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1 Introduction 

Routing problems have attracted the attention of many researchers due to their wide 
range of application areas. Those problems are studied under two main categories: node 
routing and arc routing. Node routing problems define the routes to serve all nodes or a 
subset of all nodes of a graph at minimum cost. The traveling salesman and vehicle 
routing problems are the most known node routing problems that have been the focus of 
many studies for several decades. 

Arc routing problems (ARPs) have their origin in the Königsberg Bridge Problem that 
was solved by Euler (1736). The ARPs basically define the routes to cover all arcs or a 
subset of all arcs of a graph at minimum cost. 

The basic ARP is known as the Chinese postman problem (CPP). The CPP finds a 
minimum cost closed walk traversing each arc of a graph at least once. From this basic 
problem, the research has focused through more difficult and general problems, and the 
current research is growing enormously. The main motivation behind this increasing 
research interest is the large number of practical situations like snow removal, street 
sweeping, garbage collection, delivery of goods, mail distribution, network maintenance. 

An ARP is referred to as rural postman problem (RPP) when a defined subset of all 
arcs is to be traversed. The CPP and RPP have many variants based on their objectives 
and assumptions. The windy postman problem has different cost of visiting an arc in two 
directions. The hierarchical postman problem considers precedence relations between the 
arcs. The maximum benefit postman problem gains benefit at each visit of an arc. The 
postman problem with time window constraints has time limit on the service of an arc. 
Similar to the maximum benefit postman problem, the profitable postman problem and 
the prize-collecting postman problem are introduced with the objective of maximising the 
benefit gained from the service. Another prominent type of the ARP is the Capacitated 
ARP in which there are capacitated vehicles to serve a specified arc set. The variants of 
these ARPs have been arising in response to the practical needs. 

The first proposed version of the CPP considers a single postman and aims to 
minimise the total cost. The objective of minimising total cost is of consequence for the 
applications like mail delivery, garbage collection, street cleaning, and snow removal. 

More practical versions of the CPP have been introduced recently with the 
perspective that the single CPP is not realistic for some practical applications. There are 
usually more than one postman for a mail delivery, and similarly more vehicles are 
necessary for garbage collection. To incorporate multiple postmen to the CPP, the k-CPP 
is first introduced with the aim of minimising the total cost. However, the total cost 
objective may not be adequate to represent the real life situations when the time 
limitations are considered. For example, the total cost objective may produce different 
costs (workloads) for each snow removal vehicle. One of the snow removal vehicles may 
visit many streets; whereas, the other vehicles may have much less work. Such an 
allocation results in completing the most loaded work late. A late completion may not be 
tolerated due to some practical restrictions like maximum working hours and weather 
conditions. Hence, a solution that balances the costs of the vehicles may be essential. In 
the literature, the following objectives are defined to address the cost balancing concerns. 

• the min-max k-Chinese postman problem (MM k-CPP) 

• the minimum absolute deviance k-Chinese postman problem (MAD k-CPP) 
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• the minimum square deviance k-Chinese postman problem (MSD k-CPP) 

• the minimum overtime k-Chinese postman problem (MOT k-CPP). 

The MM k-CPP minimises the highest cost (workload or time) and does not consider any 
cost balancing among the postmen. The other three objectives aim to maintain a 
balancing among the costs of the postmen. The MAD k-CPP minimises the sum of all 
cost deviations from an allowed service cost; hence, resulting in similar postmen costs. 
The MSD k-CPP minimises the sum of squared deviations from the target cost. The goal 
of the squared objective function is to penalise higher deviations, and the resulting cost is 
more balanced compared to that of the MAD k-CPP. The MAD k-CPP and MSD k-CPP 
may increase the total cost, as not only the over deviations but also the under deviations 
from the target cost are penalised. The MOT k-CPP aims at minimising the sum of over 
deviations from the target cost. For this problem, the target cost should be accurately 
defined, as high target costs result in solutions with unnecessarily high cost assignments 
to some postmen. 

In this study, we define a new cost (workload or time) balancing objective. Our aim is 
to minimise the cost deviations among the postmen while keeping the total cost over all 
postmen at a reasonable level. The resulting objective is to minimise the sum of squared 
costs over all postmen. The sum of the squared costs penalises higher cost deviations at 
higher extent; hence, gives more evenly distributed cost solution. 

The nonlinearity of the objective function increases the complexity of the problem; 
hence, brings an additional challenge. Recognising this challenge, we present an efficient 
mathematical model along with efficient approaches for its solution. 

