

 Int. J. Digital Enterprise Technology, Vol. 1, Nos. 1/2, 2018 121

 Copyright © 2018 Inderscience Enterprises Ltd.

Rating of software trustworthiness via scoring of
system testing results

Muhammad Dhiauddin Mohamed Suffian*,
Fairul Rizal Fahrurazi, Loo Fook Ann,
Nur Farahin Aman and Norzamzarini Bajuri
Business Solutions and Services,
MIMOS Technology Solutions Sdn. Bhd.,
Kuala Lumpur, Malaysia
Email: dhiauddin.suffian@mimos.my
Email: fairul.fahrurazi@mimos.my
Email: fa.loo@mimos.my
Email: farahin.aman@mimos.my
Email: norzam@mimos.my
*Corresponding author

Abstract: It is important to have a form of software trustworthiness rating
serving as early health indicator on the capability of the software before it is
released to end-users and customers. Although various software certification
schemes are available in the market, there is limited information on how far
results from system testing are exploited and used to rate the trustworthiness of
the software under test. Thus, the proposed software trustworthiness rating
strategy uses the scoring upon the completion of system testing execution. The
strategy covers rating of software that has undergone system testing completely
or partially. It is based on multiple levels calculation toward coming out with
final rating: test strategies imposed, completeness of system test execution,
test iterations, test case priority and test case result for each iteration. As a
result, the multilevel scores calculation successfully derives meaningful
trustworthiness rating for the software under test, whether it is a complete
rating or partial rating.

Keywords: software trustworthiness; rating; system test; software health
indicator; software testing.

Reference to this paper should be made as follows: Suffian, M.D.M.,
Fahrurazi, F.R., Ann, L.F., Aman, N.F. and Bajuri, N. (2018) ‘Rating of
software trustworthiness via scoring of system testing results’, Int. J. Digital
Enterprise Technology, Vol. 1, Nos. 1/2, pp.121–134.

Biographical notes: Muhammad Dhiauddin Mohamed Suffian currently serves
as the Lead Business Analyst under Development team in the department. He
has various exposures holding multiple roles in software development, software
testing, e-learning and academia. He has also published and presented articles
and papers in various local and international conferences/journals.

Fairul Rizal Fahrurazi currently serves as the Head of Development team
overseeing business analysis, software development and software architecture.
Previously, he was responsible for test research and test continuous
improvement in the department. He has presented paper and served as keynote
speaker in various international conferences.

 122 M.D.M. Suffian et al.

Loo Fook Ann is currently responsible for the development and implementation
of automated test in the cloud platform. He has served as the Test Lead for
network-related product and actively looking for continuous improvement of
test automation initiatives.

Nur Farahin Aman had served as Business Analyst and Technical Lead for the
department. She was responsible for managing the development of corporate
website and supporting the business analysis activities for the department. Her
previous key role was overseeing and managing the operation of ALM platform
for the department.

Norzamzarini Bajuri has served various roles within the department focusing
on system testing. He was the Test Engineer for various internal projects and
currently assumes the Test Lead role for few external testing projects, as part of
the Independent Verification & Validation (IVV) team adhering to ISO17025
standard.

This paper is a revised and expanded version of a paper entitled ‘Software
capability rating using system testing score’ presented at 2016 International
Conference on Open Systems (ICOS 2016), Langkawi, Malaysia, 10–12
October 2016.

1 Introduction

Software should work correctly and smoothly in its specified operating environment.
Therefore, it is important to ensure that the requirements for the software operation are
matched and compatible with specifications of the hardware that will host the software.
Apart from the ensuring the proper functioning of software in the environment, other
future events to take place should also be considered such as installation of new software
modules, updating and/or customising software modules.

Software testing activities are carried out to achieve the expectations mentioned
earlier, particularly system testing. Although unit testing and integration testing are
conducted before execution of system testing, the former could not qualify the software
being developed is fit for use. System testing assumes this responsibility by assessing the
quality of the software under test both from technical and non-technical perspectives:
developers and users.

System testing helps to reduce the risk of failure when software operates in its
intended environment through the execution of functional testing and non-functional
testing. Functional testing evaluates the features offered by the software while non-
functional testing exercises quality aspects of the software in delivering the features
comprising areas of but not limited to usability, performance, security and compatibility.
This is aligned with the software trusworthiness by capturing functional and quality
requirements (Nami and Suryn, 2012c).

