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Abstract: This paper proposes an efficient method for identifying a dynamic 
system using measured accelerations. A practical mathematical model of a 
dynamic system is developed based on modal superposition for response 
prediction. To explicitly address uncertainties, system identification is treated 
as a Bayesian inference problem where the objective is to identify the posterior 
PDF conditional measured data. Unless a very simple system is considered, the 
posterior PDF is usually complicated in the sense that its significant region is 
concentrated in the neighbourhood of an extended and extremely complex 
manifold. An effective Markov chain Monte Carlo algorithm is developed to 
sample from the posterior PDF. Given the generated samples, a framework is 
proposed to systematically consider multiple models whose relative plausibility 
is quantified by the weightings depending on the PDF values of the samples. It 
is illustrated that the proposed method can handle both globally identifiable and 
unidentifiable problems. 
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1 Introduction 

System identification aims at identifying a mathematical model based on measured data 
for representing a dynamic system so that actual behaviours of this system can be 
predicted as accurately as possible. The main task comes down to construct a 
mathematical model with some parameters, then conduct an optimisation process to tune 
the parameters for minimising the difference between measured and model-predicted 
response. In deterministic approaches, assuming that the true model of a dynamic system 
exists, only an optimal model is pinpointed for representing the dynamic system, but 
uncertainties in the identified model due to measurement noise and modelling error are 
not accounted for. The effect of uncertainties could bring a large challenge to system 
identification, which is especially so in practice. This is because in practice, unless the 
dynamic system under consideration is very simple (but it is seldom the case, e.g., 
dynamic systems of full-scale structures are not simple), we usually need to identify 
complicated models with only limited measured data, and the identified models will have 
relatively large uncertainties, which result non-uniqueness in system identification, i.e., 
multiple models that can fit the measured data equivalently well exist. Subjective 
arguments have been used to keep only one model while ruling out all others. However, 
there seems no theoretical basis ignoring any of these models, since all of them perform 
well in reproducing the measured data. In addition, ignoring the multiple equivalent 
models could bias response prediction. An appropriate framework is thus needed to 
address uncertainties in system identification. 

A Bayesian framework has been developed to explicitly address uncertainties in 
system identification (Beck and Katafygiotis, 1998). A class of system models is first 
chosen. It is then embedded in a class of probability models that describe the 
uncertainties due to measurement noise and modelling error. The posterior probability 
density function (PDF) of a system is derived following Bayes’ theorem. System 
identification is then viewed as a Bayesian inference problem where measured data 
(given information) is used to update the posterior PDF, which describe the relative 
plausibility of each system model in a class of models (Ng, 2014; Zhang et al., 2017; Ni 
and Zhang, 2018; He and Ng, 2017; Yin et al., 2017; Yin et al., 2010). This framework 
lays down a theoretical basis to handling uncertainties and non-uniqueness, i.e., 
systematically consider multiple equivalent models while consistent with modelling 
assumptions. A disadvantage by following the Bayesian framework is that a large amount 
of computational time is required, especially when identifying the posterior PDF of an 
unidentifiable problem, where the region of significant probabilities lies on an extended 
and extremely complex manifold. Some algorithms have been developed to successfully 
find complex manifolds (Katafygiotis and Beck, 1998; Katafygiotis and Lam, 2002; 
Katafygiotis et al., 2000, 1998). Efficiently exploring the complex manifold of the 
posterior PDF can be also done by sampling from the posterior PDF using Monte Carlo 
simulation. Because the posterior PDF is not a PDF that is convenient to sample from, 
e.g., Gaussian PDF, directly sampling from the posterior PDF is difficult. A possible 
solution is to apply importance sampling, where samples are generated from an 
importance density that is convenient to sample from, with importance weightings 
quantifying how close each sample lies in the region of significant probabilities. 
However, the problem is that an importance density that is well approximated to the 
posterior PDF is very difficult to find, so most of the time samples generated by 
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importance sampling lie in the region of small probabilities and it will take a long time 
until enough samples can be used to approximate the posterior PDF. To solve this 
problem, Markov chain Monte Carlo (MCMC) algorithms based on simulated annealing 
have been developed and find successful applications (Beck and Au, 2002; Ching and 
Chen, 2007; Beck and Zuev, 2013; Zuev and Beck, 2013; Lam et al., 2015; Yuen et al., 
2004; Lam et al., 2018; Yang et al., 2015; Hu and Yang, 2019). The idea is to decompose 
sampling into multiple levels (Yang and Lam, 2018) so that the size of parameter space 
focused in each level is reduced gradually, which makes sure that complicated manifolds 
can be fully explored. This paper also follows the idea of these MCMC algorithms and 
proposes an efficient method of system identification for both identifiable and 
unidentifiable problems. 

