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Abstract: The cargo payload of a merchant vessel is a crucial variable in 
calculating revenue for a particular voyage and estimating global trade flows 
for key commodities. However, due to the opaque nature of the industry, 
payload information is usually not publicly available. This research utilises, for 
the first time, vessel draught information reported by the automatic 
identification system (AIS) to estimate vessel payloads. The applicability and 
reliability of draught measurements from AIS captured via satellites and 
terrestrial receivers are addressed in the process of identifying the most 
efficacious way to estimate vessel payloads. The performance of estimating 
vessel payloads using AIS draught data is compared to two models that rely on 
principles from physics and naval architecture, and the results show similarity 
and consistency. Being able to reliably estimate a vessel’s payload is essential 
in assessing vessel utilisation, fleet productivity, and subsequently the supply 
and demand conditions in shipping markets. 
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1 Introduction 

The cargo size or payload of a merchant vessel is a crucial variable in many aspects of 
shipping. At the micro level it determines, together with the freight rate, the revenue and 
earnings for a particular voyage. In port management it influences the loading and 
discharging times of vessels and, thus, berth scheduling and cargo handling equipment 
usage. For terminal operations (e.g., oil storage tanks) it is important to know whether 
there is sufficient onshore capacity to cater to volumes on inbound vessels. At the macro 
level, payloads influence the magnitude of international trade flows for key industrial 
commodities such as coal, iron ore and crude oil. Yet, despite its importance, global, 
comprehensive and accurate figures for the payloads of ships on individual voyages are 
in practice impossible to come by. This is mainly due to the opaque nature of the 
industry, where the official payload as noted on the ‘bill of lading’ is usually not publicly 
available or disseminated according to any international standard (a notable exception is 
the US Customs Agency which makes bill of lading data for US imports available to 
third-party publishing companies). The idea of using bill of lading data is not new, and 
has been applied in the estimation of the trade balance on a particular shipping route 
(Deakin and Seward, 1973). Due to the difficulty in obtaining real payload data, the 
maritime literature has typically had to make simplifying assumptions such as constant 
deadweight tonnage (DWT) utilisation in percentage terms (Adland and Strandenes, 
2007) or using information contained in fixtures as a proxy (Alizadeh and Talley, 2011a, 
2011b). Both are likely to be inaccurate. Firstly, the relationship between cargo size and 
total carrying capacity (DWT) is not constant with regards to increasing vessel size (e.g., 
because fuel and fresh water needs do not increase proportionately with size). Secondly, 
public fixture information is incomplete and the corresponding cargo sizes are estimates 
only, with the final number known only after the completion of loading. 

In this paper, we show how reported vessel draught measurements from the global 
automatic identification system (AIS) can be used as a basis for the estimation of 
payload. AIS was originally designed for the purpose of collision avoidance, requiring 
vessels over 300 GT to broadcast messages containing information on vessel identity and 
location at high frequency. The large volume of high-frequency AIS data currently 
available for tracking the world fleet using satellites and terrestrial receivers offers great 
and largely untapped potential for the monitoring of global trade flows on a real-time 
basis. As a result, the academic research community recently has shown growing interests 
in applying AIS data in various research areas. For instance, in the third IMO GHG study, 
Smith et al. (2014) use AIS data to track global fleet emissions. Adland and Jia (2016) 
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use AIS data to investigate dynamic speed choice in the drybulk segment. Jia et al. 
(2017a) propose an automatic algorithm to generate seaborne transport pattern maps 
based on AIS. Adland et al. (2017a) estimate crude oil export volume using vessel 
tracking AIS data. Adland et al. (2017b) and Jia et al. (2017b) use AIS data to investigate 
the impact of environmental and port policy. 

The contributions of our paper are threefold. First, we pioneer in proposing the use of 
AIS draught information in estimating cargo payload. In combination with our unique 
dataset on port calls from ship agents, we are able to verify the AIS messages before 
incorporating the reported draught information, together with other vessel and voyage 
specific information, to estimate cargo payload. Secondly, the effectiveness of real-world 
draught in estimating cargo payload is evaluated in a multi-factor regression framework 
and the performance of the model is compared to models that are based on the principles 
of naval architecture. Thirdly, in performing these comparisons we evaluate the reliability 
of the AIS-reported draught measurements and do so as an extension to the literature on 
AIS data quality (Banyś et al., 2012; Harati-Mokhtari et al., 2007; Tsou, 2010) by 
utilising both terrestrial and satellite AIS data. 

