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Abstract: Product acquisition management (PrAM) processes are considered 
powerful value-added product recovery activities in closed-loop supply chain 
(CLSC) business models. Aside from their potential manufacturing cost 
savings, these recovery activities are environmentally friendly and energy 
conservative, and the activities must abide by government regulations. 
Although remanufacturing of returned products is less costly than 
manufacturing, the variability and uncertainties in returned products’ cost, 
quality, quantity, and timing of return remain vital issues for returned products’ 
inventory disposition and order fulfilment. This study discusses the 
characteristics of PrAM processes and proposes a decision support system 
framework for inventory disposition and customer order fulfilment in a  
high-end server hybrid business model. The proposed framework incorporates 
clustering algorithm, multi-criteria decision-making technique, and heuristic 
algorithms by meeting customer requirements and budget constraints. 
Experimental results ensure comprehensive, efficient, and timely decision 
support of the proposed framework by evaluating its performance and 
feasibility using real-world data. 
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1 Introduction 

The primary goal of any economic system is to meet customers’ demand by delivering 
goods and services and increasing the standard of living. In mixed market economic 
conditions, the goals of the economic system must obey government regulations. 
Therefore, to meet customer satisfaction and government regulations, manufacturing 
systems have evolved over time by adopting various production theories, tools, and 
techniques. Inventions in metallurgy, mining, chemicals, energy, and transportation are 
all contributing to the advancement of manufacturing systems. Finally, the incorporation 
of supply chain (SC) network, more specifically, closed-loop supply chain (CLSC) 
network, as a consequence of the continuous growth of manufacturing not only increases 
customer satisfaction but also increases profits and market shares of businesses. The 
product acquisition management (PrAM) plays a key role in CLSC as it involves the 
value-added product recovery activities. PrAM focuses on the acquisition of used and 
discarded products, components, and materials that fall under the responsibility of 
companies that engage in remanufacturing. According to Guide and Jayaraman (2000), 
PrAM should ensure accurate forecasts of volumes of cores available by specific 
planning period. Moreover, PrAM can balance the acquisition of cores with final 
customer demands and ensures that the firm avoids disposing costly cores, or lost 
revenues due to unfulfilled customer orders. 

The activities of PrAM include acquisition of used products, grading them into 
several groups for value recovery, and disposing of them for product recovery operations 
(PRO). PRO aims to extend the life cycle of used products by retaining their residual 
values. An industry can receive different types of used products through its entire life 
cycle. Based on the type of return objects (items or services) and return recovery options, 
basic return recovery networks can be classified into: 

1 directly reusable network 

2 remanufacturing network 

3 repair service network 

4 recycling network (Lu and Bostel, 2007). 

There exist significant uncertainties in the timing, quality, quantity, cost of collection, 
and value recovered from returns (Aras et al., 2004; Sabharwal and Garg, 2013; Souza 
and Ketzenberg, 2002). Thus, the PrAM serves as the foundation for the development of 
any CLSC-based industrial systems. 

The main motivations for PrAM activities are to deal with the threats caused by 
environmental degradation, waste management issues, and the scarcity of resources. 
Thus, remanufacturing could be more economical than manufacturing. Remanufacturing 
is environmentally friendly and abides by government regulations (Laan and Teunter, 
2006; Sabharwal and Garg, 2013). Remanufacturing is advantageous from the 
perspectives of labour, capital, product quality, and production lead-time which has 
positive impacts on production cost, energy and raw material savings, balancing 
production lines, exploring new market markets, and developing a green, socially 
concerned image (Souza and Ketzenberg, 2002; Lu and Bostel, 2007; Bulmus et al., 
2014; Shaharudin et al., 2015). According to a study conducted in the USA in 2003, the  
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size of the remanufacturing sector was built on $53 billion dollars, with 70,000 firms and 
480,000 employees (Hauser and Lund, 2003). These numbers have been increasing 
rapidly over the years. The estimated average profit margin was more than 20%, and 
throughout the world, the investments on remanufacturing sectors exceeded $100 billion 
(Nasr et al., 1998). It was reported that with only 20% of its effort, remanufacturing could 
lower the production cost of manufacturing new items up to 40%–60% (Mitra, 2007). 
The price of remanufactured products is generally 30%–40% of an equivalent new 
product (Mukherjee and Mondal, 2009). During the period 2008–2009, Fuji Xerox 
Australia saved $6 million by remanufacturing more than 230,000 equipment parts rather 
than using new parts (Van, 2009). The governments of many countries encourage the 
remanufacturing process by providing tax credit benefits. Remanufacturing processes 
consume 15% less energy, and dismantling parts typically costs 80% less than creating 
new parts (Fleischmann et al., 2003). As a result, the production of remanufactured 
products in the USA increased from $37.3 billion in 2009 to $43 billion in 2011 (Treat, 
2012). Thus, PrAM processes lower production and inventory costs, increased revenues 
and customer service levels, and improved profitability. The motivations of this research 
can be summarised as follows: 

• Government regulations for environmental protection to minimise waste disposal and 
ensure environmental sustainability (Mukherjee and Mondal, 2009; Golinska and 
Kuebler, 2014). 

• Lower product recovery costs due to the reuse of components and the increase in 
profits by selling the components in secondary markets (Fleischmann et al., 2003; 
Laan and Teunter, 2006; Sabharwal and Garg, 2013). 

