors. Let the ith coordinate vi of v characterise 
the economic conditions affecting the credit class i. We call 
vi the ith tendency variable. 

To introduce dependence among credit-rating 
migrations, a coupling scheme is used. Then every 
migration is modelled as a mixture of an idiosyncratic 
component ξ and a common component η, 

(1 )δξ δ η+ −  (1) 

The Bernoulli random variable δ indicates which of the 
components actually drives the migration. To simplify the 
notation, equation (1) contains neither time nor an identifier 
of the asset. Time is discrete t = 1, 2, …. For every asset, the 
random variables δ; ξ and η defining the credit-rating 
migration at a time instant are independent. These triples of 
random variables are independent in time as well. Finally, 
the random variables δ and ξ are independent across 
debtors, while three models of dependence across debtors 
are known for the random variables η [see Kaniovski and 
Pflug (2007), Wozabal and Hochreiter (2012) and Boreiko 
et al. (2017) for details]. 

If debtors are classified into S industry sectors, the 
distribution of δ depends on a combination of a credit class i 
and an industry s. Therefore, the probabilities of success qi,s 
form a matrix q with M rows and S columns. 

For debtors belonging to the credit class i, ξ takes  
the value j with probability Pi,j, while all three known 
dependence models for η employ the following conditional 
distribution Pi,j(vi) of η: 
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Here, Pi stands for Pi,1 + Pi,2 + ⋅⋅⋅ + Pi,i, i = 1, 2, … , M. With 
such assumptions, the credit rating at t + 1 of a debtor 
belonging to the industry s whose rating at t is i will be j 
with probability qi,sPi,j + (1 – qi,s)Pi,j(vi) conditional on vi. 
This parametrisation reflects the empirical fact that 
migrations towards more (less) secure credit ratings are 
more frequent under favourable (adverse) economic 
conditions. 

To specify completely the dynamics given by  
equation (1), we need a probability distribution d over 
binary strings. Then d(v) ≥ 0 for every v ∈ {0, 1}M and 

{ , }
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The conditional migration probabilities qi,sPi,j  
+ (1 – qi,s)Pi,j(vi) can deviate from the corresponding Pi,j.  
In the long run, these deviations have to compensate  
each other. In order to keep for every i the unconditional 
distribution in equation (1) equal to ith row of P, the 
following M linear constrains have to be satisfied: 
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Conceptually, relations (3) mean that the ith tendency 
variable equals 1 with probability Pi. 

 



266 Y. Kaniovski et al.  

By the maximum likelihood principle, maximising  
the likelihood function l(d, q) implied by one of the  
three dependence models for random variables η, the  
true distribution d* and Bernoulli probabilities q* can be 
estimated. The corresponding nonlinear programming 
problem involves ln l(d, q), the linear constraints (2) and  
(3) and, since all unknowns are probabilities, the  
box-constraints, 0 ≤ d(v) ≤ 1 and qi,s ∈ [0, 1]. We call this 
optimisation problem a basic setting. Its solution is used 
below to ‘assemble’ a heuristic solution of a more realistic 
and involved computationally complete setting. 

The basic setting is not a computationally hard problem. 
Wozabal and Hochreiter (2012) found a solution 
considering M = 4 and S = 6. For this choice of M and S, the 
distribution d is nested in 24 = 16 binary vectors. They used 
a particle swarm optimisation method. A desktop computer 
requires several minutes to solve such a problem. The 
interior point (IP) method and the sequential quadratic 
programming method were used in Boreiko et al. (2017) 
who considered M = 7 and S = 6. In this case, the 
distribution of d is nested in 27 = 128 binary strings.  
A desktop computer requires a couple of minutes to find a 
solution. Boreiko et al. (2017) reports estimates for all  
three known dependence models. If d* and q* are available, 
simulating credit-rating migrations according to the  
formula (1), the loss generated by a portfolio can be 
estimated with the Monte-Carlo method. Wozabal and 
Hochreiter (2012) compare the loss estimated according to 
their coupling scheme with the estimates obtained when 
alternative models of dependent credit-rating migrations are 
used. 

The models reviewed so far assume either economic 
scenarios common to the whole economy or the economic 
scenarios common to all debtors belonging to a credit class. 
A sectoral classification of economic scenarios is the  
next fine-tuning in modelling of dependent credit-rating 
migrations. Remaining with two possibilities, a favourable 
and an adverse outcome, an economic scenario has to 
distinguish among the economic conditions affecting assets 
characterised by every combination of a credit class and an 
industry. Considering M credit classes and S industries,  
a binary string V corresponding to such a scenario must 
have M × S positions. Assigning 1 to a favourable outcome 
and 0 to an adverse outcome, we consider the set of binary 
strings {0, 1}M×S. It contains 2M×S elements. We need a rule 
for allocation coordinates of a string V to industries and 
credit classes. To this end, let the coordinate VM(s–1)+i of a 
binary (M × S)-vector V characterise the economic 
conditions affecting the credit class i of the industry s. It is 
called the tendency variable for this combination of a credit 
class and an industry. That is, the industries occupy blocks 
of M coordinates each. The blocks are numbered in 
ascending order of s. Within a block, the credit classes are 
listed in ascending order of i. 

