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Abstract: A non-intrusive model reduction computational method using 
hypersurfaces representation has been developed for reservoir simulation and 
further applied to 3D fluvial channel problems in this work. This is achieved by 
a combination of a radial basis function (RBF) interpolation and proper 
orthogonal decomposition (POD) method. The advantage of the method is that 
it is generic and non-intrusive, that is, it does not require modifications to the 
original complex source code, for example, a 3D unstructured mesh control 
volume finite element (CVFEM) reservoir model used here. The capability of 
this non-intrusive reduced order model (NIROM) based on hypersurfaces 
representation has been numerically illustrated in a horizontally layered porous 
media case, and then further applied to a 3D complex fluvial channel case. By 
comparing the results of the NIROM against the solutions obtained from the 
high fidelity full model, it is shown that this NIROM results in a large 
reduction in the CPU computation cost while much of the details are captured. 
[Received: May 19, 2017; Accepted: December 1, 2017] 
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1 Introduction 

Reservoir simulation is very important and has a wide range of applications, from 
ground-water production to radioactive waste and the extraction of oil and gas from the 
subsurface. 3D reservoir modelling provides more details for the multiphase flows in 
porous media. However, the computational cost of 3D reservoir simulations is high. The 
non-intrusive reduced order modelling technique presented here is capable of resolving 
3D reservoir modelling problems while avoiding the high computational cost. 

The reduced order modelling technique has been shown to possess a powerful 
capability of representing the large dynamical systems using only a small number of 
reduced order basis functions. Among the model reduction methods, the POD approach is 
the most widely used. This method extracts the most energetic parts of the system 
through snapshots method, and then constructs optimal basis functions. The POD method 
has been successfully applied to numerous research fields. In geophysical fluid dynamics 
it is referred to as empirical orthogonal functions (EOF) (Jolliffe, 2002), in signal 
analysis it is termed as Karhunen-Love method (Fukunaga, 1990) and in statistics it is 
called the principal component analysis (PCA) method (Pearson, 1901). The proper 
orthogonal decomposition (POD) technique has also been applied to ocean models (Xiao 
et al., 2014; Fang et al., 2013; Stefanescu and Navon, 2013; Stefanescu et al., 2014; Du  
et al., 2013), air pollution modelling (Fang et al., 2014), data assimilation (Daescu and 
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Navon, 2008; Altaf, 2011; Chen et al., 2011; Chen et al., 2012; Cao et al., 2007) and 
mesh optimisation (Fang et al., 2010). 

The most widely used method of deriving a reduced order model (ROM) is through 
the combination of POD approach and Galerkin projection. The computational efficiency 
of the ROM can be increased by several orders of magnitude by projecting the 3D 
dynamical physical system onto a reduced space. However, this method suffers from 
numerical instability (Franca and Frey, 1992). Various methods have been proposed to 
overcome or improve the stability issue of the POD/Galerkin projection method, 
including nonlinear Petrov-Galerkin (Fang et al., 2013; Xiao et al., 2013), regularisation 
(Jafarpour and Sabetghadam, 2012), sub grid-scale modelling, calibration (Bou-Mosleh  
et al., 2011; Serpas et al., 2011) and Fourier expansion (Willcox and Megretski, 2003). 
Another issue that arises in the ROMs is the efficient treatment of nonlinear terms in the 
partial differential equations (PDEs). A number of efficient nonlinear treatment methods 
have been presented, for example, Gappy POD (Willcox, 2006), the empirical 
interpolation method (EIM) (Barrault et al., 2004) and its discrete version discrete 
empirical interpolation method (DEIM) (Chaturantabut and Sorensen, 2010), residual 
DEIM (Xiao et al., 2014), Petrov-Galerkin projection method (Bou-Mosleh et al., 2011), 
Gauss-Newton with approximated tensors (GNAT) method (Carlberg et al., 2013) and 
the quadratic expansion method (Du et al., 2013; Fang et al., 2009). However, these 
methods are still dependent on the source code of the original physical system. In most 
cases the source code describing the full physical system has to be modified in order to 
form the ROM. 

To circumvent these disadvantages, more recently, non-intrusive methods have been 
introduced into model reduction, which do not require the knowledge of the governing 
equations and the original source code (Han, 2012). Han (2012) proposed a nonintrusive 
model reduction method based on black-box stencil interpolation method and machine 
learning method. Walton et al. (2013) proposed a non-intrusive reduced order technique 
for unsteady fluid flow using RBF interpolation and POD. Audouze et al. (2013) 
proposed a non-intrusive reduced order modelling approach for nonlinear parameterised 
time-dependent PDEs based on a two-level POD method. This method is verified and 
validated using Burgers equation and convection-diffusion-reaction problems (Audouze 
et al., 2009, 2013). Xiao et al. (2015a) presented three non-intrusive reduced order 
methods for Navier-Stokes equations using hypersurfaces representation. The 
hypersurfaces are established by POD and RBF interpolation, Smolyak sparse grid and 
Taylor series expansion method (Xiao et al., 2015a, 2015b). In addition, the hypersurface 
method based on NIROM has been successfully applied to fluid-structure interaction 
problems (Xiao et al., 2016, 2017a) and free surface flow problems (Xiao et al., 2017b) 