The rest of the paper is organised into the following sections. The review of the 
related literature is given in Section 2. Section 3 defines the problem and settles its 
complexity. Section 4 explains the heuristic subtour elimination constraints that are used 
in our solution algorithms. The solution algorithms are explained in Section 5. The results 
of our computational runs are reported in Section 6. Section 7 concludes with our main 
findings and suggestions for future work. 

2 Literature review 

A recent overview of the ARPs is given in Dror (2000) where theoretical aspects related 
to the solution approaches and some real applications are discussed. The survey articles 
by Eiselt et al. (1995a, 1995b) consider the resolution of the CPP, RPP and capacitated 
arc routing problem (CARP) on different graph types. 

The CPP is first posed by a Chinese mathematician, Guan (1962). The first studies 
related to the CPP examine the different graph types with the objective of minimising 
total cost. Euler (1736) and Ford and Fulkerson (1962) present the basics of the 
undirected and directed CPP, respectively. Edmonds and Johnson (1973) study the 
directed, undirected and mixed CPPs using the matching theory. 

Minieka (1979), Pearn and Liu (1995), and Pearn and Chou (1999) present solution 
techniques for the CPP on mixed graphs. Corberán et al. (2002) propose a GRASP 
metaheuristic, Lin and Zhao (1988) examine the directed CPP based on the transportation 
model. Kappauf and Koehler (1979) and Ralphs (1993) give integer linear programming 
(ILP) formulations and analyse the polyhedron of its linear programming relaxation. 
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Malandraki and Daskin (1993) introduce maximum benefit CPP where a benefit is 
gained by traversing an arc and present an ILP model for its solution. Cabral et al. (2004) 
study the hierarchical CPP as an RPP, and find an optimal solution by a branch-and-cut 
procedure. 

The k-CPP models basically focus on the min-max (MM) k-CPP. The MM k-CPP is 
shown to be strongly NP-hard through a reduction from the k-partition problem by 
Frederickson et al. (1978). Frederickson et al. (1978) propose two lower bounds and 
develop a heuristic procedure together with its worst-case complexity. Ahr and Reinelt 
(2002) develop several two-step heuristic procedures where construction steps use 
Augment-Merge and Clustering ideas. The results of their computational study reveal the 
superiority of their heuristics over those of Frederickson et al. (1978). Ahr (2004) 
develops improved versions of Frederickson et al. (1978) lower bounds and develops 
several heuristic procedures. Ahr (2004) also gives an ILP formulation including subtour 
elimination constraints. He uses valid cuts in his branch and cut algorithm and compares 
the effect of branching strategies on the performance of the branch and cut algorithm. 
Ahr and Reinelt (2006) and Willemse and Joubert (2012) propose tabu search algorithms 
to find high quality approximate solutions in reasonable solution times. Ahr and Reinelt 
(2006) propose three different neighbourhood structures with linear, quadratic, and cubic 
running time complexities. Willemse and Joubert (2012) show that the problem of 
designing patrol routes for security estates can be modeled as MM k-CPPs. They propose 
a tabu search algorithm that is shown to be superior to the existing solution procedures. 

Different objectives for the k-CPP are presented in the study by Osterhues and Mariak 
(2005). They provide the k-CPP variants using three objective functions: minimising the 
sum of all deviations from an allowed service time, minimising the sum of squared 
deviations and minimising the sum of overtime. Similar to the MM k-CPP, these variants 
aim to balance postmen costs. They propose a branch and bound procedure, and find 
optimal and near-optimal solutions for instances with less than 25 arcs. 

Shafahi and Haghani (2015) present a mathematical model for the maximum benefit 
k-CPP and discuss some general cases. Benavent et al. (2009) study the MM windy RPP. 
They develop a branch and cut algorithm based on the polyhedral description of the 
problem. Benavent et al. (2010) develop a metaheuristic approach to solve the model 
stated in Benavent et al. (2009). Benavent et al. (2011) present new valid inequalities for 
the polyhedron of the MM k-WRPP and use them to improve the branch and cut 
algorithm of Benavent et al. (2009). Benavent et al. (2014) develop a branch-price-and-
cut algorithm to solve the MM k vehicles windy RPP. 

In this study we consider the total squared cost k-CPP and propose algorithms for its 
solution. To the best of our knowledge our study is the first attempt that considers the 
total squared cost problem and the first optimisation effort to solve MM k-CPPs. 