2 Literature review 

A merchant vessel’s primary function is to transport cargo from A to B, with carrying 
capacity as the maximum mass that the ship can safely carry. For high-density cargos on 
bulk carriers, DWT is typically quoted as the maximum carrying capacity, while for other 
vessels types, it may refer to, for instance, cubic metres for gas carriers, TEU for 
container vessels or lane metres for RoRo vessels (Adland et al., 2016). The share of a 
vessel’s total carrying capacity occupied by paying cargo, i.e., payload, is referred to as 
vessel capacity utilisation or load factor (Alizadeh and Talley, 2011a). Together with 
sailing speed and ballast ratio, capacity utilisation is a determining factor for overall fleet 
supply (Wijnolst and Wergeland, 1996), which in turn has an impact on the freight rate 
fluctuation (Glen and Martin, 1998; Kavussanos, 2003; Kavussanos and Alizadeh, 2002; 
and Alizadeh and Talley, 2011a). For shipping companies, the payload or capacity 
utilisation is one of the main factors for their profitability and unit transport cost. 
Payload, as implied by a vessel’s draught is also a key input in calculating vessel fuel 
consumption (MAN, 2013) and, thus, a key input in the estimation of air pollution from 
ships (Smith et al., 2014). Despite the importance of the payload in the shipping industry, 
both from an economic (micro and macro) and environmental viewpoint, little academic 
research has focused on the issue. As Hjelle (2011) points out, load factors are “critical 
input factors with scarce empirical evidence, …possibly because such information is 
regarded as highly sensitive”. 

Indeed, most previous research assumes that the load factor or payload is a fixed 
percentage of a vessel’s carrying capacity, irrespective of how such capacity is measured 
(see, for instance, Hjelle, 2011; Sandvik, 2005; Knorr, 2008; Adland and Strandenes, 
2007). In a case study focusing on ferry services in Scandinavia, where payload is 
directly observed from company data, Styhre (2010) investigates the determinant factors 
in capacity utilisation. Styhre (2010) suggests that service frequency, trade imbalance and 
demand variations, types of customers and cargo, and the competitive situation are the 
four main characteristics impacting vessel capacity utilisation. Alizadeh and Talley 
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(2011a) compile the cargo size from fixture information and find that the ratio of cargo 
size to DWT negatively affect tanker freight rates during 2006 to March 2009. In a 
related study, Alizadeh and Talley (2011b) investigate the factors impacting micro-level 
drybulk freight rates from 2003 to July 2009 and find similar results. Fixture data is a 
good source for reported cargo sizes, however, it is only available for a fraction of all 
observed voyages (Veenstra and Dalen, 2008; Adland et al., 2016). Adland et al. (2016) 
construct a dataset of actual vessel capacity utilisations for a fleet of 4,000 dry bulk 
carriers over a six-year period and find that freight market conditions, fuel prices, sailing 
distance and vessel size influence the vessel capacity utilisation of drybulk carriers. 

As shown in Adland et al. (2016), the assumption of constant capacity utilisation is 
generally flawed. AIS-reported vessel draughts provide an alternative indirect measure of 
utilisation or payload, though large-scale application of such a micro model (in the 
absence of detailed technical models of vessels) requires a suitable and generic 
framework for the translation of draught information into payloads. In this paper we 
contribute to the literature by proposing and comparing the performance of various such 
models when benchmarked against real cargo sizes obtained from a unique database of 
ship agent reports. 

3 Data and methodology 

3.1 The port line-up reports 

We collect a set of vessel lineup reports from port agents as a benchmark and basis for 
the geographical scope of this research. These port call reports indicate vessel’s name, 
estimated times of arrival (ETA), berthing (ETB), and departure (ETD), cargo type, and 
cargo size. 7,647 such reports were collected from the Monson Agencies and the LBH 
Group in 2012. Collectively, these reports offer information on the export and import of 
the major dry-bulk ports across Australia, Brazil, China, India, and South Africa. In 
particular, they cover loading and discharging events completed by 1,487 dry-bulk 
vessels with a capacity of 100,000 deadweight tonnes or more (Capesize to Valemax). 
This dataset is summarised by country in Table 1. 
Table 1 Port line-up reports coverage 

Country Ports Vessels Reports Average cargo size (tonnes) Cargo types 
Australia 12 968 3,604 165,734 Coal, iron ore 
Brazil 5 809 1,532 195,343 Iron ore 
China 17 924 2,069 174,232 Iron ore 
India 3 49 76 131,793 Coal, iron ore 
South Africa 2 275 366 173,575 Coal, iron ore 

3.2 AIS coverage and validation 

All commercial vessels above 300 GT are required to be equipped with AIS transponders 
and emit messages periodically to identify themselves and provide information on their 
current position, heading, speed, draught, and other parameters. Satellite and terrestrial 
receivers capture these messages, and they can be used not only to track vessels, but also, 
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for instance, to identify loading and discharging events (by looking for changes in 
draught between two points in time), or understand each vessel’s operational profile (for 
example, to estimate fuel consumption, Smith et al., 2014). 