Recently, reduced order methods (e.g., POD, POD/DEIM, trajectory piecewise 
linearisation and bilinear approximation techniques) have been applied to reservoir 
modelling (Heijn et al., 2004; Cardoso, 2009; Cardoso et al., 2009; Chaturantabut and 
Sorensen, 2011; Yang et al., 2015; Yoon et al., 2014; Ghasemi et al., 2014; Klie et al., 
2013). Heijn et al. (2004), Cardoso (2009) and Cardoso et al. (2009) first developed POD 
ROMs for reservoir simulation. Chaturantabut and Sorensen (2011), Yang et al. (2015) 
and Yoon et al. (2014) further introduced DEIM into model reduction for nonlinear flows 
(Chaturantabut and Sorensen, 2011). Again, these reduced order methods are intrusive 
and equations/codes dependent. On the other hand, there are very few studies in  
non-intrusive reduced order modelling in porous media flows and 3D fluvial channel 
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problems. Klie et al. (2013) first proposed a non-intrusive model reduction approach 
based on a three-layer neural network combined with POD and DEIM to predict the 
production of oil and gas reservoirs, where the RBF neural network is used for learning 
about the input and output relationships. In this work, we used RBF as an interpolation 
method for constructing the time-dependent POD ROM. 

In this work, we extend the hypersurfaces based NIROM (Xiao et al., 2015a) to 3D 
reservoir modelling, and applied to a fluvial channel problem. The novelty of this work 
lies in the hypersurfaces representation of 3D reservoir modelling on a reduced space 
under the framework of the Imperial College Finite Element Reservoir Simulator  
(IC-FERST). In this approach, solutions to the full fidelity 3D reservoir model are 
recorded using the snapshot methods, and from these snapshots POD bases are generated 
that optimally represent the 3D reservoir simulation. The RBF interpolation method is 
then used to form a set of hypersurfaces (interpolation functions) that approximate the 
time dependent ROM. After obtaining hypersurfaces, the solution of ROM at the current 
time level can be calculated by inputting POD coefficients of earlier time levels into the 
hypersurfaces. The capabilities of results from the new NIROM have been assessed by 
two 3D reservoir simulation test cases. 

The structure of the article is as follows: Section 2 presents the governing equations 
of the 3D reservoir model; Section 3 presents the reduced order modelling method using 
hypersurfaces representation; Section 4 illustrates the methodology derived by means of 
two numerical examples. The illustration consists of two test problems where a 
horizontally layered porous media test case and a 3D fluvial channel case are resolved. 
Finally in Section 5, the conclusion is presented. 

2 Governing equations of 3D reservoir modelling 

The governing equations used in the underlying 3D reservoir model are given in this 
section. The Darcy’s law for immiscible multiphase flow in porous media has the form: 

( )= − ∇ −q K sr
up

μ
α

α α α
α

  (1) 

where qα is the αth phase Darcy velocity. The rα is the relative permeability of the αth 
phase, and it is a function that is denoted by rα(Sα) corresponding to the phase 
saturation variable Sα. pα is the pressure of the αth phase, which may include capillary 
pressure. K is the absolute permeability tensor of the porous medium. μα and suα are the 
phase dynamic viscosity and source term respectively, which may include gravity. 

A saturation-weighted Darcy velocity is introduced into the equation (1) and defined 
as 

= sv
S

α
α

α
 (2) 

then equation (1) can be rewritten as follows: 

( ) 1, −= = −∇ + =v s Ku ru σ p σ μ S αα α α α α αα α
  (3) 
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where uα denotes the force per unit volume, which is defined as vσ αα
 and used as a 

prognostic variable in this approach. The σ
α

 represents the implicit linearisation of the 

viscous frictional forces. 
The saturation equation can be written as:  

( ) ,
∂ + ∇ ⋅ =
∂

v cty
S S s
t
α

α α αφ  (4) 

where  φ  denotes the porosity. The t is time and scty,α is a source term of the αth phase. 
Finally, equation (4) is bounded by the constraint: 

1

1
=

=
N

S
α

α
α

 (5) 

where Nα denotes the number of phases. 