2 Methodology 

2.1 Mathematical model of a dynamic system 

A mathematical model of a dynamic system is needed to predict the response of the 
system so that the predicted response can be fit to measured response for identifying the 
mathematical model, and thus the dynamic system. Response of a structural dynamic 
system under dynamic loads is governed by the equation of motion: 

( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f�� �  (1) 

where ,d dN NR ×∈M  d dN NR ×∈C  and d dN NR ×∈K  denote the mass, damping and 
stiffness matrices of the structural system, respectively; Nd is the number of degrees of 
freedom; ,dNR∈x��  dNR∈x��  and dNR∈x  denote the acceleration, velocity and 
displacement of the system, respectively, i.e., the dynamic response; dNR∈f  is the 
excitation to the system. Given material properties and topological information of the 
system, M, C and K can be constructed conveniently using finite element method. f is 
assumed to be known from measurement. Equation (1) can then be solved directly using 
time integration method such as the Newmark-beta method (Au, 2017). However, this 
will cost large computational power, because the system matrices in practical problems 
are in large size and response needs to be calculated for many number of time steps. For 
the efficient application in practical problems, the modal superposition method is used to 
reduce the size of equation (1). The idea is that in practice usually only the first several 
modes contribute to system response, so instead of solving for a full system, the 
eigenvalue problem related to equation (1) is first solved to get natural frequencies, 
damping ratios and mode shapes. Considering only the first Nn dominant modes, equation 
(1) is then transformed to modal coordinates, rendering solving Nn uncoupled  
single-degree-of-freedom (SDOF) equations of motion, the nth of which is: 

2( ) 2 ( ) ( ) ( )n n n n n n nq t ξ ω q t ω q t a t+ + =�� �  (2) 

where qn is the nth modal coordinate; ωn and ξn are the natural frequency and damping 
ratio of the nth mode, respectively; an is the modal acceleration excitation in the nth modal 
coordinate given by 
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( )( ) n
n

n

p ta t
m

=  (3) 

pn is the modal excitation of the nth mode 

( ) ( )T
n np t t= φ f  (4) 

where φn is the mode shape of the nth mode. mn is the modal mass of the nth mode 
T

n n nm = φ Mφ  (5) 

After solving equation (2) for the considered Nm modes, the predicted system acceleration 
response is obtained by superposing the modal acceleration response: 

1

( ) ( )
nN

n n
n

t q t
=

=∑x φ�� ��  (6) 

Solving these SDOF equations of motion is much more efficient than solving the original 
full system. The increase of computational efficiency makes it possible for practical 
applications. 

2.2 Bayesian system identification 

2.2.1 Posterior PDF 

System identification is viewed as a Bayesian inference problem where the posterior PDF 
of the uncertain parameters of a dynamic system is identified. This section derives the 
posterior PDF by embedding the system model in a probability model based on measured 
data. Let the measured data be { }ˆˆ , : 1,2, , ,t o t f tD N N t N= ∈ ∈ =x f�� "  where ˆ tx��  is the 

vector containing accelerations at the tth time step measured at No DOFs; t̂f  is the vector 
containing excitation at the tth time step measured at Nf DOFs; and Nt is the total number 
of time steps. If the model of a system described in the previous section is parameterised 
by a model parameter vector θ, let ( ) dN

t R∈x θ��  denote the model-predicted acceleration 
at the time step t, and assume the model-predicted acceleration and the measured one 
differ with an error: 

ˆ ( )t t t= +x Lx θ ε�� ��  (7) 

where o dN NR ×∈L  is a selection matrix used to consider the situation that only part of the 
DOFs of a model can be measured in practice and it has only one non-zero element, equal 
to unity in each row; and oN

tε R∈  is the prediction error at the time step t. According to 
Bayes’ theorem, the posterior PDF of θ is written as 