3 Problem definition and the complexity 

Consider a directed graph G = (N, A) where A is the set of arcs and N is the set of nodes. 
Arc (i, j) connects nodes i and j and is characterised by parameter cij which might 
represent the cost of connecting arc (i, j), the distance between node i and node j, or the 
time of traversing arc (i, j). There are K postmen each of whom has to cover at least one  
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arc and each arc should be covered by at least one postman. We assume that G is strongly 
connected, i.e., there is a path between every pair of nodes i and j. 

Each postman starts his/her route from the depot and completes the route at the depot. 
We refer to node 1 as the depot. 

A circuit is a sequence of arcs that starts and ends at the same node. A circuit that 
does reside node 1 is called a subtour. For example, circuit 23 34 42 is a subtour; 
however, 12 21 is not a subtour. 

The main decision of our problem is defined as follows: 

number of times arc( , ) is traversed by postman

( , ) , 1, ,
ijkx i j k

i j A k K

=

∀ ∈ = …
 

The constraints are as defined below: 

1 Each arc is visited at least once. 

1

1 ( , )
K

ijk
k

x i j A
=

≥ ∀ ∈∑  (1) 

2 The flow is conserved at each node, i.e. the number of arcs entering to each node is 
equal to the number of leaving arcs. 

, 1, ,ijk jik
i N i N

x x j N k K
∈ ∈

∀ ∈ =∑ ∑ …  (2) 

3 Each postman covers at least one arc. 

1 1 1, ,jk
j N

x k K
∈

≥ =∑ …  (3) 

 The constraint is redundant if there are no less than K departing arcs from the depot 
or no less than K arriving arcs to the depot. 

4 The route of a postman departs from and arrives to a depot and there does not exist 
any circuit that does not reside the depot. 

( , ) ( , )

| | 1 , 1, ,ijk ijk
i j S i j SN

x S M x S k K
∈ ∈

− + ≤ ∀ =∑ ∑ …  (4) 

 where 

S the set of all subtours (subset of arcs that do not reside the depot) 

SN the set of all arcs that are incident to Set S 

M an upper bound on the total flow value of any subset. 

 The constraints in Set (4) are refered to as subtour elimination constraints. 

5 The non-negativity and integrality of each flow variable, xijk, are stated below. 

0 ( , ) , 1, ,ijkx and integer i j A k K≥ ∀ ∈ = …  (5) 

Our objective function is to minimise the sum of the squared costs and is expressed as 
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2 2

1 ( , ) 1

Minimise Minimise
K K

ij ijk k
k i j A k

c x w
= ∈ =

⎛ ⎞ ≡
⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (6) 

Our problem is minimising (6) subject to the constraint sets (1) through (5). We hereafter 
refer to the problem as (P), and constraint sets (1), (2), (3), (5) as x ∈ X. We restate (P) in 
a compact form as follows: 

2
1

( ) Minimise

subject to
Constraint Set(4).

K
kk

P w

x X
=

∈
∑

 

Note that (P) is a pure integer nonlinear programming model. Its complexity stems from 
the integrality requirements on the decision variables and subtour elimination constraints 
that are defined for each subtour and postman. There are exponential number of subtour 
elimination constraints as there are exponential number of subtour choices. 

4 Heuristic subtour elimination constraints 

The main difficulty of the model stems from the subtour elimination constraint set that 
requires enumeration of all possible subtours and a reasonable value for big M. We 
incorporate the subtour elimination constraints in a restricted way, by eliminating the 
ones having total flows above a specified value. Recall that a subtour of postman k is a 
circuit covered by postman k that does not reside the depot node, i.e., node 1. 

We illustrate the subtours for the graph given in Figure 1. 

Figure 1 An example directed graph G 

 

Let K = 2 and Figure 2 illustrates the postmen assignments. 

Figure 2 A solution to the example problem 
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The solution in Figure 2 satisfies all constraints of the k-CPP except that, postman 2 has 
no connection to the depot; hence, resides a subtour. 

Postman 1 has a single circuit 12 24 41. The circuit is not a subtour, as it resides 
node 1. 

Postman 2 has two circuits: 12 23 31, 45 54 46 65 54. Circuit 12 23 31 
is not a subtour as it resides node 1. Circuit 45 54 46 65 54 does not reside node 1; 
hence, it is a subtour with a flow value of 

542 452 462 652( ) 2 1 1 1 5.FV S x x x x= + + + = + + + =  

To prevent the creation of any specific subtour, we introduce the following subtour 
elimination constraint set. 