• Green, socially-concerned image offers competitive advantage in the marketing 
platform (Parlikad and McFarlane, 2007; Bulmus et al., 2014). 

During the earlier ages of CLSC, technical and operational issues were the key concern. 
The technical and operational level bottlenecks remain a major concern while 
establishing a potential CLSC. Even though the remanufacturing process is technically 
feasible, the PrAM processes should be economically attractive and sustainable. In this 
perspective, research focus should be paid to the availability of right quantity of used 
products at the right time (time of return and quantity uncertainty), and in a reusable 
condition (quality uncertainty) to enable a cost-effective and sustainable PrAM process. 
However, the characteristics of the PrAM processes can vary significantly due to product 
characteristics, market condition, and government regulations. The variations of a 
product’s PrAM processes can be attributed to its SC business model, types of product 
returned, and the production environment. 

In this paper, we study the characteristics of PrAM process and identify important life 
cycle usage (LCU) factors. The main objective is to develop a decision support system 
(DSS) for inventory disposition of returned products and customer order fulfilment. The 
proposed DSS helps to manage uncontrolled accumulation of cores (value recoverable 
returned products) level inventory. 

The rest of this paper is organised as follows: Section 2 details the relevant 
background and identifies the unique features of this research. Section 3 discusses the 
proposed DSS framework that incorporates LCU factors to support returned products’ 
inventory disposition and order fulfilment decisions. Section 4 discusses the experimental 



   

 

   

   
 

   

   

 

   

   34 C. Saha et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

results. Finally, conclusions and future directions of this research are addressed in  
Section 5. 

2 Related literature 

Many aspects of research and practice can be found in the literature on CLSC, including 

1 collection of used products through the return logistics (RL) operations 

2 sorting, testing, and disposition of different items, such as recycled materials, spare 
parts, remanufactured products, disposal materials, or as-is products 

3 delivery of remanufactured items to distributors and end customers. 

Research was conducted to review the analytical models proposed on these operational 
areas. For example, Wu (2015) discussed the strategic and operational decisions in 
remanufacturing environments considering sales and collection competitions. The author 
formulated a CLSC model to study the effect of equilibrium prices and incentives. 
Another study by Sabbaghi et al. (2016) investigated some equilibrium solutions for 
product return in the presence of heterogeneous and homogeneous consumers. The study 
also provided managerial insights on the factors that affect acquisition product return 
decisions. A theoretical model for examining the intention and perception of consumers’ 
for retuning the used products was discussed in Jena and Sarmah (2015). Results from the 
study showed that the return intention is negatively influenced by the perceived risk and 
is positively influenced by perceived benefit and social awareness. In Zhang and Zhang 
(2017), the impact of strategic customer behaviour on the economic and environmental 
values was investigated. The interaction between trade-in remanufacturing and strategic 
customer behaviour needs to be considered in the strategic decision for product 
acquisition. 

The conducted research on CLSC can be broadly divided into three categories, 
namely PrAM, production planning and inventory management (PPIM) and reverse 
distribution planning (RDP). Research contributions on PrAM are divided into two 
categories: market-driven and waste-driven, based on the returned product acquisition 
process. The market-driven PrAM is based on financial incentives to motivate end-users 
to return their products to a firm specialising in the reuse of those products. The  
waste-driven PrAM is based on diverting discarded products from landfills by making 
producers responsible for the collection and reuse of their products (Guide and  
van Wassenhove, 2001). Most research on market-driven PrAM proposed pricing policies 
as returned products are collected through financial incentives. Researchers took 
initiatives to minimise quality and quantity uncertainties, streamline value recovery 
processes, and resolve technical and operational levels issues. Table 1 summarises the 
research contributions on pricing policies of market driven PrAM. 

Most researchers considered a limited number of factors as decision parameters in a 
make-to-stock (MTS) production system by setting cost savings or profit maximisation as 
the prime goal. However, the research on PrAM process for assemble-to-order (ATO) 
production system in CLSC business model has not been given sufficient attention. In 
addition, multiple decision support factors, such as quality-time sensitivity, LCU, and  
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durability of returned products, can increase the usage of returned products for value 
recovery processes. The production system performs both ATO and re-ATO processes. 
According to Oh and Behdad (2017), the number of studies addressing the reassembly 
planning in remanufacturing systems is very limited. 

Product acquisition in computer and electronics manufacturing has only been studied 
by a limited number of researchers. For example, Alcantara-Concepcion et al. (2016) 
investigated the environmental impacts of computers at the end of their life cycle and 
discussed some management alternatives. White et al. (2003) also discussed management 
challenges and environmental impacts of remanufacturing in computer industry. 
However, these studies did not consider production and inventory management and cost 
reduction. Thus, this study proposes a multi-attribute DSS framework for PrAM 
processes of an ATO-type production system in a waste-driven CLSC business model to 
manage uncontrolled accumulation of cores level inventory. The proposed framework is 
implemented in a high-end server manufacturing industry. The proposed framework can 
effectively reduce the uncontrolled accumulation of the returned products, carrying costs, 
build cycle time, and assembly cost. All these advantages can be helpful in offering 
competitive selling price of remanufactured products to the customers. Furthermore, 
waste-driven PrAM avoid shortages and enable competitive advantage by accepting all 
returns to have higher disposition options. Table 2 summarises the research contributions 
on waste-driven PrAM into four key areas. 
Table 1 Research contributions on pricing policies of market-driven PrAM 