2.1 Discretisation of the governing equations 

The discretisation of the above equations (1)–(5) at time level n can be written in a 
general form: 

, ,= = =A v s A p s A S sn n n n n n n n n
v v p p S S  (6) 

where 1( , ..., , ..., ) ,=v v v vn n n n T
Nαα  1( , ..., , ..., )=p p p pn n n n T

Nαα  and 1( , ..., , ...,=S S Sn n n
α  

) .Sn T
Nα

 , andv p Sn n n
α α α  are velocity, pressure and saturation vectors of phase α, and 

,1 ,( , ..., ) ,=vn Tv vα α α   ,1( , ..., ) ,=pn TP Pα α α, ,1 ,( , ..., ) ,=Sn TS Sα α α  and  is the number 
of nodes. 

3 Model reduction for 3D reservoir modelling 

In this section, the process of deriving a non-intrusive ROM (NIROM) for 3D reservoir 
model is described. 

3.1 Proper orthogonal decomposition formulation 

POD is a technique used to find a set of optimal basis functions from the snapshots of 
solutions obtained from the original model. The optimal POD basis functions are then 
used to formulate a reduced dynamical system that contains the main features of the flow. 
Due to the optimality of convergence in terms of kinetic energy of the POD basis 
functions, dominant components of a large dimensional process can be captured with 
only a small number of bases e.g., 10−100. 

In this work, we find a set of basis functions for each phase (α) of the variables: 
velocity vα, pressure pα and saturation Sα. At time level n, those variables can be 
expressed: 
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{ }, , , , ,,Φ , Φ , Φ , 1, 2, ...,= + = + = + ∈v v v p p p S S Sn T n n T n n T n
v r p r rS Nα α α α α α α α α α α αα α  (7) 

where , andv p Sα α α  are the mean of the ensemble of snapshots for the variables 
, andv p Sn n n

α α α  respectively, Φα,v = (Φα,v,1, …, Φα,v,M), Φα,p = (Φα,p,1, …, Φα,p,M),  
Φα,v = (Φα,S,1, …, Φα,S,M), are the POD bases for , andv p Sn n n

α α α  respectively, which are 
extracted through truncated singular value decomposition, and M is the number of POD 
bases used in the POD model. vr,α, pr,α and Sr,α denote phase α’s POD coefficients of 
velocity, pressure and saturation respectively. , , , ,, ,1( , ..., , ..., ) ,=v v v vn n n n T

r r j rrα α αΜα  

, , , ,, ,1( , ..., , ..., )=p p p pn n n n T
r r j rrα α αΜα  and , , , ,, ,1( , ..., , ..., ) .=S S S Sn n n n T

r r j rrα α αΜα  
Projecting equation (6) onto the reduced space, yields: 

, , , , , , ,, ,Φ Φ , Φ Φ , Φ Φ= = =A v s A p s A S sT n n n T n n n T n n n
v v v v p p p p SS S Sα α α α α α α α α αα α  (8) 

The ROM for solving the POD coefficients , , , , , ,, andv p Sn n n
r j r j r jα α α  (where j ∈ {1, 2, …, 

M}, α ∈ {1, 2, …, Nα}) at time level n can be written in the general form: 

( )1 1 1 1 1 1 1 1 1
, , , , ,, , ,1 ,1 ,1 , , ,, , , ..., , , , ..., , , ,− − − − − − − − −=v v p S v p S v p Sn n n n n n n n n n
v j r r rr j r r r r N r N r Nf

α α αα α α αα  

( )1 1 1 1 1 1 1 1 1
, , , , ,, , ,1 ,1 ,1 , , ,, , , ..., , , , ..., , , ,− − − − − − − − −=p v p S v p S v p Sn n n n n n n n n n
v j r r rr j r r r r N r N r Nf

α α αα α α αα  

( )1 1 1 1 1 1 1 1 1
, , , , ,, , ,1 ,1 ,1 , , ,, , , ..., , , , ..., , , ,− − − − − − − − −=S v p S v p S v p Sn n n n n n n n n n
v j r r rr j r r r r N r N r Nf

α α αα α α αα  (9) 

subject to the initial condition 

( )( ) ( )( ) ( )( )0 0 0 0 0 0
, , ,, , , , , ,, Φ , , Φ , Φ ,= − = − = −v v v p p p , S S Sj j jr j j r j j r j jα α α α α αα α, α α, α α,  (10) 

where 1 1 1 1 1 1 1 1 1
, , ,,1 ,1 ,1 , , ,, , , ..., , , , ..., , , )− − − − − − − − −(v p S v p S v p Sn n n n n n n n n

r r rr r r r N r N r Nα α αα α α  denotes a complete set 
of POD coefficients for solution fields velocities v, pressures p and saturations S of all 
phases at time step n – 1 (n ∈ {1, 2, …, Nt}), Nt is the number of time levels in the 
computational simulation. 