Computational complexity of this setting is enormous. 
In fact, if M = 7 and S = 6, the number of binary strings  
27×6 = 242 is huge. Some of these macroeconomic scenarios 
are plausible while the others do not make conceptual sense. 

In real life, the plausible scenarios are not equally frequent. 
To model this phenomenon, consider a distribution D such 
that D(V) is the probability of observing the economic 
scenario encoded by the binary string V. We have to identify 
the distribution D* that fits the observed credit-rating 
migrations the best. Analysing all binary strings V 
simultaneously is a task for a supercomputer. Using a 
desktop computer, we can test just some of them. 
Consequently, a strategy for choosing the subsets of strings 
is necessary as well as a strategy for testing them. 

This paper suggests heuristics for estimating parameters 
of models involving industry and credit class specific 
economic scenarios. As a first step, we consider a reduction 
of the search space. Second, a decomposition of the reduced 
search space is introduced. Third, a couple of random search 
methods are suggested to avoid analysing all of the 
outcomes in the reduced search space. Finally, a risk 
threshold typical for the recent regulations in the financial 
sector is used to streamline the search. 

Genetic algorithms (GAs), especially those implying a 
decomposition of the space of decision variables, is an 
appropriate instrument to tackle this problem. See Ma et al. 
(2018, 2019, 2020) for the state of the art in the 
evolutionary algorithms of this kind. 

Two important aspects of the estimation problem have 
to be mentioned. On the one hand, 2M×S typically greatly 
exceeds the number of available transition counts 

1 2
,

, .t s
m mI  

We denote by 
1 2
,

,
t s
m mI  the number of debtors in the industry s 

that migrated from the credit class m1 to the credit class m2 
in the period t. Therefore, the conventional wisdom suggests 
that no statistical inference should be possible under such 
circumstances. On the other hand, estimating parameters of 
historical migrations is a practical problem. As in any 
statistical application, there is a threshold for distinguishing 
between the important and the insignificant outcomes. The 
Basel accords (BAs) – the banking supervision accords 
(recommendations on banking regulations) – Basel I,  
Basel II and Basel III-issued by the Basel Committee on 
Banking Supervision – set an upper bound of 0.1% for  
the admissible in the financial sector risk. Then at most  
1,000 binary strings have to be considered even in the 
extreme case when all of them were equally probable.  
In sum, evoking the conceptual interpretation of binary 
strings as economic scenarios it appears that the problem is 
not as hopeless as it looks at first glance. 

Analysis of the credit risk associated with a portfolio 
and evaluation of the systemic risk implied by the banking 
system of a country are the most important applications for 
the estimates suggested here. See Wang et al. (2017) who 
analyse the recent developments in modelling of dependent 
credit-rating migrations and Glasserman and Young (2016) 
who present the state of the art in modelling of systemic 
risk. 

As a benchmark, we consider the common for  
all industries migration matrix P. However, modelling 
industry-specific transition probabilities should imply a 
more precise estimate of the credit risk associated with a 
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portfolio composed by interdependent assets as compared 
with the models employing the same migration matrix for 
all debtors. The transitions within an industry allow to 
estimate the corresponding industry-specific migration 
matrix. Such matrices typically differ across industries. 
Denote by P(s) the migration M × (M + 1) matrix estimated 
for the industry sector s. Let ( )

,
s

i jP  be entries of P(s). 
The migrations are defined by equation (1) with δ and ξ 

independent in time and across debtors. For a debtor 
belonging to the credit class i and to the industry s: 

• distribution of ξ coincides with the ith row of P(s) 

• probability of success of δ equals Qi,s ∈ [0, 1] an entry 
of an M × S matrix Q 

• the conditional distribution of η for a given VM(s–1)+i is: 
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For every time instant and every debtor the corresponding 
random variables ξ, δ and η are independent. Conditional on 
VM(s–1)+i, the credit rating at t + 1 of a debtor belonging to the 
industry s whose rating at t is i will be j with probability 

( ) ( )
, , ( 1), ,(1 ) ( ).s s

i s i s M s ii j i jQ P Q P V − ++ −  
At a fixed time instant, Boreiko et al. (2017) specify  

two models of dependence among random variables η: 

1 η are conditionally independent across debtors 

2 η remains the same for all debtors characterised by a 
combination of a credit class i and an industry s, while 
for different couples, the corresponding random 
variables η are conditionally independent. 

Let L(D, Q) be the likelihood function corresponding to  
one of these dependence models. To estimate the true values 
D* and Q*, ln L(D, Q) has to be maximised subject to the  
M × S + 1 linear constraints, 
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and the box constraints, D(V) ∈ [0, 1], Qi,s ∈ [0, 1].  
Here, ( )s

iP  stands for ( ) ( ) ( )
,,1 ,2 .s s s

i ii iP P P+ + +  Constraints (5) 
guarantee that the unconditional distribution in (1) equals to 
the ith row of P(s) for every combination of i and s. 
Conceptually, relations (5) mean that a macroeconomic 
scenario favourable for the industry s and to the credit  
class i occurs with probability ( ) .s

iP  Such an optimisation 
problem is termed as a complete setting. 