Typically, pre-conditions for execution of system testing involve the readiness of
system test cases, test environment and completion of software built, which has passed
both unit and integration tests. The planned test cases are associated with requirements
stated in software requirement specification (SRS) categorised into functional test cases
and non-functional test cases. Non-functional test cases can be decomposed further into

 Rating of software trustworthiness via scoring of system testing results 123

further groupings, such as performance test cases, security test cases and usability test
cases. All these cases are executed during system testing phase.

System testing phase is considered complete when all functional and non-functional
test cases have been executed with PASS results, which could represent the
trusworthiness and the goodness of the software in delivering the features as expected by
the customer and users. Customers and users may perceive that the software that has
passed system testing is stable and free of defects.

However, this may not be the case for every situation. In some conditions, not all test
cases shall have PASS results and software may be released with few known caveats,
subject to fulfilment of minimum of test exit criteria. This also means the software does
not demonstrate a full trusted capable features since some features did not pass the test.
On the other hand, there is also situation where software under test managed to pass all
test cases but it still failed to completely work in the real operating environment. Thus, it
could be deduced that the results of system testing does not guarantee that software can
works correctly as expected when it is delivered and operated in actual environment
(Nami and Suryn, 2012b).

This scenario serves as motivation to explore how the results of test cases for both
functional and non-functional testing could be exploited to form an early health indicator
once execution of system testing is completed. Few understandings and concerns have
led to this work. Firstly, the way development team build the software may affect its
health and trusworthiness. Ignorance of the importance unit testing before releasing to
testing team can be one of the reasons. Secondly, the test cases designed for respective
feature may be able demonstrate how good and stable a particular feature works. Thus, it
gives an opportunity to explore how the result of each test case can be translated into
health indicator for software either when the testing is in progress or once the system
testing is completed.

There have been many attempts to evalue the quality level of software once it is
released. This was done via rating or certification form. Perception on user experience
was used to establish the rating for mobile application (Pradana and Ferdiana, 2014). The
areas measured are novelty, efficiency, perspicuity, stimulation and dependability.
Simplified model was introduced to rate the software health but specifically for real-time
systems, which is done during the run-time condition (Dubey et al., 2011). As opposed to
assessment via rating, software quality level is also assessed using certification
mechanism. Generally, a particular software is certified during a quality gate called
release readiness, which enables the software to be certified as holding a send, hold or
partial release status (Port and Wilf, 2013). Criteria used for certifying the software are
completeness of requirement implementation and documentations, availability of
workaround, safety and how far the opne issues have been addressed. In automative
industry, certification is given when the software achieves personnel qualification, tools
qualification, process qualification, product certification, certificate of analysis as well as
functional safety certification (Areias et al., 2014).

Since there is limited information on the work for evaluating software trusworthiness
based on test results, the work presented in this paper establishes a mechanism of
exploiting and manipulating the result of test cases executed during system testing. This
shall demonstrate how good the software is from technical’s point of view as well as
user’s point of view, quantitatively. Scores are given to each test case per test iteration for
each test type or test strategy imposed. Cumulative scores from all test strategies are

 124 M.D.M. Suffian et al.

regulated towards getting final rating of software trusworthiness, thus establish a kind of
early indicator of the software health upon completion of system testing before releasing
to the customers and end-users.

2 Prior works

Software quality is related to software health and trustworthiness. The ability of the
software to handle faults, platform and privacy well can determine the trust (Xia and Pan,
2010). Similarly, usage functionalities, usage context and documentation can develop the
trust of users in using the software (Nami and Suryn, 2013). Open source community
observes the open source software as trusted software when it meets requirements,
compliance, reliability and interoperability criteria (Bianco et al., 2011). Software is also
trusted if user can use and operate it in effective, efficient and satisfactory manner (Zhao
et al., 2010). Comparatively, the work presented in this paper emphasises on software
trustworthiness rating based on the test strategies conducted to software under test, which
covers the most popular ones: functional test, performance test, security test, usability test
and compatibility test.