3.2 Hypersurfaces based on RBF interpolation 

The RBF is an efficient method for interpolation problems. In this work, the RBF 
interpolation method is used to construct a set of hypersurfaces for reduced order 3D 
reservoir model. The theory of RBF interpolation is briefly reviewed in this section. The 
RBF interpolation method constructs an approximation function using the form of, 

( )
1

( )
=

= −x x x
N

i i
i

f w φ  (11) 

where the interpolation function (hypersurface) f(x) is represented as a linear combination 
of N RBFs (φ). N denotes the number of RBFs. Each RBF is associated with a different 
centre xi, and weighted by a coefficient wi. x denotes a data point in multidimensional 
space and it consists of a complete set of POD coefficients for solution fields  
of all phases such as velocity and pressure, saturation. In this work 
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1 1 1 1 1 1 1 1 1
, , ,,1 ,1 ,1 , , ,( , , , ..., , , , ..., , , ).− − − − − − − − −=x v p S v p S v p Sn n n n n n n n n

r r rr r r r N r N r Nα α αα α α  −x xi  is a scalar 
distance defined by the L2 norm. 

The weight coefficients wi are determined by ensuring that the interpolation function 
values f(x) will match the given data y exactly. This is achieved by enforcing f(x) = y, 
which produces a linear equation 

,=Bw y  (12) 

where 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 12 2 2

2 1 2 2 22 2 2

1 22 2 2

 − − −
 − − − =  
 

− − −  

x x x x x x
x x x x x x

x x x x x x

n

n

n n n n

B

φ φ φ
φ φ φ

φ φ φ

 (13) 

[ ] [ ]1 2 1 2, , ..., , , , ...,= =T T
n nw w w w y y y y  (14) 

The weight coefficients wj are then determined by solving the linear system (12) Aw = y. 
How to define an appropriate RBF φ is also important. The most well-known  
choices for φ are Gaussian 2( / )( ( ) ),−= r σr eφ  multi-quadratic inverse ( )2 2( ) ,= +r r σφ   

multi-quadratic 
2 2

1( ) , = + 
r

r σ
φ  inverse quadratic 

2 2
1( ) =
+

r
r σ

φ  and thin plate 

spline (φ(r) = r2log r). r ≥ 0 is a radius and σ > 0 is a shape parameter. 

3.3 Hypersurfaces representing the reduced system of the 3D reservoir model 

In this section the procedure of forming a set of hypersurfaces for 3D reservoir model in a 
reduced space is described. This is achieved by using Gaussian RBF interpolation method 
to construct the ROM in (9). By applying the RBF method, a set of hypersurfaces 

, , , , , ,, andn n n
v j p j S jf f fα α α  for each POD coefficient , , , , , ,, andn n n

r j r j r jv p Sα α α  (where j ∈ {1, 2, 
…, M}, α ∈ {1, 2, …, Nα}) be approximately represented by the interpolation functions 
below: 

( ) ( )1 1 1 1 1 1 1 1 1
, , , , , , , ,, , ,1 ,1 ,1 , , ,

1

, , , ..., , , , ..., , , * ,− − − − − − − − −

=

= =v v p S v p S v p S r
N

n n n n n n n n n n
v j r r r v i j ir j r r r r N r N r N

i

f w
α α αα α α α αα φ  

( ) ( )1 1 1 1 1 1 1 1 1
, , , , , , , ,, , ,1 ,1 ,1 , , ,

1

, , , ..., , , , ..., , , * ,− − − − − − − − −

=

= =p v p S v p S v p S r
N

n n n n n n n n n n
v j r r r p i j ir j r r r r N r N r N

i

f w
α α αα α α α αα φ  

( ) ( )1 1 1 1 1 1 1 1 1
, , , , , , , ,, , ,1 ,1 ,1 , , ,

1

, , , ..., , , , ..., , , , * ,− − − − − − − − −

=

= S v p S v p S v p S r
N

n n n n n n n n n n
v j r r r S i j ir j r r r r N r N r N

i

f w
α α αα α α α αα φ  (15) 

where φ(ri) is the RBF whose values depend on the distance from a collection of centre 
points, 1 1 1 1 1 1 1 1 1

, , ,,1 ,1 ,1 , , ,
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ( , , , ..., , , , ..., , , )− − − − − − − − −v p S v p S v p Sn n n n n n n n n

r r rr r r r N r N r Nα α αα α α  (where j ∈ {1, 2, …, 
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M}, α ∈ {1, 2, …, Nα}) and weighted by wα,v,i, wα,p,i, and wα,S,i. In this work, the Gaussian 
RBF is chosen: 

( ) ( ) ( )( )1 1 1 22 , , ,ˆˆˆ, , , , //( )
− − −− −−= = v p S v p Srr

n n nr r r r i r i r ii σσ
i e eφ  (16) 

where vr denotes the POD coefficients of velocity including all phases, 
,1 , ,( , ..., , ..., ).=v v v vr r r r Nαα  This applies to pressure vector 1−pn

r  and saturation vector 
1.−Sn

r  ri is a radius or the distance defined by the L2 norm, σ > 0 is a shape parameter. 