Authors Quality 
class 

Research 
areas 

Time 
period 

Price deciding 
factors Contributions 

Considered 
either one or 
two factors: 

• Product 
demand 

• Quality 

• Market 
condition 

Klausner and 
Hendricson (2000), 
Vlachos and 
Dekker (2003), 
Karakayali et al. 
(2007), Guide et al. 
(2003), Ray et al. 
(2005), Liang et al. 
(2009) and Yang  
et al. (2016) 

Single or 
multiple 

Static 
acquisition 

and/or 
selling 
price 

Single 

• Future sales 
price 

Profit 
maximisation/ 
cost savings 

Considered 
either one or 
two factors: 

• Acquisition 
cost 

• Product 
demand 

• Inventory 
level 

Xiong and Li 
(2013), Sun et al. 
(2013) and 
Keyvanshokooh  
et al. (2013) 

Single or 
multiple 

Dynamic 
selling 
price 

Single 
or 

multiple 

• Customer 
location 

Profit 
maximisation/ 
cost savings 
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Table 2 Research contributions on waste-driven PrAM 

Authors Areas Approaches Contributions 

• Buy-back price 

• Unit cost of RL 

• Price deciding factors: 
quality, customer location 

• Acquisition price and 
policy 

• Logistic network designs 

• Inventory decisions 

Klausner and 
Hendrickson (2000), 
Guide et al. (2003), Ray 
et al. (2005), Karakayali 
et al. (2007), Liang et al. 
(2009), Zhou and Yu 
(2011) Keyvanshokooh  
et al. (2013), Sun et al. 
(2013) and Xiong and Li 
(2013) 

Pricing 
policy 

Analytical 
formulation, 
econometric 
modelling, 
mathematical 
modelling, 
geometric Brownian 
motion, Markov 
decision process, 
mixed integer linear 
programming 

• Remanufactured quantity 

• Profitability assessment  

• Remanufacturing decision 

Guide and  
van Wassenhove (2001), 
Ferguson and Tokay 
(2006) and Karakayali  
et al. (2007) 

Recovery 
strategy 

Economic value 
analysis,  
entry-deterrent 
strategies, heuristics 
algorithm 

• Quality dependent 
disposition 

• Quality dependent 
disposition 

• Procurement and 
remanufacturing quantity 

Aras et al. (2004), 
Robotis et al. (2005), 
Galbreth and Blackburn 
(2006) and Zikopoulos 
and Tagaras (2007) 

Acquisition 
and sorting 

policy 

Markov decision 
process, 
mathematical 
modelling, analytical 
formulation 

• Optimal acquisition and 
sorting policy 

• Return handling options 

• Yield correlation with 
quality 

Vlachos and Dekker 
(2003), Savaskan and  
van Wassenhove (2006) 
and Zikopoulos and 
Tagaras (2007) 

Reverse 
logistics 

Classical newsboy 
modelling, simple 
approximation 
method, 
mathematical 
modelling, analytical 
formulation 

• Economic viability of 
collection channels 

3 Research methodology 

The proposed research methodology for inventory disposition and management, 
production planning, and customer order management in CLSC business environment is 
shown in Figure 1. The proposed methodology consists of four models, namely 
functional model, level 1: Meta model, level 2: quantitative model, and level 3: 
executable system. The framework takes inputs (e.g., variables, objectives, assumption, 
performance measures, etc.) from the CLSC business environment through the functional 
model. The outputs of the functional diagram are directly fed into level 1. For levels 2 
and 3, the outputs of the functional diagram are combined with the lower level outputs 
with the help of an AND gate to feed the respective level. The models in levels 1 and 2 
create new attributes, based on the activity diagram and attributes provided by the 
functional diagram. The new attributes are combined with the existing attributes of the 
functional diagram to feed the models of the next level. The fault tree analysis approach 
is applied to combine series of lower level events using Boolean logic to feed upper 
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levels (Tyagi et al., 2010). The attributes obtained from the Meta models in level 1 are 
connected with an OR gate. The OR gate is activated when any of the level 1 models 
creates new attributes. The AND gate incorporates the new attributes obtained from the 
Meta models with the functional diagram. The outputs of the AND gates are the activity 
diagram and the attributes that feed the models in level 2. Similarly, new attributes 
created by level 2 are also incorporated with the functional diagram using the AND gate. 
Level 3 (executable system) takes the activity diagram attributes as inputs and provides 
DSS outputs that can be implemented in the business environment. The following 
discussion illustrates the methodology and provides justification for each step of the four 
models that forms the proposed framework. 

The functional model, in Figure 2, is a structured representation of processes to 
logically model the behaviour of a real-world scenario for achieving objectives/goals. 
Thus, it relates to the modelling of objects or relations that have an objective/goal 
(Gadomski, 2006). The functional model describes logical flow of activities, how objects 
and attributes move, performs transformation of inputs to develop the functional diagram. 
However, it does not prescribe how functional diagram can be implemented. Meta and 
quantitative models of the framework take functional diagram as input, apply model steps 
to create new attributes for the activities of the functional diagram, and finally, feed them 
into the executable system to develop the DSS that can be implemented in the CLSC 
business environment. 