From exactEarth, we extract both satellite and terrestrial AIS messages for the 1,487 
vessels that are covered in the port lineup reports during the sample period. We utilise 
this AIS dataset to verify that the event reported in a port call report occurred, and to 
obtain the draught measurement that we can then associate with the cargo size stated in 
the port call report. Whilst messages containing information on the vessel’s position and 
speed can occur at very high frequency – up to a message every few seconds – messages 
containing the vessel’s draught are less frequent. Draught measurements are also entered 
manually. The low frequency of these messages with draught measurements introduces 
some uncertainty about each draught measurement we need to attribute to a particular 
cargo size, whilst the fact that draught measurements are input manually raises concerns 
about their reliability. We introduce checks to reduce the uncertainty in the data in this 
section and try to ascertain reliability. 

To isolate messages reported by these vessels around the time of the report and close 
to the reported port, we construct a set of time and space windows1 for each report to 
ensure that a sufficiently populated sample of AIS messages was captured – in particular, 
to ensure that enough observations of the less frequently reported draught variable was 
captured before arrival and after departure. To ratify the validity of the port call reports, 
we then want to make sure that the vessel approached and was sufficiently close to the 
port from which the report originated around the dates noted in the report by introducing 
stricter time and space filters.2 Meanwhile, for all loading ports (i.e., non-Chinese ports), 
we ensure that the minimum draught before arrival is less than the maximum draught 
after departure. For example, we check that the maximum draught before arrival was 
observed at most seven days prior to the minimum distance to port date for Chinese 
reports. Similarly, we require the maximum draught after departure to be reported within 
14 days for Brazilian reports, ten days for Australian reports, and seven days for the rest. 
A final step in the filter thereafter merges duplicate or updated reports where the 
minimum distance to port and the minimum distance to port dates are the same. Thus a 
final verified subset of 4,928 port call reports was achieved. Adjusting the parameters of 
these filters changes the number of reports deemed verifiable and the distribution of those 
reports between the five countries. Our chosen filter provides a reasonable return on both 
the number of valid reports and their distribution across countries. 
Table 2 Impact of verification filter 

 Australia Brazil China India South 
Africa Totals Loss 

rate 
Total reports 3,604 1,532 2,069 76 366 7,647  
In AIS windows 3,488 1,522 1,895 73 360 7,338 4.04% 
AIS verifiable 2,428 1,445 760 12 283 4,928 32.84% 
% verifiable 69.61% 94.94% 40.11% 16.44% 78.61% 67.16%  

It is worthwhile to point out that those remaining unverifiable need not be invalid, but we 
have omitted them at this time because of the inherent uncertainties that they contain and 
until they can be validated in some other way. This final sample covers 1,402 of the 
1,471 vessels with at least one message in our AIS dataset (95.3%). The loss of reports by 
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country depicted in Table 2 correlates with the parameters and conditions used in the 
filter and the AIS coverage statistics. 

Some of the loss in reports in China can be attributed to the congestion that makes it 
difficult for satellites to capture all messages emitted (exactEarth, 2012). The high overall 
loss rate of 32.84% makes it imperative to compare the properties of the verifiable subset 
to the unverifiable subset to ensure that our filtering had not introduced undue or 
uncontrollable non-randomness into the verifiable subset. 

The validated sample of 4,928 payloads (cargo sizes) and their corresponding AIS 
observed draught measurements form the final dataset that is utilised in the following 
section. Figure 1 illustrates the final sample of cargo sizes and their AIS draught values. 

Figure 1 Reported cargo size vs. maximum observed AIS draught (see online version  
for colours) 

 

 

Note that the dispersion of observations above trend in the lower left corner of Figure 1 is 
likely from erroneous observations, principally vessels departing from a loading port that 
are reporting ballast draughts. Observations substantially below trend are more difficult 
to dismiss as they could, for instance, relate to partly laden vessels on voyages between 
two discharge ports in China. In the part loading case, the vessel may simultaneously 
have cargo and ballast water on-board and so the linear relationship between draught and 
cargo size breaks down. The impact of ballast water is discussed in the following section. 
Observations of cargo size are also naturally clustered around the typical stem sizes for 
Capesize vessels, currently between 150,000 to 170,000 tonnes as per Baltic Exchange 
route definitions. 

4 Estimating payload 

According to Archimedes’ principle, the displacement of the vessel for a certain draught 
is equivalent to the sum of the lightweight (an empty ship), the mass of the cargo, ballast 
water, fuel, fresh water, and any other provisions. Thus, in principle, with complete 
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knowledge of the hull form and any non-cargo masses and assuming still-water 
conditions, it is possible to accurately map the relationship between cargo size and 
draught. By transforming the observed draught value into displacement, we can estimate 
the payload. 