, , ,ˆˆˆ( , , )v p Sr i r i r i  denotes a centre point. The weighting coefficients wα,v,i, wα,p,i, and wα,S,I 
are determined so as to ensure that the interpolation function values at the collection data 
point (vr,k, pr,k, Sr,k) match the given data fα,v,k, fα,p,k and fα,S,k. This can be expressed by, 

, , , , , , , , , , , , , , , , , ,, , , {1, 2, ..., },= = = ∈w f w f w fv i j v i j p i j p i j S i j S i jB B B i Nα α α α α α  (17) 

where 

• , , , , , , , , , , , , , , ,1,..., 1,..., 1,...,( ) , ( ) and ( )= = == = =w w wT T T
v i v i k p i p i k S i S i kk N k N k Nw w wα α α α α α  

• , , , , , , , , , , , , , , ,1,..., 1,..., 1,...,( ) , ( ) and ( )= = == = =f f fT T T
v i v i k p i p i k S i S i kk N k N k Nw w wα α α α α α  

• B is the interpolation matrix of elements Bk,l = φ(rk,l) 

• k, l ∈ {1, 2, …, N}, N is the number of data points. 

The weighting coefficients wα,v,i,j, wα,p,i,j and wα,S,i,j are then determined by solving the 
linear system (17). 

3.4 Summary of constructing the NIROM for the 3D reservoir model 

In this section, the algorithm of constructing the hypersurfaces and obtaining results 
using the NIROM is summarised, which includes the offline process and online process. 
The offline process consists of obtaining the basis functions and constructing the 
hypersurfaces. 

Algorithm 1: NIROM for 3D reservoir models 
(1) Offline calculation: 
 (a) Obtaining the POD bases for 3D reservoir model 
  (i) Generate the snapshots at time level n = 1, ..., Nt by solving the 3D reservoir model 

(6); 
  (ii) Construct the POD bases Φv, Φp and ΦS using the SVD method; 
 (b) Construct a set of hypersurfaces 
  (i) Calculate the functional values fv,i,k, fp,i,k and fS,i,k at the data point (vr,k, pr,k, Sr,k) 

through the solution from the full models, where k ∈ {1, 2, …, N}; 
  (ii) Find the weights wv,i, wp,i and wS,i by solving (17) such that the hypersurfaces fv,i, 

fp,i and fS,i pass through the data points; 
(2) Online calculation: The hypersurfaces in (15) denotes a 3αM-dimensional hyper surface. 
Once a set of interpolation functions fα,v,j, fα,p,j and fα,S,j are constructed, they are then used to 
estimate the jth POD coefficient of phase (α) , , , , , ,, andn n n

r j r j r jv p Sα α α  at time level n. 
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Initialisation 0 0 0
, , ,, and ;r j r j r jv p S  

for n = 1 to Nt do 
 for j = 1 to M do 
  for α = 1 to N do 
   (i) Inputs: a complete set of POD coefficients for solution fields v, p and S at time 

step n − 1: 
   1 1 1 1

, , , , , ,1,..., , 1,..., 1,..., , 1,..., 1,..., , 1,...,( ) , ( ) , ( )− − − −
= = = = = == = =v p Sn n T n n T n n T

r r j r j r jj M N j M N j M Nv p S
α α αα α α α αα α α  

   ii) Outputs: estimate the POD coefficient at current time step n using the 
hypersurfaces (15); 

   1 1 1
, , , , ( , , ),− − −=v v p Sn n n n

r j v j r r rfα α  

   1 1 1
, , , , ( , , ),− − −=p v p Sn n n n

r j p j r r rfα α  

   1 1 1
, , , , ( , , ),− − −=S v p Sn n n n

r j S j r r rfα α  

 endfor 
endfor 

Obtain the solution of variables , andv p Sn n n
α α α  in (4) by projecting , , , , , ,, andn n n

r j r j r jv p Sα α α  onto 
the full space (see (7)). 
   

, , , , ,,Φ , Φ , Φ ,= + = + = +v v v p p p S S Sn T n n T n n T n
v r p r rSα α α α α α α α α α αα  

endfor 

4 Numerical examples 

4.1 Introduction of an unstructured mesh 3D reservoir model 

The NIROM has been implemented under the framework of an advanced 3D unstructured 
mesh reservoir model (IC-FERST). A novel control volume finite element method 
(CVFEM) is used to obtain the high-order fluxes on CV boundaries which are limited to 
yield bounded fields (e.g., positive saturations). This method is combined with a novel 
family of FE pairs, originally introduced for geophysical fluid dynamics applications. In 
particular, the P2DG − P1DG element pair (quadratic discontinuous polynomial FE basis 
function for velocity (P2DG) and linear discontinuous polynomial FE basis function for 
pressure, P1DG), is used to accurately represent sharp saturation changes between 
heterogeneous domains, see Salinas et al. (2015) and Su et al. (2015). 

