Low temperature dependence of mechanical process of ultrathin aluminium films: molecular dynamics simulations
by Qiao-Neng Guo; Jie-Fang Wang; Shi-E. Yang; Mingxing Wang; Xue-Jie Han; Qiang Liu; Dong-Hui Zhu; Liang-Kui Hu
International Journal of Nanomanufacturing (IJNM), Vol. 15, No. 1/2, 2019

Abstract: The mechanical process of aluminium thin films under uniaxial tensile strain was simulated with molecular dynamics method in a low temperature range from 40 to 250 K. The stress-strain curve and potential energy-strain curve of aluminium thin film under uniaxial tensile deformation were obtained. The variation characteristics of stress-strain curves with temperature are alike at the elastic stage. However, at the plastic stage the stress-strain curves are grouped into three categories (40 K ≤ T < 100 K, 100 K ≤ T < 200 K, 200 K ≤ T ≤ 250 K). From the stress-strain curves, we found the strange temperature dependence of the local maximum stress, maximal potential energy and their corresponding strain: when the temperature is below 100 K, they go down quickly with temperature, and when above 100 K and below 200 K, they descend slowly and do very slowly above 200 K. Therefore, we have identified two critical temperatures for the transition of plastic flow mechanism.

Online publication date: Mon, 07-Jan-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanomanufacturing (IJNM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com