Figure 1 Research framework (see online version for colours) 

Inputs

Sustainable CLSC philosophy
• Customer satisfaction
• Management policy
• Environmental awareness

Functional ModelInfluencing 
Factors

Identify attributes & their importance
• Experts’ opinion
• Min-Max approach
• Proportional method
• Statistical analysis

Mechanism

Level 3: Executable System

Visual analytics for DSS

TOPSIS method for ranking & 
prioritization

Heuristic algorithms for inventory 
disposition & production planning

Level 2: Quantitative Model

Implementation

Parameter refinement

As-Is

Transformed

Variables Objectives

Assumptions Performance 
measures

Functional 
Diagram

AND

AND

Clustering algorithm for 
Quality & Cost

Level 1: Meta Model

 

Understanding of the problem is very crucial to identify the activities and influencing 
factors for the functional diagram. To identify the attributes and activities for the 
functional diagram, the data requirements for the inputs is first determined. In general, 
the data sources can be classified into internal (e.g., product design, reliability, 
disposition, production, location, life cycle, logistics, sales, procurement, inventory, and  
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supply) and external (e.g., marketing, consumers, government legislation, corporate and 
environmental policies, advanced process, and similar businesses). Data can be collected 
using various data collection techniques, such as interviews, registration, questionnaires 
and surveys, direct and indirect observations, scientific research, data logging, documents 
and records, and focus groups. The collected data are stored in structured and 
unstructured data format. No source of data can be more meaningful than the value of 
perfect data. Thus, finding out the data sources, deciding on the collection techniques, 
collecting appropriate data in the right format are some of the key challenges 
mechanisms, e.g., statistical analysis and extract, transform, load (ETL) help to extract 
data from different (homogeneous and heterogeneous) sources, transform data into proper 
format for query and analysis, and load them into the functional model. They also clean 
the input data in order to improve their quality. Some of the common causes of data 
quality issues include misspellings, missing information, duplicate entries, contradictory 
values, structural conflicts, inconsistent data or other invalid data during the data entry 
processes. The need of data cleansing is increasing important with the increased use of 
data for solving problems. 

Figure 2 Hierarchical functional model (see online version for colours) 

 

Competitive advantage of a company relies on the extent of stakeholders’ influence in 
value-creating decisions. Stakeholders are accountable for environmental, economical, 
and social aspects of a company’s decisions (Parmigiani et al., 2011). Thus, stakeholders’ 
interests are important factors to consider when selecting and determining the attributes’ 
weights and importance. For the proposed framework, customer satisfaction, managerial 
policy, and environmental awareness are considered as the influencing factors. These 
factors can influence the mechanism element so that the DSS can enable economic and 
environmental sustainability by generating revenue, meeting government regulations, and 
satisfying both customers and employees. 

In Figure 3, the activities and attributes of the CLSC business model functional 
diagram are presented. The PrAM operation includes the acquisition, grading, and 
disposition activities on return products. The returned products, also called cores, are 
used either ‘as-is’ or are torn down into part level. Inventory is managed into cores, used, 
and new parts levels. Planning for capacity, production as well as PRO management 
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should be made for both core and part levels. Customer order management stage handles 
customer orders of various SCs. Distribution stage delivers the recovered products to the 
global market. Along with the activities, Figure 3 also shows the weight matrix (Wl) for 
the customer order management attributes. 

Figure 3 Illustration of attributes and activities in functional diagram (see online version for 
colours) 

 

3.1 Decision support system 

Figure 4 illustrates the methodology of the proposed DSS that assists value recovery 
disposition decision and selection of returned cores for order fulfilment. The functional 
model provides a functional diagram that contains the activity and attributes for the 
succeeding models. In level 1, clustering algorithm categorises the returned cores into 
several clusters using quality, cost, and some other attributes. The algorithm creates an 
attribute for each returned product to describe its condition. The inventory disposition 
heuristic algorithm in level 2 categorises returned cores into several quality levels to 
dispose them to specific recovery and distribution channels. In level 2, the technique for 
order of preference by similarity to ideal solution (TOPSIS) method provides a prioritised 
list of returned cores based on condition, age bins, and active failure rate criteria. The 
matching algorithm in production planning heuristic algorithm selects a returned core 
from the prioritised returned cores list for order fulfilment. Finally, in level 3, the 
executable system develops a dashboard that presents the output of the inventory 
disposition algorithm and incorporates a graphical user interface (GUI) to assist the user 
in the returned cores selection process. 
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Figure 4 Proposed DSS for inventory disposition and production planning (see online version  
for colours) 

 
Functional Model

Inventory disposition algorithm categorizes returned cores 
into several quality levels to dispose them to specific 

recovery & distribution channels

Categorize returns into several clusters considering 
acquisition cost, quality & age attributes

Prioritize return cores by criteria
-Location (L)
-Age bins (J) 
-Active failure rate (Fij)

Functional diagram

Production planning matching algorithm selects 
prioritized returned cores considering customer 

requirements & budget constraints 

Dashboard presents inventory disposition of returns & 
GUI to assist in returned cores selection 

Level 1: Clustering Algorithm

Level 2: TOPSIS Method

Level 2: Heuristic Algorithm

Level 3: Executable System

Level 2: Heuristic Algorithm

Inventory disposition

Production planning

 