( ) ( )( )
( )

p pp
p

=
θ D θθ D

D
 (8) 

where p(θ | D) is the posterior PDF of θ that quantifies the relative plausibility of 
different models in the parameter space conditional on the measured data D; p(θ) is the 
prior PDF of θ that gives a measure of the initial relative plausibility of the models before 
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any data is given; p(D | θ) is the likelihood function that expresses the probability of 
getting data D based on the mathematical model; and is called the evidence of the 
mathematical model class given the data: 

( )
Θ

( ) ( )p p p d= ∫D θ θD θ  (9) 

and it works as a normalising constant so that the integration of p(θ | D) over the 
parameter space Θ equals to unity. If we want the inference to fully rely on the measured 
data, p(θ) is taken to be a uniform PDF, so equation (8) can be written as 

( ) ( )p cp=θ D D θ  (10) 

where c is a constant. To formulate the likelihood function, the mathematical model is 
embedded into a probabilistic model by assuming that the prediction errors at different 
DOFs and different time steps follow i.i.d (independent and identically distributed)  
zero-mean normal distributions, ( )20, ,σN  with a mean 0 and a variance σ2, so 

( ) ( ),
1 1

ˆ
t oN N

i t
t i

ρ p x
= =

=∏∏D θ θ��  (11) 

where ,ˆi tx��  is the measured acceleration of the ith DOF at the tth time step and 

( ) ( )2
, , ,22

1 1ˆ ˆexp ( )
22

i t i t i tp x x x
σπσ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

θ θ�� �� ��  (12) 

The posterior PDF is thus obtained: 

( ) ( )2
0 , ,2

1 1

1 ˆexp ( )
2

t oN N

i t i t
t i

p c x x
σ = =

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑D θ θ�� ��  (13) 

where c0 absorbs all the constants. 

2.2.2 Markov chain Monte Carlo 

Bayesian system identification is to identify the posterior PDF in equation (13). It is 
almost impossible to obtain the close-form formulation for the posterior PDF, so  
Monte Carlo simulation is resorted to for approximating the posterior PDF. There are 
mainly two problems. First, it is difficult to describe the complicated topology of the 
posterior PDF in the vast parameter space, i.e., how to generate samples in regions with 
high probability. Second, it is difficult to generate samples from the posterior PDF, 
because directly sampling from equation (13) is simply impossible. To solve the first 
problem, a strategy based on simulated annealing is adopted (Beck and Au, 2002; Lam et 
al., 2015, 2018). The idea is to set-up a sequence of bridge PDFs, p1, p2, …, pg, …, with 
each of their regions of high probability reduced gradually. Sampling is then conducted in 
multiple levels, and in each level g, samples are generated according to pg. According to 
equation (13), the bridge PDF pg is constructed with a form of equation (13): 
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( )2
, ,2

1 1

1 ˆexp ( )
2

t oN N

g g i t i t
g t i

p c x x
σ = =

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ θ�� ��  (14) 

with the variance 2
gσ  controlling the parameter space covered by pg. The change of 2

gσ  
between two levels is as follows so that the parameter space covered by pg is reduced 
gradually: 

2
12 g

g
σ

σ
b
−=  (15) 

where b is an algorithmic constant larger than 1. Then, samples are drawn from equation 
(14) in each level. 

Considering that pg is known up to a constant, the Metropolis-Hastings (MH) 
algorithm (Metropolis et al., 1953; Hastings, 1970) is suitable for sampling. To apply the 
MH algorithm in the gth level, first, a proposal PDF ( )1h

gq −θ θ  that is convenient to 

sample from is constructed to draw a candidate θ* of the current sample ( )h
gθ  conditional 

on the previous sample ( 1) ,h
g
−θ  where h is the sample index. The candidate is accepted 

subjected to the acceptance ratio r in the following: 

( ) ( )
( ) ( )

( 1)* *

( 1) ( 1) *

h
g g

h h
g g g

p q
r

p q

−

− −
=

θ θ θ

θ θ θ
 (16) 

where ( )1 *h
gq −θ θ  is the PDF of the previous sample ( 1)h

g
−θ  conditional on the candidate. 