( , ) ( , )

( ) 1 , 1, ,ijk ijk
i j S i j SN

x FV S x S k K
∈ ∈

− ≤ − ∀ =∑ ∑ …  (6) 

where 

S a specified subtour of arcs that does not reside an arc incident to node 1 

SN the set of all arcs that are incident to Set S 

FV(S) the total flow value of Set S. 

Note that Constraint Set (6) neither requires an extra binary variable nor uses a big M 
value and it avoids a specified subtour S with a flow value of FV(S) or higher. The 
constraint set states that if ( , ) ( )i j S ijkx FV S∈ ≥∑  then ( , ) 1,i j SN ijkx∈ ≥∑  i.e., if the total 

flow value of Set S is FV(S) or higher then there is an outflow from Set S. However, the 
resulting solution may not be optimal as in any optimal solution the total flow value of 
Set S may be higher than FV(S). 

We illustrate Constraint Set (6) using the solution depicted in Figure 2. The solution 
resides subtour 45 54 46 65 54 for Postman 2. The total flow value of the 
associated set is 

542 452 462 652( ) 2 1 1 1 5.FV S x x x x= + + + = + + + =  

The set arcs that are incident to Set S is SN = {41, 24}. Constraint Set (6) avoids the 
creation of the subtour 45 54 46 65 54 as follows: 

( , ) ( , )

5 1 {45,54, 46,65} {41, 24} 1, 2ijk ijk
i j S i j SN

x x S SN k
∈ ∈

− ≤ − = − =∑ ∑  

Moreover, it prevents the creation of all solutions where FV(S) > 5; hence, the optimal 
solution might be missed. That’s why we refer to Constraint Set (6) as heuristic subtour 
elimination constraint set. 

Specifically, we use the below constraints to avoid subtour 45 54 46 65 54. 

541 451 461 651 411 2415 1x x x x x x+ + + − ≤ + −  

542 452 462 652 412 2425 1x x x x x x+ + + − ≤ + −  

We call a subtour as aggregated if it resides a number of subtours in an added form. 
Assume R is the set of subtours that appear in any solution. In place of adding each 
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heuristic subtour constraint separately, one may prefer the following heuristic aggregated 
constraint en route to obtaining a quicker solution however with no guarantee on the 
individual subtour eliminations. 

( , ) ( , )

( ) 1 1, ,ijk ijk
S R i j S S R i j SN

x FV S x k K
∈ ∈ ∈ ∈

− ≤ − =∑ ∑ ∑ ∑ …  (7) 

An optimal solution to the 2
1

K
kk

Min w
=∑  subject to x ∈ X problem is a lower bound on 

(P). If the resulting solution resides no subtour, it is optimal for (P). 
Let Z1 be the optimal objective function value of the following problem. 

2

1

Minimise
K

k
k

w
=
∑  

subject to x ∈ X 

Constraint Set (7) 

If the resulting solution includes no subtours then Z1 is an upper bound on the optimal 
objective function value. 

Let Z2 be the optimal objective function value of the following problem. 

2

1

Minimise
K

k
k

w
=
∑  

Subject to x∈X 

( , ) ( , )

( ) 1 , 1, ,ijk ijk
i j S i j SN

x FV S x S R k K
∈ ∈

− ≤ − ∀ ⊆ =∑ ∑ …  

If the resulting solution includes no subtours then Z2 is an upper bound on the optimal 
objective function value. 

Z1 is likely to produce better estimate than Z2 however at the expense of higher 
computational effort. 

To detect the subtours that appear in the optimal solutions of the relaxed models, we 
use Hierholzer’s algorithm (1873). For the sake of completeness, we state the steps of the 
algorithm. 

Step 0. Initialise i ← 1, s ← 0, S ← ∅, C0 ← ∅ 

Starting with node 1, construct a circuit C1 such that the end of an arc is the 
beginning of the following arc. If C1 contains all arcs on G then stop else mark 
the arcs in C1. 

1i i← +  

Step 1. Choose a node included in the unmarked arcs and construct a new circuit.�

Step 2. If there is a common node between the constructed circuit and Ci–1, insert the 
constructed circuit into Ci–1 by appending to that node. The resulting circuit is 
Ci. 
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If S ≠ ∅ and there is a common node between S and Ci, insert as many as 
subtours as possible to the Ci by appending it to that node. The resulting circuit 
is Ci. 

Remove the inserted subtours from the set S. 

If there is no common node between S and Ci, it means the previous subtours 
remain the same. 

Step 3. If there is no common node between the constructed circuit and Ci–1, then there 
is a subtour. 