There are a few elements affecting the draught measurement and, thus, the mapping 
process from draught to cargo payload. First of all, ballast water in the ballast water tanks 
is undoubtedly the usual source for inaccuracy of cargo payload as calculated by draught 
measurement. As a fundamental insurance for safe operations, ballast water is required to 
provide for the vessel’s seaworthiness as a function of vessel design and construction. 
Even when a vessel is fully loaded, it can require ballast water operations due to a  
non-equal distribution of weights on the vessel (e.g., tankers), weather conditions and the 
consumption of fuel during the voyage. David (2015) suggests that bulk carriers can 
require 30%–50% of their DWT as ballast water capacity. The existence of ballast water 
causes upward bias of payload estimation when using draught measurement. Sea 
conditions (e.g., waves, currents and density) at which the draught is recorded, can affect 
the measurement. To overcome the effect of temporary current conditions, crews are 
typically required to read draught marks on different points of the vessels (e.g., forward 
port and starboard, amidships port and starboard, aft port and starboard and all designated 
positions). Moreover, the volume of fuel oil in bunker tanks at which time the draught is 
recorded also affects the mapping from draught to cargo payload. In short, since a 
vessel’s displacement includes the mass of the non-cargo components (e.g., ballast water, 
bunker, crew and consumables), the accuracy of the payload estimate is contingent on the 
assumptions we make about the mass of these non-cargo components. 

We consider and compare three models designed to estimate a vessel’s cargo or 
payload that utilises draught measurements reported over AIS. The first two are based on 
the vessel’s hydrostatics, whilst the third captures the relationship using a regression. 

4.1 Proportional lightweight (PL) 

Our most fundamental model assumes that lightweight is a constant proportion of 
displacement. That is, the proportional lightweight model estimates cargo size as 

100p dπ TPC ρ c T  (1) 

where, 

TPC is the vessel’s tonnes per centimetre statistic (TPC) 

ρ is the density of seawater (1.025) 

c is the proportion of displacement we assume to be due to cargo 

Td is the vessel’s design or reference draught in metres. 

TPC is a measure of the amount of mass, in tonnes, which is required to change a vessel’s 
draught by one centimetre. In theory, the value of TPC is not static and it varies with a 
vessel’s loading condition. We use the TPC values that are provided by Clarksons World 
Fleet Register measured at design draught. Typically, TPC is expressed in salt water, but 
can be adjusted to local conditions. For vessels without a TPC value, we replace 100τ 
with the product of the vessel’s length (LOA) and beam as an approximation of the 
waterplane area in metres squared. 
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Based on 3D-model simulations of Capesize bulk vessels done at the UCL 
Department of Engineering, an average for the proportion c was computed to be 0.775. 

4.2 Variable lightweight (VL) 

The variable lightweight model overcomes the limitations and potential inaccuracies of 
the proportional lightweight assumption. Given that total displacement of a vessel is the 
sum of its deadweight (DWT) and lightweight (LWT), it follows that we can calculate 
lightweight as 

Bd dLWT C LBT ρ DWT  (2) 

where 

CBd is the vessel’s block coefficient at its design state 

L is the Length Overall in metres 

B is the beam in metres 

Td is the vessel’s design or reference draught in metres. 

CBd is the ratio of a ship’s volumetric displacement to the volume of a cuboid of sides 
equal to the ship’s length, beam and draught. When we observe the vessel during 
operation at a draught of T, the payload or cargo onboard could be estimated as 

.v Bπ C LBρT LWT  (3) 

CB now is the block coefficient during operation at draught T which can be approximated 
according to [MAN, (2011), p.9]. 

1 3

1 1 .d
B Bd

TC C
T

 (4) 

Equations (2), (3) and (4) imply that payload can be calculated as 

.v B Bd dπ C LBρT C LBρT DWT  (5) 

We choose to use the coefficient estimates from Kristensen (2012) who estimates the 
statistical relationship between lightweight and a vessel’s dimensions using data from 
IHS fairplay. For dry-bulk vessels equal to or above 85,000 and below 200,000 tonnes, he 
estimated equation (2) as 0.97LBTd(0.817 – 4.86 × 10–8 × DWT); for vessels equal to or 
above 200,000 tonnes as 0.97LBTd × 1.05 × (0.076 – 2.61 × 10–8 × DWT). 

4.3 The multiple regression model 

Assuming vertical sides in the relevant draught region of the vessel, the relationship 
between cargo size and draught should be close to linear for any given dry-bulk vessel. 
Figure 1 suggests such a broadly linear relationship – keeping in mind that the figure 
relates to a very wide range of vessel sizes (from around 90,000 to approximately  
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400,000 tonnes). We include variables that are easily obtained in standard fleet registers 
and also can indicate the hull shape of a vessel. All else being equal, a more slender 
vessel will require a deeper draught for the same cargo carrying capacity. Therefore, in 
the absence of knowledge on actual shape coefficients, we need to control for differences 
in hull shape using proxies like the product of length and beam (LB). 
Table 3 Regression results with cargo size in thousand tonnes as the dependent variable 

 Model 
 1 2 3 4 5 6 7 8 

DWT 
(‘000) 