If r > 1, the candidate is accepted as the current sample, i.e., ( ) *.h
g =θ θ  If r < 1, the 

candidate is accepted as the current sample with probability r; and with probability 1 – r, 
the candidate is rejected and the previous sample is taken as the current sample, i.e., 

( ) ( 1) .h h
g g

−=θ θ  The MH algorithm will be used in the gth level to draw the desired Ng 
samples. 

An important issue of the MH algorithm is to construct the proposal PDF ( )1 .h
gq −θ θ  

A bad proposal PDF will generate most of the samples in regions of low probability, 
which in turn will give a bad approximation of the posterior PDF. It is proposed to 
construct the proposal PDF using the previous samples, so that the characteristics of the 
posterior PDF are tracked and updated continuously. To be specific, given the samples of 
the previous level g – 1, { }( )

1 ,h
g−θ  the proposal PDF used in the current level g is 

constructed as a kernel density (Beck and Au, 2002; Lam et al., 2015, 2018; Yang et al., 
2015): 

( ) ( )( 1) ( ) ( ) ( )
1 1 1

1

,
gN

h h h h
g g g g

h

q W N−
− − −

=

=∑θ θ θ C  (17) 

Equation (17) is a weighted sum of Gaussian PDFs with each Gaussian PDF centred at 
the hth sample of the previous level g – 1 (i.e., ( )

1
h

g−θ ), the sample covariance matrix of 
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each Gaussian PDF (i.e., ( )
1

h
g−C ) calculated using { }( )

1 ,h
g−θ  and the weighting of each 

Gaussian PDF calculated using pg–1 that describes the relative plausibility of each sample 
in { }( )

1 .h
g−θ  Given enough samples, the kernel density in equation (17) can well 

approximate the bridge PDF in each level. Note that the weightings 

{ }( )
1 : 1, 2, ,h

ggW h N− = "  are normalised so that ( )
1

1

1,
gN

h
g

h

W −
=

=∑  so to draw a candidate from 

( )( 1)h
gq −θ θ  using equation (17), first, draw an index j ∈ {1, 2, …, Ng} with the 

corresponding probability { }( )
1 : 1, 2, , .h

ggW h N− = "  Second, draw the candidate θ* from 

the Gaussian PDF ( )( ) ( )
1 1, .j j

g gN − −θ C  

The above procedures of constructing the proposal PDF are applicable for a general 
level g except for the 1st level, because there are no samples yet for the 1st level. The 
proposal PDF in the 1st level is, thus, chosen as a uniform PDF. The overall procedures 
of the proposed MCMC method are summarised as follows. 

1 In the 1st level, 2
1σ  can be set to the variance of the measured accelerations. Ng 

samples are drawn according to the PDF in equation (14) using the MH algorithm 
with the proposal PDF being a uniform PDF. The MH algorithm work as follows. 

Given the previous sample ( 1)
1
h−θ , 

a generate a candidate ( )( 1)*
1 ,hq −θ θ θ∼  where ( )( 1)

1
hq −θ θ  is a uniform PDF 

b take ( ) *
1
h =θ θ  with probability ( )( 1)*

1, ,hρ −θ θ  and ( ) ( 1)
1 1=h h−θ θ  with probability 

( )( 1)*
11 , ,hρ −− θ θ  where ( )

( ) ( )
( ) ( )

( 1)* *
1 1( 1)*

1 ( 1) ( 1) *
1 1 1

, min , 1
h

h
h h

p q
ρ

p q

−
−

− −

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

θ θ θ
θ θ

θ θ θ
 

c repeat steps a and b until Ng samples are generated. 

2 In a general level g, Ng samples are drawn according to the PDF in equation (14) 
using the MH algorithm with the proposal PDF constructed by equation (17), based 
on the samples in the previous level { }( )

1 .h
g−θ  The MH algorithm works as follows. 

Given the previous sample ( )h
gθ  and the samples in the previous level { }( )

1 ,h
g−θ  

a Construct the proposal PDF ( )( 1)h
gq −θ θ  according to equation (17) using 

{ }( )
1

h
g−θ . 

b Generate a candidate ( )( 1) .h
gq −θ θ θ∼  To do this, 

• draw an index j ∈ {1, 2, …, Ng} with the corresponding probability 
{ }1 : 1, 2, ...,h

ggW h N− =  

• draw the candidate θ* from the Gaussian PDF ( )( ) ( )
1 1,j j

g gN − −θ C  
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c Take ( ) *h
g =θ θ  with probability ( )( 1)*, ,h

gρ −θ θ  and ( ) ( 1)h h
g g

−=θ θ  with probability 

( )( 1)*1 , ,h
gρ −− θ θ  where ( )

( ) ( )
( ) ( )

( 1)* *
1( 1)*

( 1) ( 1)* *
1

, min , 1 .
h

gh
g h h

g g

p q
ρ

p q

−

−

− −

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

θ θ θ
θ θ

θ θ θ θ
 

d repeat steps b and c until Ng samples are generated. 