If S = ∅, add it to the set S. 

If S ≠ ∅, look for a common node in the previous subtours and new subtour. 

If there exists such a node then insert it into the previous subtours and update set 
S, else add the new tour to set S. 

Step 4. If Ci ∪ S contains all arcs on G, stop, the subtours are found. 

Else, mark the arcs used in Ci ∪ S. 

1i i← +  

Go to Step 1. 

5 The exact solution algorithm 

The exact solution algorithm solves the integer model by relaxing all subtour elimination 
constraints. If the resulting solution resides no subtours, then it is optimal. If there exists 
at least one subtour for any postman, then the optimal objective function value of the 
relaxed model is a lower bound on the optimal cost. In such a case, the algorithm adds 
subtour elimination constraint set (4) to all generated subtours and resolves the integer 
model. We determine the M value of each instance as follows: 

Total number of nodes*Total number of arcsM =  

If the resulting solution has no subtours then we stop, else we add the new subtours while 
keeping all previously generated ones. We continue until a solution with no subtour is 
reached. Below is the stepwise description of the algorithm. 

Step 0. Solve (P0) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

0t =  

Step 1. Let St be the set of subtours generated by the optimal solution of (Pt) 

If St = ∅ then the resulting solution is optimal, stop 
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1t t= +  

Step 2. Solve (Pt) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

Constraint Set (4) for all subtours in 
1

0

t
jj

S
−

=∪  

Go to Step 1 

6 Heuristic solution algorithms 

We propose three heuristic solution algorithms each of which is based on the optimal 
solutions of the integer models that make subtour eliminations via constraint set (6) or 
aggregate constraint (7). As the subtour elimination constraint set (6) may eliminate more 
than the produced subtours, the resulting solutions may not be optimal. Below is the 
detailed description of our heuristic algorithms. 

6.1 Heuristic Algorithm I 

The algorithm first solves the integer model by relaxing all subtour elimination 
constraints like the exact algorithm. However, it adds the heuristic subtour elimination 
constraint set (6) in place of the exact subtour elimination constraint set (4). The model is 
resolved with the new heuristic subtour elimination constraints while keeping all 
previously generated ones. This procedure is repeated until no subtours are found. The 
stepwise description of the algorithm is as follows: 

Step 0. Solve (P0) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

0t =  

Step 1. Let St be the set of subtours generated by the optimal solution of (Pt) 

If St = ∅ then the resulting solution is optimal 

1t t= +  

Step 2. Solve (Pt) 

2

1

K

k
k

Minimise w
=
∑  
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subject to x∈X 

Constraint Set (6) for all subtours in 
1

0

t
jj

S
−

=∪  

Go to Step 1 

6.2 Heuristic Algorithm II 

The algorithm uses the idea of adding subtours to the integer model in a limited extent. It 
starts like Algorithm I by ignoring all subtour elimination constraints, and treats the 
subtours as follows: 

1 selecting one of the subtours generated by the model and adding the selected subtour 
using subtour elimination constraint set (6) 

2 aggregating all other subtours, and adding the aggregated constraint using subtour 
elimination constraint (7). 

Hence, it adds two types of subtour elimination constraints for each postman, one original 
and one aggregated constraint. 

Each subtour generated by the model is added as an original constraint while all 
others are treated as aggregated. In doing so, we obtain R solutions if R subtours are 
generated. We select the solution having the largest objective function value with the 
hope of reaching the solution quicker. If the selected solution resides no subtour, we stop. 
If there is at least one subtour then we continue to add one original subtour and one 
aggregated subtour and make the further selections according to the maximum lower 
bound rule. Below is the stepwise description of Algorithm II. 

Step 0. Solve (P0) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

0t =  

F = ∅  

Step 1. Let St be the set of subtours generated by the optimal solution of Pt. 

If St = ∅ then the resulting solution is optimal, stop. 

1t t= +  

For each r∈St define (Pt,r) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

 



   

 

   

   
 

   

   

 

   

   342 Y. Limon and M. Azizoğlu    
 

    
 
 

   

   
 

   

   

 

   

       
 

Subtour r by Constraint Set (6) 

Aggregated subtour by Constraint Set (7) 

Step 2 Let ztr be the optimal objective function value. 

Select subtour f such that 

{ }max

{ }
tf r trz z

F F f

=

= ∪
 

Let Stf be the set of subtours by the optimal solution of Pt,f 

If Stf = ∅ then the resulting solution is optimal, stop. 