Nami and Suryn (2012a) proposed the use of finite state machine and requirements to
assess the software trustworthiness. This comprises of scenario structure, statechart
structure, semantic and a behaviouristic model. Furthermore, Bao et al. (2010)
incorporated rules-based trustworthiness assessment across the life cycle processes and
component level, which depends on environment and requirements of the software. From
the context of open source trustworthiness, openness factor rating was applied (Bein and
Jeffery, 2010). In contrary, Immonen and Palviainen (2007) determine the open source
trustworthiness according component, architecture and system level comprises technical
and non-technical assessment

In relation to health, Aspire Systems (2011) recommended the use of scientific
indicators based on parameters from environment, requirement, design, coding and
testing. It was called technical health index (THI). On the other hand, metrics of
monotonicity, acceleration, sensitivity and substitutivity was adopted by Tao and Chen
(2009) to model the software health and trustworthiness. Tao and Chen (2010) improvise
the metrics-based model expanding them to critical and non-critical attributes. Having the
health indicator for software could be translated into the confidence level of the
customers and end-users in using the software in actual environment. This is relatively
similar to the confidence level for purchasing new car based on the car safety rating
adopted in many countries (ASEAN NCAP, 2016; EURO NCAP, 2016).

Despite the insufficiency of software testing to demonstrate software trustworthiness
(Nami and Suryn, 2012b), this paper is aimed establish a mechanism that exercise the
values behind the test cases executed during system testing, which cover both functional
and non-functional requirements under the actual or similar operating environment once
release to users.

3 Methodology

The proposed methodology of using system testing results for software trustworthiness
presented in this paper covers both complete rating and real-time rating. Complete rating

 Rating of software trustworthiness via scoring of system testing results 125

means software under test has completed the execution of system testing while real-time
rating deals with rating while execution of system testing is still in progress. This means
stakeholders of the test project can have the options of obtaining the trustworthiness
rating on demand or wait until system testing ends completely.

The proposed methodology relies on the following levels of sequence: agreed test
strategies, completeness status of system testing, test iterations, test cases priority and test
case result. This is summarised in Figure 1.

Figure 1 Software trustworthiness methodology using system testing results (see online version
for colours)

The details on how the methodology works towards producing the trustworthiness rating
are explained below:

1 Identify the agreed or baseline test strategies together with the weightage assigned
per test strategy before the start of system testing.

2 Identify the number of test cases involved per test strategy together with the priority
assigned for each test case before the start of system testing.

3 Obtain the planned number of test iterations.

4 Once execution of system testing starts, obtain the information of number of test
iterations involved per test strategy and completeness status of test execution.

5 Based on the completeness status and test iterations involved, calculate and regulate
the score for each test case per test strategy using the preferred calculation method.

6 Perform the calculation for either total score or partial score.

7 Regulate the score in (6) against the assigned test strategy weightage.

8 Calculate either the final complete score or partial score.

9 Assign trustworthiness rating to the software based on pre-defined rating table.

Generally, after software has been completely built, it is sent to independent testing team
for system testing. During system testing, core test strategies executed for the software
are functional test, performance test, security test and usability test. A weightage is
assigned to every test strategy based on the importance of particular test strategy.

For every test strategy, scores are calculated based on number of test cases and test
iterations either complete or incomplete. The total score for each strategy will be
regulated against the strategy weightage assigned earlier. Then, the sum of all scores is

 126 M.D.M. Suffian et al.

calculated to get the complete score or real-time score. The complete or real-time score is
mapped with pre-defined software rating table to get the final or real-time software
rating. The rating obtained serves as early health indicator of the software before
deployment. The representation of how this methodology works as part of the software
development process is shown in Figure 2:

Figure 2 Implementation of software trustworthiness rating as part of software development
process (see online version for colours)

For a complete rating, it has to wait for all agreed testing strategies to be completed while
for partial (real-time rating), it can be obtained at any point of time during execution
regardless of any complete/incomplete test strategies.

At first stage, the minimum and maximum test iterations must be set, in which the
minimum iterations are two (2) and four (4) for maximum iterations. Then, a fix base
point is chosen and weightage per iteration for a test case is established. Total weightage
must be equal to 100 across the iteration. This rule is applied to other test cases regardless
of test strategies (except usability test since it may have own way of giving score). The
calculation method is based on the following points system:

Points Weightage(W) Base point(B)= ×

Base point (B) remains the same for each iteration. The weightage (W) value shall
differentiate the point given to each iteration. Total full points for each test case after
taking into account the number of iterations it has to go through should be the same with
other test cases. The weightage is further defined based on priority across all iterations.
Two options can be considered for this:

• Option 1: 1st iteration carries highest weightage as compared to subsequent
iterations. This is due to the importance of passing the test case for the first time it is
executed to demonstrate the stability of the feature being tested. Thus, the weightage
for 1st iteration should be a fix value for all test cases.