Considering M = 2 and S = 6, Boreiko et al. (2017) 
solved with the IP method the complete setting for both 
dependence models. There are 22×6 = 4,096 economic 
scenarios. With 103,723 transition counts available, this 
complete setting can be treated within the traditional 
framework. A desktop computer requires a couple of hours 
to solve such a problem. Along with more precise and 
specific credit risk estimates, certain aspects of systemic 
risk can be analysed using the true distribution D*.  
For example, Boreiko et al. (2017), referring to the  
period of time between 1991 and 2015, concluded  
that “the investment-grade financial institutions evolve 
independently of the rest of the economy represented by the 
data. This might be an evidence of implicit too-big-to-fail 
bailout guarantee policies of the regulatory authorities.” 

Because complexity of the sample space is 
combinatorial for a realistic choice of M and S, estimation 
of D* is a big-parameter problem. Therefore, a clear 
understanding of what is a solution in such a case is 
necessary. The next section suggests an interpretation in the 
context of risk analysis. It presents the framework employed 
by all the GAs considered here. Numerical tests are 
described in Section 3. The biological phenomena 
mimicked by the sequential and the parallel algorithms are 
discussed. Versions with equally probable mutations as well 
as versions where mutations are sampled path-dependently 
are suggested. The numerical results presented in Section 4 
allow to indicate the most efficient GAs as well as the 
fastest of them. Section 5 summarises the main results. 

2 The framework 
We call V ⊆ {0, 1}M×S a suitable set, if there exists a 
probability distribution DV such that: 

• DV satisfies constraints (5) 

• the support of DV belongs to V. 

For a suitable set V, the set of non-negative measures D 
defined by the M × S + 1 linear constraints, 

( ) 1
V

D V
∈

=
V

 (6) 

( )
( 1) ( ) s

M s i i
V

V D V P− +
∈

=
V

 (7) 

is not empty. In fact, DV satisfies these constraints. If the 
cardinality of V is low enough, the corresponding optimal 
distribution *DV  can be found by a conventional nonlinear 
programming method. The estimates obtain by maximising 
ln L(D, Q) subject to the linear constraints (6) and (7).  
The box constraints on Qi,s and D(V) must hold true as well. 

For the practical numerical procedure, look for the  
∈-support V∈ of * :DV  

{ }*: ( )V D V∈ = ∈ >∈VV V  
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Since * ( ) 1
V

D V
∈∈

↑ VV
 as ∈ decreases and *DV  satisfies 

the constraints (6) and (7), V∈ is a suitable set for  
all sufficiently small ∈. In fact, the linear constraints (6)  
and (7) with V∈ and *DV  instead of V and D, can hold true 
with any desired precision. 

Here is the structure of our heuristic search: 

1 At the beginning, a suitable set V with a low cardinality 
has to be found and a threshold value ∈ has to be 
chosen. 

2 Solve the optimisation problem for specifying V∈. 
Decrease ∈ if V∈ is not suitable. 

3 Better solutions (in terms of the likelihood value) can 
be found by extending V∈ to a larger set. Since any set 
containing a suitable set is also suitable, the extension 
preserves suitability. Let ,∈′ =V V VÈ  where V  is  
a subset of {0, 1}M×S / V. This is a suitable set, an 
extension of V∈. V  should not be too large so that the 
optimisation problem with V replaced by V′ could be 
solved. 

4 We may repeat steps 1–3 with V′ replacing V and 
continue them. The sequence of maximum likelihood 
values corresponding to the extensions does not 
decrease. 

Finding an initial suitable set V is a quite difficult task. Note 
that existence of a suitable set is equivalent to existence of 
an optimal distribution D*. In fact, a set containing a 
suitable set is suitable. Therefore, {0, 1}M×S is a suitable set, 
if a suitable V exists. In this case we set * *

{ , } .M SD D ×= 0 1   
On the other hand, if an optimal distribution D* exists, the 
whole {0, 1}M×S with *

{ , }M SD D× =0 1  is a suitable set. 
The choice of ∈ is affected by two contradictory factors. 

On the one hand, a larger threshold can imply a smaller 
support V∈. On the other hand, a larger ∈ can cause  
non-suitability of the support. Note that V∈ contains at most 
∈–1 elements. 

Even if the search space for a suitable V consists of 
binary strings, a mutation or a recombination based on the 
conventional GA encoding can be, given the notation 
adopted here, an implausible conceptually transformation. 
See Holland (1992) for a general introduction into GAs. 
Some recent applications in engineering can be found in  
Cai et al. (2020a, 2020b) and Ma et al. (2014a, 2014b, 
2014c, 2016a, 2016b). 