For each r∈Stf define (Pt,r) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

Subtours r and set F by Constraint Set (6) 

Aggregated subtour Stf/{r} by Constraint Set (7) 

Go to Step 2. 

6.3 Heuristic Algorithm III 

The algorithm is similar to Heuristic Algorithm II except that the subtour is selected 
randomly. In such a case, one spends relatively low computation time, however at the 
expense of evaluating more problems with different sets of subtour elimination 
constraints. Below is the stepwise description of Heuristic Algorithm III. 

Step 0. Solve (P0) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

0t =  

F = ∅  

Step 1. Let St be the set of subtours generated by Pt. 

If St = ∅ then stop. 

Let f be a randomly selected subtour from St. 

1t t= +  
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{ }F F f= ∪  

Solve (Pt) 

2

1

K

k
k

Minimise w
=
∑  

subject to x∈X 

Subtour r ∈ F by Constraint Set (6) 

Aggregated subtour Stf/{r} by Constraint Set (7) 

Go to Step 1. 

7 Computational experiment 

We use eight precedence networks taken from Archetti et al. (2014). The network sizes 
are as tabulated below: 
Table 1 The network sizes 

Network # of nodes # of arcs K Number of combinations 

d0 16 36 2, 3, 4 3 

v6 31 56 2, 3, 4 3 

d11 36 75 2, 3, 4 3 

p20 50 109 2, 3, 4 3 

d18 64 137 2, 3, 4 3 

r16 50 168 2, 3 2 

g28 100 186 2, 3 2 

d32 100 216 2, 3 2 

    Total: 21 

Note that we have 21 combinations; for each combination we generate 10 instances. 
Hence, we use a total of 210 instances. 

The arc costs are generated from discrete uniform distribution between 1 and 100. 
We code the algorithms in C# and solve the models by ILOG CPLEX 12.6. We use 

computer Intel(R) Core(TM)i7-4770S CPU@3.10 GHz, 16 GB RAM and Windows 7. 
For each problem instance and algorithm, we set a termination limit of one hour. The 

integer programs used for heuristic algorithms are solved using a gap value of 0.01%. 
Table 2 reports the CPU times spent by each heuristic algorithm and the mathematical 

model. In the table the numbers in the parentheses give the number of instances (out of 
10) that could not be solved in one hour. 
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Table 2 The CPU times (in seconds) of the heuristic algorithms and mathematical model 

Heuristic 
Algorithm I 

Heuristic 
Algorithm II 

Heuristic 
Algorithm III Mathematical model # of 

nodes 
# of 
arcs K

Aver Max Aver Max Aver Max Aver Max 

16 36 2 0.51 1.11 0.51 1.11 0.51 1.11 0.68 1.50 

  3 0.65 0.83 0.65 0.83 0.65 0.83 12.60 36.69 

  4 2.56 4.74 2.56 4.74 2.56 4.74 1,906.10 3,600(3)* 

31 56 2 0.34 0.66 0.34 0.66 0.34 0.66 1.02 2.00 

  3 1.64 4.77 1.64 4.77 1.64 4.77 9.50 18.33 

  4 13.22 50.90 10.02 25.85 13.77 46.75 2,378.84 3,600(6) 

36 75 2 0.36 1.01 0.36 1.01 0.36 1.01 0.87 1.89 

  3 1.41 1.86 1.41 1.86 1.41 1.86 16.80 58.22 

  4 10.99 20.87 11.94 26.07 9.04 22.01 1,661.34 3,600(3) 

50 109 2 0.37 0.86 0.37 0.86 0.37 0.86 1.13 2.56 

  3 3.96 9.02 3.96 9.02 3.96 9.02 53.04 273.36 

  4 11.24 20.53 14.05 26.93 10.40 25.29 2,994.43 3,600(8) 

64 137 2 0.78 2.04 0.78 2.04 0.78 2.04 2.42 4.76 

  3 7.12 17.53 6.97 17.53 9.73 18.95 47.98 107.42 

  4 14.52 32.34 15.59 34.06 27.33 95.74 3,298.11 3,600(8) 

50 168 2 0.68 2.04 0.68 2.04 0.68 2.04 6.47 20.76 

  3 28.89 115.49 19.00 55.65 19.38 49.53 143.75 589.82 

100 186 2 1.03 2.79 1.03 2.79 1.03 2.79 2.77 4.90 

  3 5.96 11.54 5.96 11.54 5.96 11.54 21.02 61.59 

100 216 2 0.96 2.79 0.96 2.79 0.96 2.79 8.46 20.14 

  3 7.22 19.78 22.85 155.10 21.59 32.67 824.06 3,600(2) 

Note: *Numbers in the parentheses give the number of instances that could not be solved 
in 1 hour. 