 Rating of software trustworthiness via scoring of system testing results 127

• Option 2: Last iteration (2nd, 3rd or 4th iteration) carries the highest weightage as
compared to preceding iterations. This is due to the need of passing the test case
during final iteration as part of testing exit criteria. Thus, the weightage for last
iteration should be a fix value for all test cases

Thus, simple points system is established by taking into. account the minimum and
maximum iterations of 2, 3 and 4 as mentioned in option 2 earlier: two-points system,
three-points system and four-points system. Example of the structure for applying option
1 into the points system is presented in Table 1. As for option 2, the points system shall
look like in Table 2.
Table 1 Point system applying option 1

Type of point system Example

2-points system 6B [I] + 4B [II] = 10B
3-points system 6B [I] + 3B [II] + 1B [III] = 10B
4-points system 6B [I] + 2B [II] + 1B [III] + 1B [IV] = 10B

Note: *[] = Iteration.

Table 2 Point system applying option 2

Type of point system Example

2-points system 4B [I] + 6B [II] = 10B
3-points system 1B [I] + 3B [II] + 6B [III] = 10B
4-points system 1B [I] + 1B [II] + 2B [III] + 6B [IV] = 10B

Calculation result is defined as score. This score is then regulated against the priority or
importance assigned to each test case. Total score for the test suite is calculated by
dividing it over expected ideal score and multiply by 100.

Total score for each strategy is then regulated against the weightage of each test
strategy as agreed before system testing starts. For example, a complete system testing
may have a weightage of 50% functional test, 20% security test, 15% performance test
and 15% usability test (total of 100%). The result is considered as final score.

Same approach is applied for partial (real-time) rating, in which the score is based on
number of iterations or test strategies completed at particular point of time. In this case,
the result is considered as real-time score.

Final score or real-time score is mapped against the software rating table to determine
the rating assigned to the software test. Rating representation is subjected to any
preference such as five-stars or good software.

4 Result and discussion

This section describes how the methodology works by using sample test results from
hypothetical projects: project a, project b and project C. The assumption is project A has
completed system testing, project B has test execution in progress with one of the test
strategies has completed testing while project C has none of the test strategies completed.

 128 M.D.M. Suffian et al.

Table 3 Test cases result from complete functional testing

Test case Iteration 1 Iteration 2 Iteration 3

TC1 Passed Passed Passed
TC2 Passed Passed Passed
TC3 Passed Passed Passed
TC4 Passed Passed Passed
TC5 Passed Passed Passed
TC6 Passed Passed Passed
TC7 Failed Failed Passed
TC8 Passed Passed Passed
TC9 Passed Passed Passed
TC10 Passed Passed Passed
TC11 Passed Passed Passed
TC12 Passed Passed Passed
TC13 Passed Passed Passed
TC14 Failed Passed Passed
TC15 Passed Passed Passed
TC16 Passed Failed Passed
TC17 Passed Passed Passed
TC18 Failed Passed Passed
TC19 Passed Failed Passed
TC20 Passed Passed Passed

Project A executed all major test strategies, namely functional testing, performance
testing, security testing and usability testing. The result of test cases from a complete
functional testing is presented in Table 3. By applying the points system using option 1
and 10 as base point, the result of calculation should look like in Table 4. Thus, the
functional test score for project A is as below:

Functional Test Score
(Total Score/Ideal Score) 100%
(3,760 / 4,300) 100%
87.4%

= ×
= ×
=

However, when option 2 is applied into the points system, the result is as in Table 5.
The functional test score using option 2 is as below:

Functional Test Score
(Total Score/Ideal Score) 100%
(1,880 / 2,000) 100%
89.7%

= ×
= ×
=

 Rating of software trustworthiness via scoring of system testing results 129

Table 4 Calculation result of functional testing score applying option 1

TC IT1 IT2 IT3 TC priority Total points Actual score Ideal score
TC1 60 30 10 3 100 300 300
TC2 60 30 10 3 100 300 300
TC3 60 30 10 1 100 100 100
TC4 60 30 10 2 100 200 200
TC5 60 30 10 3 100 300 300
TC6 60 30 10 1 100 100 100
TC7 0 0 10 1 10 10 100
TC8 60 30 10 3 100 300 300
TC9 60 30 10 2 100 200 200
TC10 60 30 10 2 100 200 200
TC11 60 30 10 1 100 100 100
TC12 60 30 10 1 100 100 100
TC13 60 30 10 3 100 300 300
TC14 0 30 10 3 40 120 300
TC15 60 30 10 3 100 300 300
TC16 60 0 10 3 70 210 300
TC17 60 30 10 1 100 100 100
TC18 0 30 10 2 40 80 200
TC19 60 0 10 2 70 140 200
TC20 60 30 10 3 100 300 300
Total score 3,760 4,300

Earlier, it was set that the weightage assigned for test strategies in project A is distributed
as follows: functional testing (50%), performance testing (20%), security testing (15%)
and usability testing (15%). Hence, the final complete score for project A considering
other test strategies have completed testing, can be illustrated as in Table 6.

Project B has different situation. One of the test strategies have completed and the
others are either in progress or not started at all. Functional testing is completed with the
score 89.7% while performance testing is currently in progress. Security testing and
usability testing have yet to start. So, the calculation for execution of performance test
cases should be done as shown in Table 7. It is called partial score calculation. Thus, the
partial score is calculated as below:

Partial Performance Test Score
 (Total Score/Ideal Score) 100%
 (120 /1,200) 100%
 10%

= ×
= ×
=

 130 M.D.M. Suffian et al.

Table 5 Calculation result of functional testing score applying option 2

TC IT1 IT2 IT3 TC priority Total points Actual score Ideal score

TC1 10 30 60 3 100 300 300
TC2 10 30 60 3 100 300 300
TC3 10 30 60 1 100 100 100
TC4 10 30 60 2 100 200 200
TC5 10 30 60 3 100 300 300
TC6 10 30 60 1 100 100 100
TC7 0 0 60 1 60 60 100
TC8 10 30 60 3 100 300 300
TC9 10 30 60 2 100 200 200
TC10 10 30 60 2 100 200 200
TC11 10 30 60 1 100 100 100
TC12 10 30 60 1 100 100 100
TC13 10 30 60 3 100 300 300
TC14 0 30 60 3 90 270 300
TC15 10 30 60 3 100 300 300
TC16 10 0 60 3 70 210 300
TC17 10 30 60 1 100 100 100
TC18 0 30 60 2 90 180 200
TC19 10 0 60 2 70 140 200
TC20 10 30 60 3 100 100 300
Total score 3,860 4,300

Table 6 Final complete score for project A

Test strategy Total score Weightage Regulated score
Functional 89.7 50% (0.5) 44.85
Performance 95.5 20% (0.2) 19.1
Security 90.3 15% (0.15) 13.55
Usability 80.9 15% (0.15) 12.14
Complete score 89.64

Table 7 Calculation result of in-progress performance testing score for project B

TC IT1 IT2 IT3 TC priority Total points Actual score Ideal score

TC1 10 - - 3 10 30 300
TC2 10 - - 3 10 30 300
TC3 10 - - 1 10 10 100
TC4 10 - - 2 10 20 200
TC5 10 - - 3 10 30 300
Total score 120 1,200

 Rating of software trustworthiness via scoring of system testing results 131

Using the same weightage distribution as project A, the real-time score for project B can
be depicted as shown in Table 8.
Table 8 Real-time score for project B

Test strategy Test exec. status Total score Weightage Regulated score
Functional Complete 89.7 50% (0.5) 44.85
Performance In-progress 10.0 20% (0.2) 2.00
Security Waiting - 15% (0.15) -
Usability Waiting - 15% (0.15) -
Real-time score 46.85

With regard to project C, only execution of functional testing has started out of four test
strategies imposed. By using the similar calculation as performance testing in project B,
the result is shown in Table 9. The partial score for functional testing of project C using
the same test strategies weightage as previous two projects is calculated as below:

Partial Performance Test Score
 (Total Score/Ideal Score) 100%
 (680 / 2,100) 100%
 32.4%