The water-flooding is a widely known technique in oil and gas reservoir engineering. 
It increases the production from oil reservoirs through injecting water into the reservoir. 
As illustrated in Figure 1, the water is injected into the reservoir to increase the reservoir 
pressure; the oil is then displaced toward the production well. This phenomenon is also 
referred to the immiscible displacement in porous media. In this section, the capability of 
the NIROM developed for 3D unstructured mesh reservoir modelling has been 
numerically illustrated in a horizontally layered porous media case, and then further 
applied to a 3D complex fluvial channel case. 
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Figure 1 Water-flooding technique for oil production (see online version for colours) 

 

4.2 Case 1: horizontally layered porous media case (simple test case) 

The first case for numerical illustration of the method proposed in this paper is a 
horizontally layered porous media case. This test case is dimensionless and for simplicity 
no gravity has been considered. This problem domain is consisting of a rectangle of  
non-dimensional size 1 × 0.2. The domain is divided into two identical areas with a 
permeability ratio of 4 (non-dimensional size) within the top half part and 1  
(non-dimensional size) on the bottom half part. All the units in this paper are  
non-dimensional size. The outlet boundary has a dimensionless pressure of 0  
(non-dimensional size), the whole domain is initially saturated with the non-wetting 
phase and the wetting phase at the irreducible saturation. The wetting phase is injected 
over the inlet boundary with a dimensionless velocity of 1. The viscosity ratio of the 
phases is 1. The Brooks-Corey model for the relative permeability, with an exponent of 2 
and an end-point relative permeability ratio of 1, is considered for both phases. The 
porosity is homogeneous and equal to 0.2. The immobile fraction of the wetting phase is 
set to 0.2 and 0.3 for the non-wetting phase. 

The problem was resolved with a mesh of 984 nodes during the simulation time 
period [0, 0.02]. Fifty snapshots were taken from the pre-computed solution at regularly 
spaced time intervals Δt = 0.0002 and from these POD bases are generated for the 
solution variables v, p, S. 

The first 18 POD bases are presented in Figure 2. As shown in the figure, the first 
four POD bases capture most of flow features while the 5th–18th POD bases capture the 
details of small scale flow structures. Figure 3 shows the singular eigenvalues in order of 
decreasing magnitude. In general, the more POD bases and snapshots are chosen, the 
better the energy is represented. There is a trade-off between the accuracy and the CPU 
time. In this work, 18 POD bases with 50 snapshots are chosen resulting in 92% of 
‘energy’ being captured. 

Figure 4 shows the saturation solutions of the horizontally layered porous media 
problem at time instances t = 0.01 and t = 0.02, as calculated using the full and NIROMs. 
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It can be seen that both model solutions are in good agreement with each other. The 
NIROM performs well in capturing the saturation shock-front. 

Figure 2 Case 1: the figures show the first 18 POD bases functions of the horizontally layered 
porous media problem, (a) the 1st POD bases (b) the 2nd POD bases (c) the 3rd POD 
bases (d) the 4th POD bases (e) the 5th POD bases (f) the 8th POD bases (g) the 12th 
POD bases (h) the 18th POD bases (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

  
(g)     (h) 

Figure 3 Case 1: the figure shows the singular eigenvalues in order of decreasing magnitude 
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Figure 5 shows the saturation solution at a particular position (0.026937, 0.16246). It is 
noted the results from the NIROM using 6 and 12 POD bases become oscillatory after  
t = 10. By increasing the number of POD bases from 6 to 18, the NIROM becomes stable 
and exhibits an overall good agreement with the full modelling. 

The ability of the NIROM is further highlighted in Figure 6, which presents the 
saturation solution along a line parallel to the x-axis. We can see the NIROM has a large 
error near the shock-front when using six POD bases. This can be significantly improved 
as the number of POD bases increases. Using 18 POD bases, the error of saturation 
solutions is decreased by 50%−97% in comparison to that using only six POD bases, and 
the shock-front is captured well. 

Figure 4 Case 1: the figures show the saturation solutions of the horizontally layered porous 
media problem at time instances 0.01 and 0.02, (a) full model, t = 0.01 (b) full model,  
t = 0.02 (c) NIROM 6 POD bases, t = 0.01 (d) NIROM 6 POD bases, t = 0.02  
(e) NIROM 12 POD bases, t = 0.01 (f) NIROM 12 POD bases, t = 0.02  
(g) NIROM 18 POD bases, t = 0.01 (h) NIROM 18 POD bases, t = 0.02  
(see online version for colours) 

  
(a)      (b) 

  
(c)      (d) 

  
(e)      (f) 

  
(g)      (h) 

Notes: Where 6, 12 and 18 POD bases are chosen with 50 snapshots. 
The permeability ratio on the top half part is 4, and the bottom half part is 1. 