Ceteris paribus, a string (…, 1, 1, …) can appear 
intuitively more likely than its mutation (…, 0, 1, …). For 
example, let the former economic scenario be favourable for 
debtors belonging to two subsequent credit classes, say i 
and i + 1, in an industry. Then the latter scenario is 
favourable for the more risky credit class i + 1 while it is 
adverse for the less risky credit class i. This is a situation 
having little empirical justification, at least without a deeper 
insight into the economic scenarios represented by the 
strings. Consequently, the conventional GA encoding of the 

problem cannot be used. In fact, an allele in this case has to 
consist of several symbols 0 and 1. A natural candidate for 
the smallest unit of evolutionary selection is a binary  
M-vector characterising the economic conditions affecting 
credit classes of an industry. This approach allows to avoid 
brute-force evaluation of all possible 2M×S macroeconomic 
scenarios. The particular extent of the reduction of the 
search space and thus the complexity of the estimation 
problem is characterised below in several steps. 

Let us identify a set of alleles for running a selection 
process. Choose a dependence models for the basic setting 
and a dependence model for the complete setting. Having 
three possibilities for the first choice and two possibilities 
for the second choice, six couples can be considered. Write 
down the corresponding likelihood functions l and L. Fix a 
threshold ∈ > 0. Solve the basic setting. 

Let vk, k = 1, 2, …, K, be the support of d*  
defined according to the threshold. That is, d*(vk) > ∈ for  
k = 1, 2, …, K. We refer to these binary vectors as blocks. 
Combining them, we create economic scenarios for an 
economy, where economic conditions affecting different 
industries can vary. As the simplest economic scenario of 
this kind, let Vk consist of S identical blocks vk, Vk = (vk,  
vk, …, vk). It is referred to as the kth block-structure. Let us 
denote by V the set of all such block-structures. It contains 
K elements. Conceptually, vk is an economic scenario for an 
economy, where economic conditions are not classified 
according to industry sectors, while Vk is the same scenario 
for the same economy, where economic conditions are 
additionally classified into S groups to account for the 
industry-specific phenomena. Vk represents the particular 
case when identical economic conditions affect all 
industries. The conditions are represented by vk. 

Consider first the benchmark case of the common for all 
industries migration matrix P. Let us show that the defined 
above set V of block-structures is a suitable set if ∈ is 
sufficiently small. To this end, define a probability 
distribution DV on V by setting DV(Vk) = d*(vk) for k = 1,  
2, …, K. Observe that equation (7) with the common for all 
industries transition matrix P are just S times repeated 
equation (3). In formal terms, the estimation problem for 
(d*, q*) is nested, if all P(s) = P for all s, in the estimation 

problem for * *( , ).VD Q  Since *
1

( ) 1
K i
i

d v
=

↑  as ∈ 

decreases and d* satisfies constraints (2) and (3), we 
conclude that DV will satisfy constrains (6) and (7) with any 
desired precision. It is enough to choose a sufficiently small 
∈. In sum, V is a suitable set. 

Solve the optimisation problem for identifying V∈. 
Recall that the likelihood function is L in this case. Denote 
by K  the number of elements in V∈. Then ,K K≤  because 
some of the binary vectors from V may receive a probability 
smaller than ∈. 

As it has been explained, a chromosome has  
S loci. They correspond to S industry sectors. If 

( , , ..., ) ,j j j ji i i iV v v v ∈= ∈ V  then jiv  is an allele. In sum, the 
GA encoding involves S loci and K  alleles in our case. 
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There are SK  possibilities for allocating K  building 
blocks among S positions. If 2 ,MK <  this number is 
smaller than 2M×S. Consequently, the suggested GA 

encoding in fact implies 2 SM

K
 
 
 

 times reduction of the 

search space. On the other hand, there is a price of the 
reduction: if even all possible SK  chromosomes were 
considered, the corresponding solution could still not  
be optimal. Let us order the block-structures so that 

1 2* * *( ) ( ) ( ).Ki i iD V D V D V≥ ≥ ≥V V V
  

Living communities evolve from simpler to more 
complicated forms. For the case in hand, this observation 
translates into a search process employing extensions that 
progressively deviate from the block-structures, as the 
simplest chromosomes. Sets Vn; n ≥ 1; of mutants with 
(exactly) n mutations of the block-structures, on the one 
hand, increasingly deviate from V∈ and, on the other hand, 
complexity of the set 0

n k
k = VÈ  of mutants with at most n 

mutations increases in n. If indicating the exact threshold 
value is not necessary, V∈ will be denoted also as V0 for 
notation consistency. In fact, block-structures are mutants 
with zero mutations. 