Table 3 reports on the average and maximum deviation of the heuristic solutions from the 
optimal solutions. We include the instances that we could find an optimal solution in one 
hour by the mathematical model. For each included problem instance, we measure and 
report the percent deviation as follows: 

( )( )Heuristic Solution Optimal Solution / Optimal Solution *100−  
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Table 3 The percent deviation of the heuristic algorithms from the optimal solution 

Heuristic 
Algorithm I  Heuristic 

Algorithm II  Heuristic 
Algorithm III # of 

nodes 
# of 
arcs K # of 

instances* 
Aver. Max  Aver. Max  Aver. Max 

116 36 2 10 0.0031 0.0087  0.0031 0.0087  0.0031 0.0087 

  3 10 0.0058 0.0095  0.0058 0.0095  0.0058 0.0095 

  4 7 0.0045 0.0088  0.0045 0.0088  0.0045 0.0088 

31 56 2 10 0.0032 0.0094  0.0032 0.0094  0.0032 0.0094 

  3 10 0.0053 0.0090  0.0053 0.0090  0.0053 0.0090 

  4 4 0.0063 0.0082  0.0064 0.0085  0.0061 0.0093 

36 75 2 10 0.0030 0.0097  0.0030 0.0097  0.0030 0.0097 

  3 10 0.0042 0.0100  0.0042 0.0100  0.0042 0.0100 

  4 7 0.0060 0.0096  0.0060 0.0096  0.0034 0.0048 

50 109 2 10 0.0029 0.0094  0.0029 0.0094  0.0029 0.0094 

  3 10 0.0044 0.0098  0.0044 0.0098  0.0044 0.0098 

  4 2 0.0073 0.0089  0.0073 0.0089  0.0053 0.0057 

64 137 2 10 0.0024 0.0087  0.0024 0.0087  0.0024 0.0087 

  3 10 0.0054 0.0098  0.0045 0.0094  0.0044 0.0094 

  4 2 0.0044 0.0050  0.0047 0.0079  0.0074 0.0077 

50 168 2 10 0.0027 0.0070  0.0027 0.0070  0.0027 0.0070 

  3 10 0.0041 0.0076  0.0048 0.0099  0.0052 0.0088 

100 186 2 10 0.0040 0.0094  0.0040 0.0094  0.0040 0.0094 

  3 10 0.0053 0.0093  0.0053 0.0093  0.0053 0.0093 

100 216 2 10 0.0032 0.0091  0.0032 0.0091  0.0032 0.0091 

  3 8 0.0034 0.0082  0.0035 0.0082  0.0026 0.0062 

Note: *Number of instances with known optimal solutions and used for heuristic 
deviations. 

Table 3 shows the excellent performance of the heuristic algorithms over all problem set. 
Note that all deviations from the optimal solutions are less than 0.01%. 

Table 4 gives the average number of iterations and the number of subtours used for 
each algorithm. If the number of subtours in each iteration is 0, 1 or 2, three heuristic 
solution algorithms become same and generate same results. Their differences are 
resulted from the selection of the subtours which will be added to the mathematical 
model. 
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Table 4 The average number of subtours and iterations by the heuristic algorithms 