To further validate the quality of the NIROM, the corresponding error estimation of the 
POD ROM was carried out in this work. The accuracy of NIROM was assessed. The 
correlation coefficient of solutions between the full and NIROMs is computed for each 
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time step, and is defined for given expected values n
fullS  and Sn and standard deviations 

n
fullSσ  and ,nSσ  

( ) ( ) ( )( )cov ,
,

 − − = =
n n n n
full full

n n n nn n
full fulln fulln n

full
S S S S

E S S S SS S
corr S S

σ σ σ σ
 (18) 

where E denotes mathematical expectation, cov denotes covariance, σ denotes standard 
deviation. n

fullS  and nS  denote the mean of n
fullS  and Sn respectively. The measured 

error is given by the root mean square error (RMSE) which is calculated for each time 
step n by, 

( )2
,1=

−
= N n n

ifull iin
S S

RMSE
N

 (19) 

In this expression ,
n
full iS  and n

iS  denote the full and NIROM solutions at the node i, 
respectively, and N represents number of nodes on the full mesh. The RMSE and 
correlation coefficient of saturation solutions between the full and NIROMs are presented 
in Figure 7. With an increase in the number of POD bases, the RMSE in the saturation 
results decreases by about 50% while the correlation increases up to 98%. 

Figure 5 Case 1: the graph shows the solution saturations predicted by the full model and the 
NIROM at a position (0.026937, 0.16246) (see online version for colours) 

 

Note: Where 6, 12 and 18 POD bases are chosen with 50 snapshots. 
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Figure 6 Case 1: saturation along lines parallel to the x axis, (a) the cross section locations  
(b) saturation at the cross section along the top line (c) saturation at the cross section 
along the bottom line (see online version for colours) 

 
(a) 

  
(b)     (c) 

Figure 7 Case 1: the graph shows the RMSE and correlation coefficient of solutions between the 
full and NIROMs, (a) RMSE (b) correlation 

  
(a)     (b) 

4.3 Case 2: 3D fluvial channel case (complicated test case) 

The second case is a 3D fluvial channel case. There is a set of channels in the 
computational domain which is composed of 31,776 nodes, see Figure 8. The domain is 
initially filled with immovable water and movable oil and the saturations of oil and water 
are Soil = 0.8 and Swater = 0.2 respectively. The water is then injected into the 
computational domain from the right side at constant pressure. The flow passes through 
the channels from right side to the left side. All other sides are treated as barriers to flows 
except for the inlet side (right boundary in the computational domain) with a pressure of 
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55 × 106 and outlet side (left boundary) with a pressure of 2 × 106. The homogeneous 
porosity is set to be φ = 0.2 and the saturations of the residual oil and irreducible water 
are set to be 0.2. The viscosities of the residual oil and irreducible water are set to be 
0.004 and 0.001 respectively. The simulation was run during the simulation period  
[0, 1,000 days] with a time step size of 10 days. 100 snapshots of solutions were taken at 
regularly spaced time intervals Δt = 10 days for each solution variable. 

Figure 8 Case 2: the figures show the water channel profile, (a) water channel profile  
(top to bottom) (b) water channel profile (bottom to top) (see online version  
for colours) 

 
(a) 

 
(b) 

Figure 10 shows the first 36 leading POD bases functions of saturation. As shown in the 
figure, these leading POD bases capture the dominant characteristics of solutions. The 
POD bases corresponding to small eigenvalues, for example, the 30th and 36th POD 
bases contain small scale flow features. Figure 9 shows the singular eigenvalues in order 
of decreasing magnitude. As shown in the figure, the first six POD bases almost captured 
all of the total energy (96.83%). 
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Figure 9 Case 2: the figure shows the singular eigenvalues in order of decreasing magnitude 

 

Figure 10 Case 2: the figures show the first 36 POD bases functions of the 3D fluvial channel 
problem, (a) the 1st POD bases (b) the 2nd POD bases (c) the 12th POD bases  
(d) the 24th POD bases (e) the 30th POD bases (f) the 36th POD bases (see online 
version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 
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Figure 11 Case 2: the figures show the saturation of full model and NIROM of the 3D fluvial 
channel problem at time instances 500 days and 800 days seconds using 6 and 36 
POD bases, (a) full model, t = 500 days (b) full model, t = 800 days (c) NIROM  
(6 POD bases), t = 500 days (d) NIROM (6 POD bases), t = 800 days (e) NIROM 
(36 POD bases), t = 500 days (f) NIROM (36 POD bases), t = 800 days  
(see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(f)     (g) 

Figure 12 Case 2: the figures show above show the values of saturation at a particular point in 
the mesh-see figure (a), (a) location of the point (b) saturation values of the point  
(see online version for colours) 

 
(a) 
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Figure 12 Case 2: the figures show above show the values of saturation at a particular point in 
the mesh-see figure (a), (a) location of the point (b) saturation values of the point 
(continued) (see online version for colours) 

 
(b) 

Evaluation of accuracy of the POD model was carried out through comparison of POD 
solutions with those from the full model. Figure 11 shows the saturation solutions 
obtained from the high fidelity full model and NIROM with six and 36 POD bases at time 
instances 500 days and 800 days. It shows clearly that the results of NIROM are close to 
that of high fidelity full model. The solutions of saturation at a particular point  
[Figure 12 (a)] in the computational domain are presented in Figure 12. The figure again 
shows that the accuracy of solution can be improved by increasing the number of POD 
bases functions to 36 and the NIROM using 36 POD bases is in good agreement with the 
high fidelity full model. 