Even if the notion of a mutation is fundamental for GAs, 
let us describe formally, keeping in mind the conceptual 
problem in hand, the mutations of a block-structure. This is 
necessary for specifying unambiguously the extension 
schemes introduced below. Substituting one block kiv  in 

kiV  by a block liv  l ≠ k, we get a mutant with a single 
mutation of the block-structure .kiV  Conceptually, this is an 
economic scenario, where all industries, except for one,  
are affected by the economic conditions summarised in  

,kiv  while the remaining industry is affected by the 
economic conditions represented by .liv  Trying all possible 

, 1, ..., ,kiV k K=   industries s = 1, …, S or, equivalently, 
positions of the mutated block, and its type 

, 1, ..., , ,liv l K l k= ≠  the set V1 of all mutants with a single 
mutation will be obtained. Similarly Vn, can be defined for 
n > 1. Note that a block liv  can appear more than one time 
in a mutant stemming from the block-structure .kiV  

The number of binary vectors in Vn equals, 

! ( 1)
!( )!

nS K K
n S n

−
−

   

if n < S / 2. For an even S, VS/2 contains, 

( )1
2

2
! ( 1) 2
!
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SS K K K
S
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chromosomes. Note that 0,n n′ = /V VÇ  if n, n′ < S / 2;  
n ≠ n′. For n ≥ S / 2, the mutants originating from different 
block-structures should not be listed several times. Already  
 
 

for n = S / 2, if S is an even number, a mutant containing  
S / 2 blocks liv  and S / 2 blocks Liv  can be regarded as a 
mutation of the block-structure liV  as well as a mutation of 
the block-structure .LiV  Such mutants have to be listed in 
VS/2 only one time. If there are too many binary vectors in a 
set Vn, it can be split into subsets and each of them can be 
used for extensions. 

Instead of dealing with all binary vectors from Vn,  
a random sample can be drawn. Using such a random search 
strategy the space of decision variables and, consequently, 
the complexity of the estimation problem can be further 
reduced. The extent of this reduction depends upon the 
sample size. 

Sampling a binary vector from Vn, for the first mutation 
there are S equally probable positions, for the second – the 
remaining S – 1, etc. For the probability of choosing a 
particular block as a mutation there are two possibilities. 
First, the probability of choosing the block liv  can be 
proportional to * ( ).liD VV  In particular, generating mutations 
in the block-structure ,k li iV v  is sampled with probability 

* *
1,

( ) / ( ).jl
K ii
j j k

D V D V
= ≠V V


 We refer to this distribution as 

natural. This way of increasing the variety of genotypes 
under consideration is an example of a path-dependent 
search. Arguing about species in a living population, the 
word ‘frequency’ is more appropriate than ‘probability’. 
Then, instead of more probable binary strings, we can argue 
about more frequent alleles or chromosomes. Intuitively, 
alleles, corresponding to more probable block-structures, 
should be used more frequently as mutations. Choosing 
mutations with equal probabilities is an alternative way for 
sampling mutants. This distribution is termed as uniform. 
Since each of the possible alleles is always sampled with 

probability 1 ,
1K −

 this technique can imply a richer variety 

of mutants. 
Crossing over vk and vi can produce a binary M-vector v 

that does not belong to the support of d*. In other words, 
this economic scenario has been sorted out by the basic 
setting as an unlikely outcome. In fact, the fitness function l 
assigned to this scenario a probability that falls below the 
threshold ∈. In view of this observation, we do not use 
recombination of block-structures in our GAs. 

If the transition matrices are industry-specific, the 
relations (7) are not a consequence of the relations (3): for a 
combination of an i and an s, the mismatch depends upon 

( ) .s
iiP P−  Consequently, the defined above set V may be 

regarded only as an approximation to a suitable set. 
However, the alleles vk, k = 1, 2, …, K, can be used in the 
evolutionary search discussed above. Since every time a 
larger set of binary vectors is involved, passing from 

0
n k
k = VÈ  to 1

0 ,n k
k

+
= VÈ  the corresponding maximal likelihood 

value cannot decrease and the corresponding mismatch of 
the constrains cannot increase. Therefore, a suitable set can 
be eventually found. 
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3 Inputs and numerical experiments 
Solutions of all nonlinear optimisation problems reported 
below were found with the IP method. The likelihood 
functions l and L tested correspond to the model  
with conditionally independent across debtors random  
variables η: 
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In the annual transition counts used for numerical 
experiments t = 1 corresponds to 1991 and T = 25 
corresponds to 2015. 

The analysis is restricted to the sample points whose 
probabilities exceed 10–3, the threshold fixed by the BAs. 

3.1 Alleles, sample and evaluation criterion 
Considering M = 7 and S = 6, we use the K = 13 blocks vk 
identified in Boreiko et al. (2017) for the threshold 10–3: 

1 2

3 4

5 6

7 8

9 10

11

(1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1, 0)
(0, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1, 0, 1, 1)
(1, 1, 1, 0, 1, 1, 1), (1, 0, 1, 1, 1, 1, 1)
(1, 1, 1, 1, 1, 0, 0), (1, 0, 0, 1, 0, 1, 1)
(1, 0, 1, 1, 1, 0, 1), (1, 1, 0, 1, 0, 0, 0)
(0, 0, 1, 1, 1

v v
v v
v v
v v
v v
v

= =
= =
= =
= =
= =
= 12

13

, 0, 0), (1, 1, 0, 0, 1, 1, 1)
(0, 0, 0, 1, 0, 0, 0)

v
v

=
=

 

Probability of the remaining 27 – 13 = 115 binary strings is 
8.6 ∙ 10–5%. 