0.916 0.933 0.854 0.680 0.454 0.460 0.491 0.934 
(89.8) (59.6) (65.1) (17.3) (12.0) (12.3) (12.8) (160.7) 

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Design 
draught (m) 

 –0.586 –5.071 –3.823     
 (–1.7) (–10.6) (–7.4)     
 [0.090] [0.000] [0.000]     

Observed 
draught (m) 

  7.383 7.463 6.927 6.835 6.154  
  (12.3) (12.3) (13.2) (12.3) (10.6)  
  [0.000] [0.000] [0.000] [0.000] [0.000]  

LOA × 
Beam (m2) 

   0.003 0.006 0.006 0.005  
   (5.2) (10.9) (11.2) (9.8)  
   [0.000] [0.000] [0.000] [0.000]  

VLC        0.0006 
       (14.8) 
       [0.000] 

Country dummies 

Brazil      –0.424 –1.597  
     (–0.8) (–3.4)  
     [0.419] [0.001]  

China      0.427 –1.012  
     (0.7) (–2.0)  
     [0.477] [0.052]  

India      –9.112 –4.192  
     (–4.2) (–1.7)  
     [0.000] [0.085]  

South 
Africa 

     5.186 5.478  
     (5.7) (7.0)  
     [0.000] [0.000]  

Notes: t-statistics are in parentheses (…), whilst the p-value of each null hypothesis is in 
square brackets […]. 
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Table 3 Regression results with cargo size in thousand tonnes as the dependent  
variable (continued) 

 Model 

 1 2 3 4 5 6 7 8 
Cargo dummy 
Iron ore       6.548  

      (7.7)  
      [0.000]  

Constant 3.71 11.14 –22.98 –53.19 –108.10 –107.84 –99.36 3.44 
(2.0) (2.6) (–5.1) (–6.8) (–12.9) (–12.6) (–11.3) (1.0) 

[0.043] [0.011] [0.000] [0.000] [0.000] [0.000] [0.000] [0.001] 
R2 0.909 0.909 0.947 0.948 0.945 0.946 0.948 0.949 
Mean VIF 1.00 3.77 3.57 18.36 12.84 6.22 5.78 1.01 

Notes: t-statistics are in parentheses (…), whilst the p-value of each null hypothesis is in 
square brackets […]. 

With reference to Table 3, our benchmark is the naïve ‘constant utilisation’ specification 
(1) – where the cargo size is a constant proportion of a ship’s deadweight (DWTi). In 
order for AIS-reported draught observations to contribute meaningfully, it should 
produce further improvements in the model’s explanatory power. To improve on the 
naïve model we consider various specifications, with each specification progressively 
adding other variables: design draught (Td, i) added to specification (2); observed draught 
(Tr, i) added to specification (3); and gross waterplane area (LBi) added to specification 
(4). Due to the fact that design draught (Td, i) and observed draught (Tr, i) are highly 
correlated, the design draught is dropped from specification (5) onwards. We also include 
country dummy variables in specification (6) and a cargo type dummy in specification 
(7). Our most comprehensive multiple linear regression model is, thus: 

, 0 1 2 , 3 , ,Δ Λ Ω Θr i i i r i c r c n r n iπ DWT T LB ε  (6) 

where, 

πr, i  is the cargo payload to be estimated for vessel i, voyage r 

DWTi is the deadweight (tonnes) for vessel i 

Ti, r is the AIS-reported draught value for vessel i, voyage r 

LBi is the product of vessel i’s length overall and beam (LOA * Beam) 

Λr, c is a dummy variable matrix to indicate the country of the port call, c = 1, 2…, 5 

Θr, n is a cargo type dummy matrix, n = 1, 2. 

The alternative specification (8) includes a variable (VLC) that is constructed based on 
the variable lightweight model [equation (5)]. As can be seen in the presentation of the 
results in Table 3, specification (8) marginally improves the goodness of fit of the model. 
This final model specification basically allows for different block coefficient for different 
vessel sizes, i.e., a structural break in the coefficients, and is formally written as: 
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8, 0 1 2i i i iπ DWT VLC ε  (7) 

where 

VLCi is the estimation from variable lightweight model for vessel i. 

The whole sample is randomly split into two equal sized subsamples, one of which is for 
in-sample estimation and one is for out-of-sample performance testing. Table 3 shows the 
in-sample estimated coefficients for various model specifications. Cargo size, the 
dependent variable, is estimated in thousands. Given the extent of heteroscedasticity 
(non-constant variance in the standard error) observed in Figure 1, we use robust standard 
errors throughout. Standard model diagnostic checks suggest that our regressions satisfy 
the conditions for statistical inference. The variable matrix plot is provided in Figure A1 
and it shows there is no obvious leverage effect from any of the variables. Every 
regression model specification is also checked against multi-collinearity using the 
reported variance inflation factor (VIF) test (Theil, 1971): a mean VIF above ten is 
usually an indication that multi-collinearity needs to be dealt with (O’Brien, 2007). 