The error of saturation solutions between the high fidelity full model and the 
NIROMs with six and 36 POD bases are presented in Figure 13. 

4.4 Efficiency of the NIROM 

The CPU cost of NIROM includes online cost and offline cost. The offline cost includes 
the time of forming basis functions and hypersurfaces, which is pre-computed. Table 1 
shows the online CPU cost required for the high fidelity full model and NIROM. The 
simulations were performed on a machine with 12 cores. The CPU model is Intel(R) 
Xeon(R) X5680 and each core has a frequency of 3.3 GHz. The RAM has a memory of 
48 GB. The test cases were run in serial, which means only one core was used for the 
simulation. The offline CPU time required for constructing the POD bases and the 
interpolation function fα,v,j, fα,p,j and fα,S,j (see algorithm 1) is not listed here. The online 
CPU time for running the NIROM includes: 

• interpolation for calculating the POD coefficients , , , , , ,, andv p Sn n n
r j r j r jα α α   

[see equation (15)] 

• projecting the , , , , , ,, andv p Sn n n
r j r j r jα α α  onto the full space [see equation (7)]. 
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The online CPU cost required for the NIROM is considerably less than that for the full 
model and is reduced by a factor of 2,500. It is worth noting that as the number of nodes 
increases the CPU time required for the full model increases rapidly while the CPU time 
for the NIROM almost remains the same. 

Figure 13 Case 2: the figures show the error of saturation between the full model and NIROM 
of the 3D fluvial channel problem at time instances 500 days and 800 days using 6 
and 36 POD bases, (a) error of NIROM with 6 pod bases, t = 500 days (b) error of 
NIROM with 6 POD bases, t = 800 days (c) error of NIROM with 36 POD bases,  
t = 500 days (d) error of NIROM with 36 POD bases, t = 800 days (see online version 
for colours) 

  
(a)     (b) 

  
(c)     (d) 

Table 1 Comparison of the online CPU time (dimensionless) required for running the full 
model and NIROM during one time step 

Cases Model Assembling and solving Projection Interpolation Total 
Case 1 Full model 0.81605 0 0 0.81605 

NIROM 0 0.0003 0.0001 0.00040 
Case 2 Full model 98.3998 0 0 98.3998 

NIROM 0 0.0003 0.0001 0.00040 

5 Conclusions 

A NIROM based on hypersurfaces representation has recently been developed for  
IC-FERST which has the capabilities of using 
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1 anisotropic unstructured meshes to resolve fine scale flow feature 

2 a novel control volume finite element method to resolve the high-order flux flows on 
CV boundaries. 

In this work the NIROM has been further applied to a fluvial channel problem. 
A RBF interpolation method is used to form a multi-dimensional interpolation 

function (hyper surface) that represents the solution of the 3D reservoir model within the 
reduced space. The non-intrusive approach used here to construct the NIROM is generic 
and does not require any information of the original source code or the model equations. 
It can be applied to any software or commercial codes. In addition, it avoids the 
instability of existing Galerkin POD ROMs (Walton et al., 2013), the results might be 
smoothed by RBF (Myers, 1999). 

The capabilities of the newly developed NIROM are illustrated in two test cases: a 
simple horizontally layered porous media case and a complicated 3D fluvial channel 
case. A comparison between the full and NIROM results are made. An error analysis was 
also carried out for the validation and accuracy assessment of the NIROM. It is shown 
that the NIROM exhibits an overall good agreement with the high fidelity full model. An 
increase in the number of POD bases leads to an improvement in the accuracy of the 
NIROM. The saturation shock-front can be captured with relatively few POD basis 
functions, 18 POD basis function [Figure 4(h)] in the examples. 

In comparison to the full model, without compromising the accuracy of results the 
CPU time required for the NIROM can be reduced by a factor of 2,500. It is worth 
pointing out that for 3D large scale reservoir simulation, an increase in the number of 
nodes used in the computational domain will result in a large increase of the CPU time in 
the full simulation, but has very little effect on that of the NIROM. Future work will 
investigate the effects of applying this new approach to more complex 3D reservoir 
simulation cases and extend this method for varying parameters reservoir simulation 
problems. It is also interesting to apply this method to complicated fracture problems, for 
example, the work demonstrated in Yang (2016, 2018). 
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