There are 103,723 annual transition counts for 
estimating 42 + 242 parameters. That is, the number  
of unknowns exceeds 4.2 ∙ 107 times the number  
of observations. See https://doi.org/10.1371/journal.pone. 
0175911.s001 for the transition counts. 

The fitness function of the selection process in  
hand is L. The quality of a solution whose likelihood  
equals L* is characterised by the percentage of increase, 

* 0

0
ln ln 100

ln
L L

L
−  against the maximum likelihood value L0 

attained on the set of block-structures V0. Recall that the 
block-structures are the simplest chromosomes in this 
‘vivarium’. 

3.2 Suitable sets and extensions 
If the migration matrix P is the same for all industries,  
the set 310−V  consists of 11 block-structures. They were 
assigned the following probabilities: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

* 1 * 2 * 3

* 5 * 10 * 4

* 6 * 11 * 9

* 8 * 13

0.5294, 0.1986, 0.0714,
0.0531, 0.0320, 0.0266,
0.0239, 0.0210, 0.0166,
0.0142, 0.0133

D V D V D V
D V D V D V
D V D V D V
D V D V

= = =

= = =

= = =

= =

V V V

V V V

V V V

V V

 

The remaining two block-structures received together the 
probability 7.9 ∙ 10–6%. All 13 block-structures belong to 

310 ,−V  if the industry-specific transition matrices P(s) are 
considered. The corresponding probabilities * ( )kiD VV  are: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

* 1 * 2 * 3

* 10 * 5 * 7

* 8 * 6 * 4

* 13 * 11 * 12

* 9

0.4440, 0.2280, 0.0688,
0.0421, 0.0397, 0.0363,

0.0342, 0.0329, 0.0325,
0.0255, 0.0217, 0.0212,
0.0167

D V D V D V
D V D V D V
D V D V D V
D V D V D V
D V

= = =

= = =

= = =

= = =

=

V V V

V V V

V V V

V V V

V

 

These block-structures do not form a suitable set, but just an 
approximation to it. 

The total number of chromosomes generated by these 
alleles is 116 = 1,771,561 and 136 = 4,826,809, 
correspondingly. In relative terms, these economic scenarios 
cover 4.0 ∙ 10–5% and, correspondingly, 1.1 ∙ 10–4%,  
of the total number 242 of them. In other words, by 
restricting the search space to all possible mutations of  
the block-structures, computational complexity of the 

estimation problem reduces 
67

62 2.5 10
11

  ≈ ⋅ 
 

 and, 

correspondingly, 
67

52 9.1 10
13
  ≈ ⋅ 
 

 times. As Table 1 

demonstrates, dealing already with two mutations represents 
a hard computational problem. Consequently, an extension 
strategy is needed. To streamline the discussion, first we 
will quote the numerical characteristics of the GAs 
employing the common for all industry migration matrix P 
and then, in parentheses, the corresponding characteristics 
of the GAs involving industry-specific migration matrices. 
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Table 1 Number of elements K  in Vn 

/K n  1 2 3 

11 660 16,500 198,000 
13 936 28,080 411,840 

We split the set of all mutants with two mutations into  
5 (10) subsets. Each of them contains 3,300 (2,808) binary 
strings. In Figures 1 and 2, they correspond to the sets 2 .kSS  
Since we are not able to analyse all mutants with i = 3,  
4 and 5 mutations, we sample randomly 5 (10) subsets i

kSS  
of Vi. Each of the block-structures is represented in these 

i
kSS  by 300 (250) mutants. Therefore, every such i

kSS  
contains 3,300 (3,250) binary strings. None of the mutants 
can be listed more than one time. In particular, a newly 
generated mutant is added into the pool if it differs from all 
chromosomes already present there. To this end, none of the 
randomly generated mutants with four identical mutations, 
may be included in the list. In fact, all such mutants are 
already there because they belong to one of the subsets 

2 .kSS  In the same way, randomly sampled mutants with  
five identical mutations will be excluded from the 
consideration because they are already included in V1. 

The values presented in Table 2 are evaluated in the 
following way. Consider n = 3 for example. Dealing with 
the common for all industries transition matrix P, the total 
number of tested chromosomes with at most n = 3 mutations 
equals 11 + 660 + 16,500 + 5 ∙ 3,300 = 33,671. The addends 
in the sum are: the number of elements in 310 ,−V  the number 
of elements in V1, the number elements in V2, the total 
number of binary strings sampled from V3. The percentage 

6
33,671100

11
 characterises reduction of the search space due 

to, one the one hand, this particular extension scheme and, 
on the other hand, due to limiting by 3 the maximum 
number of mutations and using a random sample rather than 

all of them. We can argue in this case about 
611 53

33,671
≈  

times reduction of complexity of the estimation problem. 
While the first three terms are fixed, the number of mutants 
sampled from V3 can be changed. Then the percentage will 
be adjusted accordingly. Recall that 116 stands for the total 
number of chromosomes formed by eleven alleles that 
occupy six loci. 