3 Update the level index g = g + 1 and then the variance 2 2
1 .g gσ σ b−=  

4 Repeat steps (2) and (3) until convergence. This is reflected by which the samples 
are stable within certain regions and the predicted accelerations can match the 
measured ones. 

5 The posterior PDF of the uncertain parameters is approximated by the kernel density 
constructed by equation (17) using the samples in the final level L. The predicted 
accelerations can be obtained by the weighted sum of the accelerations calculated by 
each sample of θ, i.e., 

( )( ) ( )

1

gN
h h

t tL L
h

W
=

=∑x x θ�� ��  (18) 

where the subscript L indicates that the samples in the final level are used and the 
weightings { }( )h

LW  are obtained when the kernel density is constructed. 

2.3 Case studies 

Two numerical case studies were conducted to illustrate that the proposed method can 
efficiently handle system identification, for both identifiable and unidentifiable problems. 
In the first case, Bayesian system identification was conducted for a simple two-story 
shear building. It is a globally identifiable problem. In the second case, a complicated 
three-dimension steel tower was considered to illustrate that the proposed method can 
also handle unidentifiable problems. 

2.3.1 Bayesian identification of a two-story shear building 

A two-story shear building with story masses m1 = m2 =1 kg, damping ratios ξ1 = ξ2 = 2% 
and inter-story stiffness k1 = k2 = 1,000 N/m is considered in this case. The accelerations 
were simulated by inputting the El Centro earthquake acceleration (see Figure 1) to the 
foundation. The accelerations were calculated with two modes considered and the time 
step being 0.02 s. Gaussian noise with the noise level 3% was then added to the 
accelerations to simulate the real situation. The level of the added noise is expressed as 
the percentage ratio of its standard deviation over the standard deviation of the model 
acceleration. It was assumed that the accelerations at the two stories were measured for 
system identification. The uncertain parameters to be identified were θ(1) and θ(2) that 
scale the nominal stiffness k1 and k2, respectively, while the masses and damping rations 
were assumed to be known. Note that θ(1) and θ(2) are the two elements of the vector θ. 
With the measured accelerations at the two stories and the earthquake input, the MCMC 
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method was applied for Bayesian system identification. Figure 2 shows the samples of θ 
in the final level, based on which the posterior marginal PDFs could be constructed (see 
Figure 3). It is observed that with the amount of data large enough, θ can be globally 
identified (Beck and Katafygiotis, 1998). The predicted accelerations at the two stories 
were then calculated using the samples based on equation (18) and compared to the 
measured accelerations. The comparison is shown in Figure 4. It can be seen that the 
predicted accelerations (the red dash lines) almost overlap with the measured ones (the 
blued solid lines), indicating the good performance of the proposed method. 

Figure 1 El Centro earthquake input to the shear building (see online version for colours) 
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Figure 2 The samples of θ in the final level for the shear building (see online version for colours) 
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Figure 3 The posterior marginal PDFs for the shear building (see online version for colours) 
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Figure 4 Comparison of the predicted and measured accelerations, (a) story 1 (b) story 2  
(see online version for colours) 

 

0 10 20 30 40 50 60
Time (s)

-0.1

-0.05

0

0.05

0.1
A

cc
el

er
at

io
n 

(g
)

Model-predicted
Measured

 
(a) 

 

0 10 20 30 40 50 60
Time (s)

-0.1

0

0.1

A
cc

el
er

at
io

n 
(g

)

Model-predicted
Measured

 
(b) 