3.1.1 Cost calculation 

The cost metrics play a crucial role in deciding the inventory disposition, order 
fulfilment, and selling price of returned cores. Therefore, at the time of core acquisition, 
returned cores’ fair market value (FMV) (Fi), age, and total acquisition of cost of all on-
hand cores are taken as inputs for calculating the adjusted fair market ( '

iF ) value ( '
iF  is a 

dynamic attribute as it considers the current date during its value calculation) for the 
returned cores and competitive selling price (Si) for the recovered products. The cost 
attributes are calculated using the following equations (Kalfayan and Patterson, 2008): 

1

i
i S

ii

FFR
F

=

=
∑

 (1) 

i iA T B= −  (2) 

i iAC FR TC= ×  (3) 
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1 1

S S
i ii i

i
i

AC RV
DR

A
= =

−
=
∑ ∑  (4) 

( )( )max 0,c
i i iiF F A DR= − ×  (5) 

'

1

iR
C

i iji
j

F F RC
=

= + ∑  (6) 

( )' '

1

iN

i i ij i
j

S F NC F
=

= + + ×∑ α  (7) 

Notations 

S available returned products 

Ri number of parts replaced at customer sites for ith product ∀i = 1 … S 

Ni number of new parts added for order fulfilment for ith product ∀i = 1 … S 

Fi FMV of ith product ∀i = 1 … S 

TC total acquisition cost 
'

iF  adjusted FMV of ith product ∀i = 1 … S 

C
iF  FMV of ith product on current date ∀i = 1 … S 

FRi FMV rate of ith product ∀i = 1 … S 

ACi acquisition cost of ith product ∀i = 1 … S 

RVi residual value of ith product ∀i = 1 … S 

DRi depreciation rate of ith product ∀i = 1 … S 

RCij replaced parts’ cost of ith product for jth part ∀i = 1 … S, j = 1 … Ni 

NCij new parts’ cost of ith product for jth part ∀i = 1 … S, j = 1 … Ni 

Ai age of ith machine in days ∀i = 1 … S 

Bi build date of ith product ∀i = 1 … S 

T current date in YYYY – MM – DD format 

Si selling price of ith product ∀i = 1 … S 

α profit margin. 

Equation (1) calculates the FMV rate (FR) for the product as a function of FMVs (F) for 
the cores. Equation (2) calculates the age of the product (in days). Equation (3) calculates 
the acquisition cost of the product. Equation (4) calculates the depreciation rate. The  
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current FMV and the adjusted FMV of the product are represented by equations (5) and 
(6), respectively. Equation (7) calculates the final selling price for the product. The cost 
metrics of the on-hand returned cores are taken into consideration when the succeeding 
steps of the proposed model are developed. 

3.1.2 Rule-based clustering algorithm 

The rule-based clustering algorithms classify the returned products into three different 
clusters to guide them into the inventory locations (L): intermediate consumption (IC), 
short-term consumption (STC) and long-term consumption (LTC). The algorithm uses 
the attributes: age, expected conversation cost, waiting time, features count, FMV, 
replaced parts quantity of the returned cores, and visual and quality inspections test 
results. The returned cores are tracked by their serial identification numbers. While 
developing clusters, it is also important to take the business (strategic) goal into 
consideration. To form a cluster, higher values of some attributes and lower values of 
some other attributes may be preferred. Thus, two sets of cluster algorithms are proposed. 
In one set (cluster algorithm 1), those attributes of returned cores where higher values are 
preferred are considered, and in another set (cluster algorithm 2), those attributes of 
returned cores where lower values are preferred are considered. Finally, a rule-based 
classification rule combines the outputs of two sets of cluster algorithms along with the 
‘visual and quality inspections’ attribute and proposes the inventory disposition decision. 
The steps of the algorithm are summarised as follows: 

Step 1 Develop clusters of returned products based on their attributes to categorise 
them into three clusters 

• Cluster algorithm 1 considers waiting time, features count, FMV, and replaced 
parts quantity to create three clusters. 

• Cluster algorithm 2 considers age and expected conversion cost to create three 
clusters. 

Step 2 Apply rule-based classification algorithm to combine the outputs of the two sets 
of cluster algorithms along with the ‘visual and quality inspections’ attribute and 
guide them into the inventory locations. 

The average silhouette index (SIi) is a method of interpretation and validation of the data 
clusters. SIi can be applied for evaluation of clustering validity, as well as to decide how 
sound the number of selected clusters by Kaufman and Rousseeuw (1990). SIi can be 
defined as: 

{ }max ,
i i

i
i i

a bSI
a b
−

=  (8) 

where ai is average dissimilarity of ith object to all other objects in the same cluster, and bi 
is the minimum of average dissimilarity of ith object to all objects in another cluster (in 
the closest cluster). It follows the formula –1 ≤ SIi ≤ 1 and if SIi value is close to 1, it 
means that the sample is ‘well-clustered’ and assigned to an appropriate cluster. 
Therefore, average SIi is considered as the performance measure for the data clusters. The 
following rule guides the returned products into the inventory locations. 
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• IC: Low quality, low recovery cost, high waiting time, and high FMV of returned 
machines. 

• STC: High quality, high recovery cost, low waiting time, and low FMV of returned 
machines. 

• LTC: Rest of the returned products. 