The more complex model specifications typically do a better job of explaining 
observed cargo sizes than our benchmark ‘constant utilisation’ model in terms of higher 
R2 values and highly significant coefficients for the observed draught variable. 
Nevertheless, even the simple models perform reasonably well in terms of how much of 
the variation in the data they can explain, as indicated by their R2 values at the bottom of 
Table 3, and also in terms of multi-collinearity, as indicated by overall low VIF values. 
Though there is a certain degree of collinearity between the LB variable (LOA * Beam) 
and DWT, the former variable provides necessary information on the hull shape when 
using observed draught information, as confirmed by the incremental increase in R2. The 
binary variables, like cargo type or country, increase mean VIF scores with very little 
comparative gain in explanatory power and we begin to reach a trade-off in VIF and R2. 
Although not reported here, when we introduce dummy variables to distinguish between 
ports within a country, these variables are not statistically significant. 

Further, there ought to be some concern about the robustness of the coefficients from 
the dummy variables, since the inclusion of the cargo type dummy changes the sign and 
significance of some of the country dummies – when moving from models (6) to (7), for 
example. There is the possibility that some of the cargo types have been mislabelled, but 
the country dummies have been validated with AIS. Hence, the coefficients in model (6), 
for instance, are not robust enough to deduce patterns consistent with the country at 
which a vessel calls and either picks up or discharges cargo. That is, we cannot 
conclusively argue that a call occurring in one country relative to Australia will always 
involve larger or smaller cargoes, given that the country dummies are not robust to the 
inclusion of cargo type. What may work better is a set of binary variables that indicates 
the complete origin-destination pair associated with the port call. If this were available, it 
may be possible to test whether, for example, iron ore shipments from Brazil to China are 
smaller than those from Australia to Brazil by the difference in tonnes of fuel required for 
the two journeys of significantly different distances. 

Some of this lack of robustness may also be due to the fact that the number of port 
calls we can assign as involving iron ore is significantly greater than the number of port 
calls for coal. Thus, there may not be enough observations to reveal the true effect of 
cargo type on cargo size – that is, we could not, for example, argue that an iron ore 



   

 

   

   
 

   

   

 

   

   36 H. Jia et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

carrier with similar dimensions and design draughts ought to carry less cargo on average 
relative to coal carriers because they typically have strengthened holds. 

All of this suggests that the ideal solution if relying on a regression may be to use 
model (8) that emulates the variable lightweight model from equation (5). Not only does 
this model explain the largest amount of the variation in the data relative to its peers 
[models (1)–(7)], but it does so at an ideal and very, very low VIF score (i.e., without any 
sign of multi-collinearity). The predictive capabilities of model (7) and model (8) are 
compared to those of the proportional and variable lightweight models introduced earlier 
(3.1, 3.2) in the next section. 

5 Efficacy 

This section compares the effectiveness of estimating payload using the models discussed 
in Section 3. We compare the actual cargo sizes reported in the port call reports to 
regression (7), regression (8), the PL model, and the VL model. We also consider the 
cargo sizes reported in spot fixtures reported for Capesize vessels in 2012. These 
comparisons are based on 2,464 out-of-sample estimates. One way to visualise these 
results is by looking at their distributions as shown in Figure 3. 

Figure 2 Comparative distributions of reference and modelled cargo sizes (see online version  
for colours) 

 

 

Within each box plot, the box represents the interquartile range of the sample, the line 
represents the median, and the dots are payloads 1.5 times the interquartile range above 
the upper quartile or below the lower quartile. If we assume that the port call cargo sizes 
are accurate, then our two regressions and the variable lightweight model seem to 
produce the closest matches. Compared to the estimates produced by regression (7), 
estimates from regression (8) based on the variable lightweight formula appears better at 
extreme values – in particular, payloads above 350,000 tonnes. The box plots suggest that 
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the variable and proportional lightweight models generally have an upward bias – that is, 
they on average overestimate cargo size. Compared to the regression models, the 
lightweight models seem more capable at estimating cargo sizes above 350,000 tonnes. 
Table 4 Comparison of relative prediction errors 

 Properties of relative errors 
 Mean Min Max Std. 

Regression (7) 0.0046 –0.296 1.276 0.074 
Regression (8) 0.0050 –0.335 1.279 0.075 
Proportional lightweight 0.0634 –0.831 1.522 0.094 
Variable lightweight 0.0420 –0.516 1.403 0.081 

Table 4 summarises the efficacy of our four models by computing the relative error, 
ˆ ˆ 1,o Aπ π πA  where ˆoπ  is the model’s out-of-sample prediction and Aπ  is the actual 

cargo size given in the port call report. This is calculated for each of the four models we 
wish to compare. 