Heuristic 
Algorithm I 

Heuristic 
Algorithm II 

Heuristic 
Algorithm III Exact algorithm # of 

nodes 
# of 
arcs K 

Subtour Iteration Subtour Iteration Subtour Iteration Subtour Iteration 

16 36 2 0.00 1.00  0.00 1.00  0.00 1.00  0.00 1.00 

  3 0.30 1.10  0.30 1.10  0.30 1.10  0.90 1.30 

  4 4.20 2.10  4.20 2.10  4.20 2.10  2.29 1.57 

31 56 2 0.00 1.00  0.00 1.00  0.00 1.00  0.00 1.00 

  3 2.10 1.80  2.10 1.80  2.10 1.80  3.90 2.00 

  4 26.40 6.20  16.00 4.80  22.80 6.30  12.80 4.00 

36 75 2 0.40 1.20  0.40 1.20  0.40 1.20  0.00 1.00 

  3 1.20 1.40  1.20 1.40  1.20 1.40  3.00 1.90 

  4 17.20 4.40  12.40 3.90  11.20 3.40  6.29 1.86 

50 109 2 0.20 1.10  0.20 1.20  0.20 1.20  0.00 1.00 

  3 3.90 2.20  3.90 4.90  3.90 4.90  2.70 1.70 

  4 14.00 3.20  9.20 3.20  7.60 2.80  0.00 1.00 

64 137 2 0.80 1.40  0.80 1.40  0.80 1.40  0.20 1.10 

  3 12.00 4.00  8.70 3.70  10.80 4.30  6.40 3.10 

  4 26.00 5.10  14.40 4.40  21.60 5.80  10.00 2.00 

50 168 2 1.20 1.30  1.20 1.30  1.20 1.30  3.00 2.50 

  3 70.50 16.40  23.40 8.60  28.20 9.90  27.30 6.40 

100 186 2 0.00 1.00  0.00 1.00  0.00 1.00  0.00 1.00 

  3 1.20 1.30  1.20 1.30  1.20 1.30  0.30 1.10 

100 216 2 1.60 1.50  1.60 1.50  1.60 1.50  2.80 1.90 

  3 17.10 3.70  12.60 3.80  22.50 6.50  25.16 5.13 

We observe from the tables that the number of postmen, K, plays a dominant role on the 
performance of the algorithms. As K increases the effort spent to solve the integer 
nonlinear models increase considerably. Both exact and heuristic algorithms could solve 
few instances of large networks in one hour when K = 3 and 4. Note that the effect of K 
becomes more significant as the number of arcs increases. 

The number of arcs also significantly affects the performance of the algorithms, as 
our decision variables are defined on the arcs. Moreover, the network structure is 
effective in defining the complexity. When the number of arcs coming to and leaving 
from the nodes increases, more subtours are generated. The number of subtours generated 
per iteration affects the performance of the algorithm, significantly. Table 2 and Table 4 
show that adding more subtours in any iteration makes all the k-CPP models harder to 
solve. Note that when there are 216 arcs and 3 postmen, all algorithms run in reasonable 
times. The CPU times are 7.22, 22.85 and 21.59 seconds for Heuristic Algorithms I, II 
and III, respectively. 
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Based on the discussion on the number of subtours, there is also a connection 
between the effect of increasing K on the CPU times and number of subtours generated in 
each iteration. Table 3 shows that the average number of subtours generally increases as 
K increases. For example, all instances have a smaller number of subtours when there are 
2 postmen, and the associated CPU times are relatively short compared to the cases with 
more postmen. Note that for the same example when there are 168 arcs, the average 
number of subtours is 70.5 for Algorithm I, 23.4 for Algorithm II, and 28.2 for Algorithm 
III for K = 3. As K increases, more subtours are generated per iteration and the problem 
becomes more difficult with these subtours. We observe that the exact algorithm could 
not return any solution in one hour when there are 5 postmen. When there are 4 postmen 
the exact algorithm could not return an optimal solution for the instances with 168 or 
more nodes. 

The tables also reveal the superiority of Algorithm I in terms of the solution times. 
Note from Table 2 that the smallest CPU times are due to Algorithm I. This is because 
considering all subtours simultaneously reduces the number of iterations hence the CPU 
times. 

Algorithm II uses two subtours at a time: one original subtour and one aggregated 
subtour. It makes more precise evaluation of the subtours when compared to Algorithm 
III, thereby leading to less iterations. The high CPU times of Algorithm II are due to fact 
that in each iteration subtour selection is done via an integer program, whereas Algorithm 
III selects the subtours randomly. Algorithm II makes less iterations however at the 
expense of higher CPU times. Note from Table 4 that when there are 216 arcs and 3 
postmen, Algorithm II adds 12.6 subtours in 3.8 iterations; and Algorithm III adds 22.5 
subtours in 6.5 iterations, on average. 

8 Conclusions 

In this study, we consider a directed k-CPP with the objective of minimising the total 
squared costs. Our aim is to balance the costs of the postmen while maintaining the total 
cost as small as possible. We are unaware of a previous study for the k-CPP which 
addresses our balancing concern. 

We develop a pure integer nonlinear programming model and discuss its complexity. 
We develop three heuristic solution algorithms that make efficient use of the proposed 
heuristic subtour elimination constraints. The results of our extensive computational 
study have revealed that the algorithms return solutions that are very close to the optimal 
ones and can solve instances with up to about 150 arcs with 4 postmen and 200 arcs with 
3 postmen in one hour. For larger-sized instances, one may use our subtour elimination 
constraints in local search algorithms, possibly combined with metaheuristic approaches. 
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