3.1.3 Failure rate analysis 

While using returned cores for customer order fulfilment, knowledge regarding their 
durability is crucial. Durability of each machine type is calculated using the LCU 
attributes, namely product build date, repair occurrence, repair date, total number of 
products of that machine type and it is named as average active-failure rate (Fij). Usually, 
failure-rate of a product is calculated by dividing the total number of repairs by the total 
number of active products. Whereas, Fij takes into account the active time of each 
product while calculating failure rate. This active time helps in quantifying the durability 
of a product in the long run. The age of a product is calculated dynamically by 
subtracting a product’s build date from the current date. As shown in Figure 5, for each 
machine type, considering the age (in years) of products the data are split into age bins. 
For each age bin and machine type, Fij is calculated using the following equations: 

1 1

I J

ij
i j

N M
= =

= ∑∑  (9) 
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ij
i j
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= =

= ∑∑  (10) 

for 1 , 1 , 1kij kij ijA T B k M i I j J= − = = =… … …  (11) 
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Notations 

N total number of active products 

R total number of repairs 

I total number of machine types (types of products) (1 bin = 365 days) 
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J number of age bins (1 bin = 365 days) 

T current date in YYYY – MM – DD format 

Mij number of active products in jth bin for ith machine type ∀i = 1…I, j = 1…J 

Pij number of repairs of jth bin for ith machine type ∀i = 1…I, j = 1…J 

Fij average active-failure rate of jth bin for ith machine type ∀i = 1…I, j = 1…J 

Fj average active-failure rate of jth bin for all machine types j = 1…J 

Ykij machine-year (age of a product in years) of kth product in jth bin for ith machine 
type ∀k = 1…Mij, i = 1…I, j = 1…J 

MYij average machine-year of jth bin for ith machine type ∀i = 1…I, j = 1…J 

Akij age in days of kth product in jth bin for ith machine type ∀k = 1…Mij, i = 1…I,  
j = 1…J 

Bkij build date of kth product in jth bin for ith machine type ∀k = 1…Mij, i = 1…S,  
j = 1…J. 

Equation (9) calculates the total number of active products. Equation (10) calculates the 
total number of repairs. Equation (11) calculates the age of the product. Equation (12) 
calculates the number of years for the product in the bin, and provides the age of the 
machine in years. Equation (13) calculates the average machine-year of the bin.  
Equation (14) calculates the average active failure rate of the bin for the machine. The 
higher the value of Fij, the lower the durability or longevity of the jth age bin for the ith 
machine type and vice versa. The Fij attribute is considered in the order prioritisation tool 
to prioritise the returned cores. Equation (15) calculates the average active failure rate of 
the bin for all machines. 

Figure 5 Age bins for failure rate analysis 

0 T

1 2 . t .

 

3.1.4 Order prioritisation tool 

The order prioritisation tool prioritises the returned cores based on the inventory location 
(L) (output of the rule-based clustering model), active failure rate (Fij) and age bin (J) 
attributes. Based on the number of available returned cores, a min-max approach is 
applied to calculate the dynamic weights for each criterion. For quantitative types of data, 
minimum and maximum values are identified for a particular criterion for all the 
available returned cores during that time. Then, the dynamic range between the maximum 
and minimum values is divided into nine categories and each category receives a weight 
between 1 and 9, where 9 is the highest and 1 is the lowest weight. For qualitative types 
of data, weights are assigned based on experts’ opinions between 1 and 9, where 9 is the 
highest weight and 1 is the lowest weight. The performance matrix assigns weights for all 
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the criteria of all the available returned cores using the dynamic weight category 
calculated by min-max approach. It is noted that every criterion does not have equal 
importance to prioritise a returned core. Thus, the importance of the prioritisation criteria 
is identified using a proportional method, a pairwise comparison approach between two 
criteria. In this method, the proportions of all pairs are included in a matrix, which is 
named as proportional matrix where alm + aml = 1 and 0 ≤ alm, aml ≤ 1, and the diagonal 
elements are zero (Aldian and Taylor, 2005). The proportional matrix and relative 
weights for the weight matrix are determined using the following two steps: 

1 

12 1 12 1

12 2 12 2

1 2 1 2

0 0
1 0 0

1 1 0 0
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n n

n n n n

a a b b
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Many approaches, such as analytic hierarchy process (AHP), analytic network process 
(ANP), and TOPSIS have been applied to assist the decision-making process that 
involves multiple criteria in various domains. AHP is a top-down approach that does the 
pair-wise comparison criteria and sub-criteria for organising and analysing complex 
decisions. However, it cannot handle large data sets. ANP is a more general approach, 
based on the description of the problem by means of a network instead of a hierarchy as 
in AHP. ANP is a complex decision-making tool with feedback loop to treat criteria and 
sub-criteria equally. However, often times, it is too complex to explain its concept and 
process. 

Figure 6 Returned products order prioritisation process 
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On the other hand, TOPSIS is a well-known multi-criteria decision making (MCDM) 
technique because it has a simple yet comprehensive computation procedure (Mahdavi  
et al., 2008; Eraslan and Tandel, 2011). TOPSIS was first proposed by Hwang and Yoon 
(1981). This method is applicable for qualitative, quantitative, and cost criteria data types 
(Wijk et al., 2006). TOPSIS method normalises the weight factors to scale values and 
provides information about the solution robustness. However, it assumes that the criteria 
are independent of each other (Wang and Wang, 2014). In this study, the multi-attributes 
are independent in nature. Therefore, TOPSIS method is applied as a MCDM technique 
to obtain the prioritised indexes for return cores. Figure 6 illustrates the returned products 
order prioritisation process. 