Figure 3 Density functions of relative prediction errors (see online version for colours) 

 

 

The probability density functions of these relative errors are shown in Figure 3, along 
with a Normal distribution fitted to those errors. The most efficacious model would have 
the tallest and narrowest density function centred at 0; here we find it to be a close call 
between regression (7) and (8). Given the better statistical properties of regression (8) 
over regression (7) in terms of a near perfect VIF score and a marginally better R2, 
regression (8) would appear to be our best solution to the problem of estimating payloads 
using draught measurements reported via AIS. 

6 Discussions and concluding remarks 

This research is the first attempt in the literature to utilise draught data from AIS to 
estimate payload at the micro level. Due to the nature of the maritime industry, the cargo 
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size onboard is not publicly available on a large-scale. Our research enables researchers 
to directly map AIS-reported draught data to cargo payload in combination with vessel 
and voyage specific information. This information is particularly important for research 
institutions and government agencies who are interested in regional and global trade 
flows for key commodities. Currently, published trade data is typically reported in terms 
of monetary values (e.g., Eurostat) and with a substantial reporting delay. Having a good 
grasp on the tonnage volume for the underlying trade enables us to calculate the  
like-for-like volume growth while separating the price element away. Moreover, where 
environmental measures, such as the global carbon footprint per transport mode, are 
required, it is the cargo volume transported (in tonnes) that is needed rather than trade in 
monetary terms. For instance, when we evaluate CO2 emissions in transportation, 
efficiency is measured as grams of CO2 per tonne-km. Therefore, the ability to estimate 
cargo volumes transported by different vessel types and routes at the micro level is key 
for any studies of the environmental impact of maritime transportation. 

The ability to translate AIS-reported draught data into cargo payloads also sheds 
further light on the application of maritime big data in for commercial purposes. 
Arguably, the maritime industry is lagging behind somewhat compared to many other 
industries in the application of data-driven analysis and technology. With a proper 
estimation of cargo sizes based on AIS draught data, one can have real-time market 
information on cargo flows, vessel capacity utilisation and the supply/demand situation. 
While other data sources, such as port agent reports or Bill of Lading data may be more 
accurate in terms of cargo size reporting, they can hardly compete with AIS data in terms 
of availability, scope and timeliness. The AIS system can potentially allow us to cover all 
ports for various types of vessels including smaller ports where other third-party data is 
not easily accessible. 

Future research should run similar analysis for more vessel types and a wider 
selection of routes in order to generalise the applicability of our results. It is also possible 
to include alternative sources of cargo size, such as US customs data, to compare the 
accuracy of AIS-reported draught data. 

Acknowledgements 

This research was partly funded by the Research Council of Norway’s SMARTRANS 
program under the project CARGOMAP – mapping vessel behaviour and cargo flows 
[239104]. Vishnu Prakash would like to thank University College London (UCL) and 
Maritime Strategies International Ltd. (MSI) for the support of his PhD study during 
which time this research was conducted. 

References 
Adland, R. and Jia, H. (2016) ‘Dynamic speed choice in bulk shipping’, Maritime Economics & 

Logistics [online] https://doi.org/10.1057/s41278-016-0002-3 (accessed 29 December 2017). 
Adland, R. and Strandenes, S.P. (2007) ‘A discrete-time stochastic partial equilibrium model of the 

spot freight market’, Journal of Transport Economics and Policy, Vol. 41, No. 2, pp.1–30. 
Adland, R., Jia, H. and Strandenes, S.P. (2017a) ‘Are AIS-based trade volume estimates reliable? 

The case of crude oil exports’, Maritime Policy and Management [online] 
http://dx.doi.org/10.1080/03088839.2017.1309470 (accessed 29 December 2017). 



   

 

   

   
 

   

   

 

   

    Estimating vessel payloads in bulk shipping using AIS data 39    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Adland, R., Fonnes, G., Jia, H., Lampe, O.D. and Strandenes, S.P. (2017b) ‘The impact of regional 
environmental regulations on empirical vessel speeds’, Transportation Research Part D 
[online] http://dx.doi.org/10.1016/j.trd.2017.03.018 (accessed 29 December 2017). 

Adland, R., Jia, H. and Strandenes, S.P. (2016) ‘The determinants of vessel capacity utilization: the 
case of Brazilian iron ore exports’, Transport Research Part A [online] 
http://dx.doi.org/10.1016/j.tra.2016.11.023 (accessed 29 December 2017). 

Alizadeh, A.H. and Talley, W.K. (2011a) ‘Vessel and voyage determinants of tanker freight rates 
and contract times’, Transport Policy, Vol. 18, No. 5, pp.665–675. 

Alizadeh, A.H. and Talley, W.K. (2011b) ‘Microeconomic determinants of dry bulk shipping 
freight rates and contract times’, Transportation, Vol. 38, No. 3, pp.561–579. 

Banyś, P., Noack, T. and Gewies, S. (2012) ‘Assessment of AIS vessel position report under the 
aspect of data reliability’, Annual of Navigation, Vol. 19, No. 1, pp.5–16. 

