Effect of multi-parameters interaction on transmission gear rattle based on RBF neural network
by Dong Guo; Yawen Wang; Xiaohui Shi; Guangze Zheng; Xiuwen Xiong
International Journal of Vehicle Noise and Vibration (IJVNV), Vol. 14, No. 3, 2018

Abstract: This paper proposes a method to analyse multi-parameters interaction on transmission gear rattle. Firstly, a simulation model of manual transmission was established, and the angular velocity of each loose gear as well as the mesh force were obtained. Then the loose gear angular velocity was measured on a manual transmission gearbox to verify the model. The derivative of gear mesh force was taken as the rattle index (jerk index), and was calculated using forward difference method. A radial basis function (RBF) neural network was applied to map the relationships between the selected input parameters and rattle index. The results show that gear backlash has the largest influence on gear rattle, followed by the inertia of the loose gear, the speed fluctuation and the drag torque. This study can be easily extended to other types of transmission systems to control the gear noise and improve sound quality.

Online publication date: Thu, 03-Jan-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Noise and Vibration (IJVNV):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com