Table 2 Percentage of chromosomes from 0
n i
i= VÈ  tested 

 n = 1 n = 2 n = 3 n = 4 n = 5 

P 0.06 1.46 2.87 4.28 5.69 
P(s) 0.02 0.60 1.27 1.95 2.62 

Since the threshold value is fixed, we can denote 
everywhere 310−V  by V0. First, we estimate parameters 
allowing at most one mutation. That is, economic scenarios 
belonging to 0 1′ =V V VÈ  are considered. Note, that  

this turns out to be already a suitable set in the case of  
industry-specific migration matrices. Then, mutants with at 
most two, three, four and five mutations are analysed. 
Dealing with at most two mutations, first, 310−′V  is extended 
using 2

1 .SS  Remark that 310−′V  corresponds to 1
1C  in  

Figure 1. Then, the result 2
2C  is extended with the second 

subset 2
2 ,SS  etc. In sum, within a set Vn, the subsets of 

mutants n
kSS  are used for extension sequentially one after 

another. 

Figure 1 Sequential algorithm, passage from i – 1 to i, i ≥ 2 

 

When the maximum likelihood method is applied to 
multinomial distributions, multiple maxima are a typical 
complication. Allman et al. (2009) present a comprehensive 
analysis of this phenomenon. Therefore, the IP method, 
which is used for the numerical experiments, can lock into a 
local maximum. As a consequence, extending a suitable set, 
the maximum value will not necessarily increase. Switching 
to a smaller threshold may not help in this case. Then, along 
with trying several initial approximations, as it is typically 
suggested, the order in which subsets of mutants are tested 
can be changed. Modifying the shape of the likelihood 
function, it may imply convergence to a larger likelihood 
value. In sum, if a local method is used for maximisation, 
the heuristic search can exhibit path dependence. That is, 
the result can depend upon the order in which suitable 
subsets are considered. 

Such complications can be partly avoided if the subsets 
n
kSS  of a set Vn are analysed by a parallel algorithm.  

If 5 (10) parallel processors maximise simultaneously  
the corresponding likelihood functions, all calculations 
regarding Vn can be done 5 (10) times faster for every n > 1. 
In particular, dealing with at most n = 2 mutations, the kth of 
5 (10) parallel processors maximises the likelihood function 
based on the extension of 310−′V  the kth subset 2 .kSS  Recall 
that 0 1′ =V V VÈ  and, consequently, 310−′V  corresponds to 
C1 in Figure 2. Then, the support of the solution with the 
largest likelihood value, denoted as C2 in Figure 2, is 
extended using 5 (10) subsets 3

kSS  of V3. Again, the 
problems are solved simultaneously by 5 (10) processors. 
The support C3 corresponding to the largest likelihood value 
attained at this stage is extended with subsets of V4, etc. 
Figure 2 depicts the situation when the greatest likelihood 
value among all suitable sets 1 1 ,i i

ij j n− ≤ ≤C SSÈ ,  is 

attained on 1 .i i
k

−C SSÈ  
Intuitively, a solution obtained according to this scheme 

cannot be better than its counterpart found by the sequential 
algorithm. In fact, passing from k to k + 1, k ≥ 2, the parallel 
method retains only the information contained in one of the 
5 (10) subsets .k

iSS  Even if this subset corresponds to the 
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largest likelihood value, the remaining 4 (9) subsets can 
contain useful information as well. 

Figure 2 Parallel algorithm, passage from i – 1 to i, i ≥ 2 

 

In order to compare the two techniques for sampling 
mutants, we consider the sequential as well as the parallel 
algorithms with both the natural and the uniform 
distribution. These numerical experiments were conducted 
for the case of the common for all industries migration 
matrix P and for the case of industry-specific migrations 
matrices. 

4 Numerical results 
Tables 3–5 demonstrate that, all other things being equal, 
the sequential algorithm always achieves a greater 
likelihood value than its parallel analogue. This is an 
intuitively plausible result. In the case of industry specific 
migration matrices, it is surprising that the algorithm 
employing the uniform distribution performs typically better 
than its counterpart using the natural distribution. A richer 
variety of chromosomes in the sample is a plausible 
explanation of this phenomenon. In fact, generating 
mutations with equal rather than with different probabilities 
can imply an evener coverage of the set Vn. There are at 
least two conceptual explanations for the greater relative 
increase of the optimal value in the case of the common P. 
On the one hand, the higher percentages in Table 2 imply 
that the sets of mutants with at most n mutations are better 
represented in this case. On the other hand, the blocks are 
obtained by solving a basic optimisation problem where the 
migration matrix P is the same for all industries. Therefore, 
the corresponding block-structures may not completely 
account for the effect of industry-specific migration 
matrices P(s). 