David, M. (2015) ‘Vessels and ballast water’, in David, M. and Gollasch, S. (Eds.): Global 
Maritime Transport and Ballst Water Management, Springer, Netherlands. 

Deakin, B.M. and Seward, T. (1973) Shipping Conferences: A Study of their Origins, Development 
and Economic Practices, Cambridge University Press, Cambridge. 

exactEarth (2012) An exactEarth Technical White Paper on Satellite AIS [online] 
http://main.exactearth.com/whitepaper-first-pass-detection (accessed 29 December 2017). 

Glen, D.R. and Martin, B.T. (1998) ‘Conditional modeling of tanker market risk using route 
specific freight rates’, Maritime Policy and Management, Vol. 25, No. 2, pp.117–128. 

Harati-Mokhtari, A., Wall, A., Brooks, P. and Wang, J. (2007) ‘Automatic identification system 
(AIS): data reliability and human error implications’, Journal of Navigation, Vol. 60, No. 3, 
pp.373–389. 

Hjelle, H.M. (2011) ‘The double load factor problem of Ro-Ro shipping’, Maritime Policy & 
Management, Vol. 38, No. 3, pp.235–249 

Jia, H., Lampe, O.D., Solteszova, V. and Strandenes, S.P. (2017a) ‘An automatic algorithm for 
generating seaborne transport pattern maps based on AIS’, Maritime Economics & Logistics 
[online] https://doi.org/10.1057/s41278-017-0075-7 (accessed 29 December 2017). 

Jia, H., Adand, R., Prakash, V. and Smith, T. (2017b) ‘Energy efficiency with the application of 
virtual arrival policy’, Transportation Research Part D, Vol. 54, pp.50–60. 

Kavussanos, M.G. (2003) ‘Time varying risks among segments of the tanker freight markets’, 
Maritime Economics and Logistics, Vol. 5, No. 3, pp.227–250. 

Kavussanos, M.G. and Alizadeh, A. (2002) ‘The expectations hypothesis of the term structure and 
risk premia in dry bulk shipping freight markets; an EGARCH-M approach’, Journal of 
Transport Economics and Policy, Vol. 36, No. 2, pp.267–304. 

Knorr, W. (2008) EcoTransIT: Ecological transport information tool. Environmental Methodology 
and Date, Institut fur Energie und Umweltforschung Heidelberg GmbH, Heidelberg, German. 

Kristensen, H.O. (2012) ‘Determination of regression formulas for main dimensions of tankers and 
bulk carriers based on IHS fairplay data’, Clean Shipping Currents, Vol. 1, No. 6, pp.1–35. 

MAN (2011) MAN Diesel & Turbo, Basic Principles of Ship Propulsion, MAN Document. 
O’Brien, R.M. (2007) ‘A caution regarding rules of thumb for variance inflation factors’, Quality & 

Quantity, Vol. 41, No. 5, pp.673–590. 
Sandvik, E.T. (2005) Environmental Impacts of Intermodel Freight Transport, MFM Report 0513, 

Møreforsking Molde, Molde. 
Smith, T.W.P., Jalkanen, J.P., Anderson, B.A., Corbett, J.J., Faber, J., Hanayama, S., O’Keeffe, E., 

Parker, S., Johansson, L., Aldous, L., Raucci, C., Traut, M., Ettinger, S., Nelissen, D., Lee, 
D.S., Ng, S., Agrawal, A., Winebrake, J.J., Hoen, M., Chesworth, S. and Pandey, A. (2014) 
The Third IMO GHG Study 2014, MEPC 67/INF.3, International Maritime Organisation 
(IMO. London, UK 



   

 

   

   
 

   

   

 

   

   40 H. Jia et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Styhre, L. (2010) Capacity utilization in Short Sea Shipping, Thesis for the degree of Doctor of 
Philosophy, Department of Technology Management and Economics, Chalmers University of 
Technology, Sweden 

Theil, H. (1971) Principles of Econometrics, John Wiley & Sons, Inc., New York. 
Tsou, M.C. (2010) ‘Discovering knowledge from AIS database for application in VTS’, Journal of 

Navigation, Vol. 63, No. 3, pp.449–469. 
Veenstra, A. and Dalen, J. (2008) ‘Price indices for ocean charter contracts’, The 2008 World 

Congress on NAEP Measures for Nations, Rotterdam, 8 May. 
Wijnolst, N. and Wergeland, T. (1996) Shipping, Delft University Press, Delft. 

Notes 
1 The first time window is set to be –/+ 14 days of ETA/ETD, and space window is 24 decimal 

degree square of the port. 
2 The stricter time window is set to be –/+ 7 days of ETA/ETD, and space window is 1 decimal 

degree square of the port. 

Appendix 

Figure A1 Correlation matrix (see online version for colours) 

 