2.3.2 Bayesian identification of a three-dimension steel tower 

In this case, a complicated and practical structure, a three-dimension steel tower (see 
Figure 5), was considered to illustrate that the proposed method can also handle the 
challenging unidentifiable problems. This steel tower was also studied in Yang et al. 
(2015) and its dimension and material properties can be found there. Here, the measured 
data was numerically simulated by inputting the earthquake record in Figure 1 to the 
finite element model of this tower. The earthquake excitation was applied at the 
foundation and along the x direction. To simulate the accelerations, ten modes were 
considered with 2% modal damping ratio used for each mode. The time step was set to 
0.02 second. Gaussian noise with the noise level 3% was then added to the simulated 
accelerations to give the measured data. For Bayesian system identification, the vector θ 
includes six uncertain parameters, with θ(1) to θ(5) scaling the Young’s modulus of the 
columns of floors 1 to 5, respectively, and θ(6) scaling the Young’s modulus of all the 
columns of floors 6 to 8. The arrangement of the uncertain parameters can be also seen in 
Figure 5. It was assumed that the x-direction accelerations at points 2 to 9 and the 
earthquake excitations were measured. It was also assumed that the modal damping ratios 
were known for system identification. The MCMC method was applied to update the 
finite element model, and the posterior marginal PDFs of the six uncertain parameters 
were constructed based on the samples in the final sampling level (see Figure 6). It is 
observed that the posterior marginal PDFs of θ(1), θ(3), θ(4), and θ(5) have clear peaks 
and these four parameters are globally identifiable. The posterior marginal PDFs of θ(2) 
and θ(6) are flat across a wide region of the parameter space, indicating that an infinite 
number of models that have almost equal plausibility is available for response prediction, 
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and these two parameters are unidentifiable. This tower has many DOFs but only several 
DOFs were measured. The measured data may not contained enough information for 
globally identifying θ(2) and θ(6). It would be difficult to pinpoint a single model 
[equivalently pinpoint a single value for θ(2) or θ(6)] for predicting the accelerations, 
because all the models in the parameter space have almost equal plausibility. Moreover, 
artificially pinpointing a single model will bias the predicted accelerations. The proposed 
method provides a rigorous theoretical basis to consider all equally important models in 
the parameter space by including all generated samples for response prediction, so the 
difficult choice of pinpointing a single model is not required. 

Figure 5 The finite element model of the steel tower [19] (see online version for colours) 

 

Figure 6 The posterior marginal PDFs for the steel tower (see online version for colours) 
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By using equation (18), the accelerations were calculated and compared to the measured 
ones. It can be seen in Figure 7 that the predicted accelerations can match the measured 
ones quite well. This shows that the proposed method can handle system identification 
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for unidentifiable problems. To demonstrate the superiority of the proposed method over 
the methods that pinpoint one single model, a model was arbitrarily selected (i.e., a 
sample of θ) in the parameter space and only this model was used for response 
prediction. The predicted acceleration at point 7 by this model was compared to the 
corresponding measured one in Figure 8. When comparing Figure 8 to Figure 7(c), 
observable bias of the predicted acceleration is noticed. This also illustrates that if the 
multiple equally-important models in an unidentifiable problem are not properly 
considered, response prediction will be not reliable. 

Figure 7 Comparison of the predicted and measured accelerations, (a) x direction at point 3  
(b) x direction at point 5 (c) x direction at point 7 (d) x direction at point 9 (see online 
version for colours) 
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(c) 
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Figure 7 Comparison of the predicted and measured accelerations, (a) x direction at point 3  
(b) x direction at point 5 (c) x direction at point 7 (d) x direction at point 9 (see online 
version for colours) (continued) 
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(d) 

Figure 8 Comparison of the x-direction acceleration at point 7 using an arbitrary model  
(see online version for colours) 
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3 Concluding remarks 

An efficient MCMC method Bayesian system identification using time-domain data is 
developed in this paper. The mathematical model of a dynamic system based on modal 
superposition is first derived so that dynamic response can be efficiently calculated for 
practical problems. After deriving the posterior PDF of the uncertain parameters, a  
multi-level sampling method based on the idea of simulated annealing is developed. This 
sampling method ensures that the high-dimension parameter space can be efficiently 
explored. Two numerical cases are used to verify the proposed method. The first case is 
Bayesian system identification of a two-story shear building, which illustrates that the 
proposed method can handle globally identifiable problems. The second case is Bayesian 
system identification of a three-dimension steel tower, which emphasises the importance 
of using the proposed method for unidentifiable problems. 
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