Table 3 
* 0

0

ln ln 100,
ln

L L
L

−  at most k deterministic mutations 

k = 2 

 k = 1 Sequential 
algorithm 

Parallel 
algorithm 

P 36.63 46.69 43.01 
P(s) 13.77 21.46 17.69 

Table 4 
* 0

0

ln ln 100,
ln

L L
L

−  sequential algorithm, at most k 

deterministic and random mutations 

 Natural distribution  Uniform distribution 

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 

P 48.52 50.49 51.26  47.41 47.76 48.53 
P(s) 26.53 28.55 28.86  26.77 29.15 29.20 

Table 5 
* 0

0

ln ln 100,
ln

L L
L

−  parallel algorithm, at most k 

deterministic and random mutations 

 Natural distribution  Uniform distribution 

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 

P 47.38 48.95 49.73  46.66 47.29 48.47 
P(s) 23.66 26.22 26.52  24.03 25.84 26.63 

Table 6 Number of binary vectors in 10–3-support of D* 

Sequential algorithm  Parallel algorithm 

Nat. dist.  Unif. dist. Nat. dist.  Unif. dist. 

P P(s) P P(s) P P(s) P P(s) 

51 48  45 55  51 49  48 45 

Table 7 Frequencies of identical blocks, P 

N 
Sequential algorithm 

 
Parallel algorithm 

Nat. dist. Unif. dist. Nat. dist. Unif. dist. 

1 1.96 11.11  0.00 4.17 
2 43.14 40.00  29.41 35.42 
3 39.22 8.89  47.06 18.75 
4 15.69 40.00  23.53 41.67 
5 0.00 0.00  0.00 0.00 
6 0.00 0.00  0.00 0.00 

Table 8 Frequencies of identical blocks, P(s) 

N 
Sequential algorithm 

 
Parallel algorithm 

Nat. dist. Unif. dist. Nat. dist. Unif. dist. 

1 2.08 3.64  2.04 6.67 
2 29.17 49.09  22.45 31.11 
3 54.17 27.27  53.06 11.11 
4 14.58 18.18  20.41 44.44 
5 0.00 1.82  2.04 6.67 
6 0.00 0.00  0.00 0.00 

Tables 6–8 characterise different aspects of the heuristic 
solutions reported here. In all cases, the chromosomes 
involved in a solution can contain up to five mutations. 
Table 6 demonstrates that the threshold of 10–3 is 
sufficiently large to bound the 10–3-support of D*. 
Frequencies of economic scenarios containing exactly N 
identical blocks are given in Tables 7 and 8. This is a 
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different way of characterising the number of mutations 
involved in a solution. The frequencies are expressed in 
percent. N = 1 corresponds to the economic scenarios, 
where all blocks are different. In other words, there are  
five different mutations of a block-structure. If N = 2,  
the row contains frequencies of economic scenarios with 
exactly two identical blocks. Therefore, there are four 
mutations in this case. At most two of them can coincide.  
In other words, economic conditions affecting couples of 
industries coincide. If S = 6, there can be one, two or  
three such couples. The economic conditions affecting the 
couples differ and they differ from the economic conditions 
affecting the remaining industries. Block-structures with a 
single mutation correspond to N = 5. They are present  
only in the solutions corresponding industry-specific 
Markovian matrices. Since none of the solutions contains 
block-structures, all percentages are equal to zero if N = 6. 

5 Conclusions 
Four GAs are suggested for estimating the distribution 
governing dependent credit-rating migrations of debtors 
belonging to M = 7 credit classes and S = 6 industries. 
Migration counts is the only input required by these 
algorithms. A S&P’s dataset was used. Since the sample 
space contains 242 points, while some 105 counts are 
available, conventional statistical techniques are not 
straightforwardly applicable in this case. There are  
two parallel GAs considered and two sequential GAs.  
To avoid brute-force calculations, two distributions for 
generating mutants are tested: a natural and an uniform. The 
natural distribution implies path-dependence of the selection 
process. In fact, it generates mutations with probabilities 
proportional to the frequencies of the corresponding alleles 
in the initial population. Each of the GAs employs a 
threshold that limits from above the population size  
by eliminating the genotypes underrepresented in the 
population. The tested value 10–3 was chosen according to 
the recommendations of the BAs. All other things being 
equal, a sequential GA achieves a higher likelihood value 
than its parallel analogue. Considering at most 2.3 ∙ 10–8% 
of all 242 possible economic scenarios, the logarithm of the 
likelihood value increased by up to 51.26% against the level 
corresponding to the initial population. 

Since not all of 2M×S binary strings can be interpreted as 
economic scenarios, associating a gene with a single locus 
of the string is not possible in our case. According to the 
maximum likelihood principle, we identify alleles that 
comprise M subsequent loci of a string. Conceptually, they 
represent combinations of favourable and adverse economic 
factors affecting every debtor in an economy, where M 
credit classes are considered. If the number of the alleles 
identified in this way equals K, the search-space reduces 

2 SM

K
 
 
 

 times. 
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