The returned cores’ priority indexes are determined using the TOPSIS method that 
provides positive and negative ideal solutions using geometric distance for multi-criteria 
decision-making models (Tong et al., 2005; Wijk et al., 2006). The final scores range 
between 0 (negative ideal solution) and 1 (positive ideal solution). The order priority 
indexes are obtained using the following TOPSIS steps: 

1 Establish the performance matrix 

1 2

1 11 12 1

2 12 22 2

1 2
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. . . . . .
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 (16) 

2 Normalise performance matrix 
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3 Multiply performance matrix with its associated weights from weight matrix 

1 11 2 12 1 11 12 1
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V  (18) 

4 Determine ideal and negative ideal solutions 

( ) ( ){ } { }1 2max min ' , 1, 2, , , , ,ij ij nV v j J or v j J i m v v v+ + + += ∈ ∈ = =  (19) 

( ) ( ){ } { }1 2min max ' , 1, 2, , , , ,ij ij nV v j J or v j J i m v v v− − − −= ∈ ∈ = =  (20) 

where 

{ }1, 2, , ,ijj n v a large response is desired= =J  

{ }' 1, 2, , ,ijj n v a small response is desired= =J  
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5 Calculate separation measures 

( )2

1

n

iji j
j

S v v+ +

=

= −∑  (21) 

( )2

1

n

i ij j
j

S v v− −

=
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6 Calculate relative closeness to ideal solution and rank returned cores arranging them 
according to the descending order of the relative closeness values 

i
i

ii

SC
S S

−

+ −
=

+
 (23) 

Notations 

n total number of criteria 

alm importance of lth criterion compared with mth criterion ∀m = 1…n, l = 1…n 

blm proportional weight of lth criterion compared with mth criterion ∀m = 1…n,  
l = 1…n 

wl weights of lth criterion (l = 1 ∀ J, l = 2 ∀ Fij, l = 3 ∀ L) 

ulp dynamic weight lth criterion pth sub-criterion (l = 1 ∀ J, l = 2 ∀ Fij, l = 3 ∀ L,  
p = 1…9) 

A available returned cores 

X criteria relating to returned cores 

xij value of jth criterion for ith returned cores ∀i = 1…A, j = 1…X 

rij normalised performance of ith returned cores with respect to jth criterion  
∀i = 1…A, j = 1…X 

wj weight of jth criteria obtained from weight matrix (wl) ∀j = l = 1…X 

vij weight normalised performance of returned cores with respect to criterion j ∀i 
= 1…A, j = 1…X 

V, V+, V– performance matrix, ideal, and negative ideal value sets, respectively 

, iiS S+ −  separation measures from ideal and negative ideal solutions, respectively  
∀i = 1…A 

Ci relative closeness (0 ≤ Ci ≤ 1) ∀i = 1…A. 

The returned cores are ranked by arranging them according to the descending order of the 
Ci values obtained from TOPSIS method. The closer Ci moves towards 1, the higher its 
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priority of ith returned cores among the available returned cores (A). Then, the prioritised 
list of returned cores is used in the matching algorithm for customer order fulfilment. The 
matching algorithm finds the closely matched returned cores to fulfil customer orders. 
Considering the user requirements, i.e., machine type, product specifications and budget 
constraints (budget ± x%), the matching algorithm proposes y number of closely matched 
returned cores from the inventory locations in an order proposed by the prioritisation tool. 

4 Experimental results 

The proposed DSS framework is implemented in a CLSC business environment of a 
high-end server manufacturing industry that maintains ATO production philosophy. The 
industry produces low volume, high value and long life-cycle type mainframe computers 
(Aqlan et al., 2016). The LCU data management system keeps track of all the sold 
products and gather information on products’ usage and health. The industry follows the 
waste-driven used products collection process. According to Guide and van Wassenhove 
(2001), in the waste-driven system firms passively accept all product returns from the 
waste stream. Moreover, the result of the product returns mandates and policies is a large 
uncontrolled volume of used products flowing back to the original equipment 
manufacturers. This is case for the industry under study. 

To evaluate the proposed methodology, 54 on-hand returned cores are taken into 
consideration. The Fi, Rvi, and ACi of the returned cores attributes are used to calculate 
the '

iF  and Si of ith returned cores. Both K-means and two-step methods are applied to 
develop the two sets of clustering algorithms. However, average Si (0.8) of the K-means 
method out-performs average Si (0.7) of the two-step method. Thus, the K-means method 
is taken into consideration for clustering model development. The K-means method 
proposes two sets of cluster algorithms using the attributes of the 54 on-hand returned 
cores. Each clustering algorithm splits the 54 returned cores into three clusters. Then, the 
rule-based classification algorithm guides the returned cores into three inventory 
locations. Table 3 provides a snapshot of the disposition of on-hand inventories into three 
inventory locations. 
Table 3 Returned products’ disposition to inventory locations (L) 

Classification Product count 

LIC 22 
LSTC 18 
LLTC 14 

About 350,000 data records are analysed to calculate the average active-failure rate Fij of 
all the machine types. Table 4 presents the average active-failure rate of various machines 
in different age bins. For example, i = 11,241, Fi5 = 88.19 is calculated for 5th age bin 
using the number of repairs count Pi5 = 832, the number of active products Mi5 = 210, and 
average machine-year MYi5 = 943.42. Higher value of Fij indicates lower durability or 
longevity of jth age bin for the ith machine type and vice versa. For missing value of Fij at 
jth age bin for ith machine type, average Fj value of jth age bin is considered while 
prioritising the returned cores using the order prioritisation tool. 
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Table 4 Fij of various machines in different age bins (J) 
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The order prioritisation tool incorporates the Fij, J and L attributes in the TOPSIS 
algorithm. The weight matrix (wl) for Fij, J and L attributes are 7, 9, and 4, respectively. 
Table 5 presents the dynamic weight matrix (ulp) of the sub-criteria. Subject matter 
experts’ opinions are taken into consideration while determining the wl and ulp weight 
matrices. 

As shown in Table 6 the returned cores are ranked by arranging them according to the 
descending order of the Ci values obtained from TOPSIS method. The closer Ci moves 
towards 1, the higher its priority of ith returned cores among the available returned cores 
(A). Then, the prioritised list of returned cores is used in the matching algorithm for 
customer order fulfilment. The prioritised list of returned cores is validated by the subject 
matter experts. 

Figure 7 shows the user interface of the matching algorithm that stores the outputs in 
an excel file if returned cores fall within the range of user inputs. 

Figure 7 User interface of the matching algorithm (see online version for colours) 

 

Table 5 Sub-criteria dynamic weight (ulp) matrix 

J u1p Fij u2p L u3p 

J >= 16 9 Fij >= 200 9 LIC 9 
14 <= J < 16 8 180 <= Fij < 200 8 LSTC 6 
12 <= J < 14 7 150 <= Fij < 180 7 LLTC 3 
10 <= J <12 6 120 <= Fij < 150 6   
8 <= J <10 5 100 <= Fij < 120 5   
6 <= J <8 4 70 <= Fij < 100 4   
4 <= J <6 3 50 <= Fij < 70 3   
2 <= J <4 2 30 <= Fij < 50 2   
J < 2 1 Fij < 30 1   

The proposed DSS framework demonstrated cost savings by reducing the assembly cycle 
time, production cost, and uncontrolled accumulation of cores. Table 7 shows the 
expected savings obtained from the implementation of the framework. 
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Table 6 Prioritised returned cores using order prioritisation tool 

Serial ID# M/C type (I) M/C model L Fij J Ci Rank 
1425190 94066 P42P STC 1,000.081 4 0.806 1 
1902794 94066 T69T STC 5,135.192 2 0.786 2 
1344931 91177 MMBM IC 80.007 5 0.498 3 
1294214 91177 MTBM IC 80.007 5 0.498 4 
1974356 91177 ILBI IC 80.007 5 0.498 5 

Table 7 Expected savings from the implementation of the DSS framework 

Savings Scopes Operations Benefits 

50% × each inventory manpower:  
50% × $50,000/year × 2 

$50,000/year Hard savings Time 
savings 

40% × each production manpower:  
40% × $50,000/year × 8 

$160,000/year 

30% reduction of the number of accumulated cores 
20% less teardown volume in a quarter 

Inventory management 

25% less usage of new parts in a quarter Production efficiency 

Soft savings 

Energy conservation and waste reduction Environmental 
awareness 

Total savings $210,000/year 

5 Conclusions and future directions 

This study discussed the characteristics of PrAM processes and proposed a DSS 
framework for inventory disposition and customer order fulfilment of PrAM for CLSC 
business model. It was identified that LCU information is helpful in quantifying 
uncertainties of the PRO within PrAM processes, and availability of LCU information is 
relatively higher in CLSC business model that has a greater amount of LCU information 
compared with other business models. Thus, a multi-attribute DSS model was proposed 
relying on the LCU information for inventory disposition and customer order fulfilment 
processes of PrAM in CLSC business model. The proposed inventory disposition and 
selection of returned cores for customer order fulfilment mechanism can minimise 
assembly cycle time, production cost, and uncontrolled accumulation of cores. It also 
increases usage of returned cores for order fulfilment, conserves energy, reduces waste, 
and satisfies customers by competitive selling price. The proposed framework was 
implemented in a high-end server manufacturing industry that maintains ATO production 
philosophy and waste-driven PrAM processes. Results from the case study shows that a 
total cost savings of $210 K/year can result from implementing the frameworks in server 
re-manufacturing SCs. 

The proposed framework can also be implemented in industries that produce high 
value and longer life-cycle type products, such as automobiles, transportation vehicles, 
capital machinery, electrical and electronics equipment. Although CLSC has enormous 
opportunities from economic, ecologic, and sustainability perspectives, there are certain 
issues that prevent the industries to operate PRO in an efficient way. Being a relatively 
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new sector, the PrAM processes are still unorganised and evolving compared to the 
traditional manufacturing operations. Some of the reasons could be inherent uncertainties 
in quality, quantity, cost, and timing metrics of returned products. In addition, volatility 
and high risks associated with the product demands in the secondary markets are causing 
challenges in this potential sector. Finally, CLSC research should consider resource 
conservation, environment protection, and social development-related attributes to enable 
environmental sustainability. 
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