= ×
= ×
=

Table 9 Calculation result of in-progress functional testing score for project C

TC IT1 IT2 IT3 TC priority Total points Actual score Ideal score

TC1 10 30 - 3 40 120 300
TC2 10 30 - 3 40 120 300
TC3 10 30 - 1 40 40 100
TC4 10 30 - 2 40 80 200
TC5 10 30 - 3 40 120 300
TC6 10 30 - 1 40 40 100
TC7 0 0 - 1 0 0 100
TC8 10 30 - 3 40 120 300
TC9 10 - - 2 10 20 200
TC10 10 - - 2 10 20 200
Total score 680 2,100

Table 10 outlines the real-time score calculation for project C.
Table 10 Real-time score for project C

Test strategy Test exec. status Total score Weightage Regulated score

Functional In-progress 32.4 50% (0.5) 16.20
Performance Waiting - 20% (0.2) -
Security Waiting - 15% (0.15) -
Usability Waiting - 15% (0.15) -
Real-time score 16.20

 132 M.D.M. Suffian et al.

It is now the time to assign the suitable rating to the software developed under projects a,
project b and project C. As a summary, the score for each project is as below:

1 Project A = 89.40%.

2 Project B = 46.85%.

3 Project C = 16.20%.

The scores as above need to be mapped to a kind of trustworthiness or health rating table.
This rating table is developed based on the needs and practicality of organisation
adopting the method. The percentage can be translated into STAR rating table (5-star,
4-star, 3-star, 2-star, 1-star), Grade-based rating table (grade A, B, C, D, E), verdict-based
(excellent, good, fair, poor, very poor) or other similar rating definition. Sample of rating
table using STAR approach is presented in Table 11.
Table 11 Sample rating table using STAR definition

Score Rating Description
80%–100% 5-STAR To be defined based on context
60%–79% 4-STAR To be defined based on context
40%–59% 3-STAR To be defined based on context
20%–39% 2-STAR To be defined based on context
0%–19% 1-STAR To be defined based on context

By mapping the scores to Table 11, it is deduced that software in project A is rated as
5-STAR, software in project B is rated as 3-STAR while software in project C is rated as
2-STAR.

Based on the proposed method and its application to the sample test projects, there
are few areas that could be discussed further:

• The proposed method assumes that the maximum cycles of testing are four and
minimum is three. Thus, the pre-defined score mechanism is based on these
minimum and maximum number of iterations.

• Minimum iterations are set to 2 since there might be a situation where test cases will
not have to be executed again once it has two consecutive PASS results.

• As for maximum iteration of four, it only takes place when test cases fail at 3rd
iteration. Therefore, another iteration is added to make sure the bugs are fixed and
test case is PASS during last iteration

• The pre-defined base point is just for illustration purpose only. They might be value
of base point for more realistic calculation.

• The more iteration involved for particular test case, the more unstable the
corresponding feature is, which translates into inconsistency of the feature to deliver
its intended capabilities or services. Therefore, maximum iteration is set to 4.

• As the test strategies differ for various nature and type of software under test, more
sets of calculation can be added or expanded based on the imposed strategies. The
more strategies imposed to the software, the more set of scores can be calculated.

 Rating of software trustworthiness via scoring of system testing results 133

• Average percentage is used to get the final score in order to have a simpler way to
get the final rating of the software under test when mapping to health definition
table.

• The proposed method able to accommodate rating for software under test that either
has completed testing or execution is still in-progress.

5 Conclusions

The research work is able to establish a systematic way to rate software under test and
provide early health indicator, which translates into software trustworthiness rating. The
proposed method presented in this paper managed to measure the health of software
quantitatively by using the scores assigned to test cases result executed during system
testing. Regardless of the mechanism introduced in this paper, it widens the opportunities
for the researcher to explore further into the values and meanings of test cases for system
testing beyond ensuring that these cases obtained PASS result. As for the practical
implementation, it shall help the management or stakeholders to understand the health of
the software under test by doing comparative analysis between real-time ratings against
complete rating before deciding on the release of the software. They might also decide on
suspending the test should the real-time rating does not give good indication. From other
perspectives, this area can also be seen as software confidence or software fitness. It has
also proven that results from system test cases can be exploited to produce software
trustworthiness rating.

For future improvement, the work can be expanded by having specific calculation
method according to different test strategies imposed to the software. It can also involve
adjusting the calculation and scoring mechanism according to different type of software
as well as domain. Different rating table might need to be revisited as well. Simple
example is by having a specific set of scoring and rating for mobile application in
banking domain. Other than that, it is also beneficial to explore how consistency aspect in
test cases result can be incorporated into the calculation. With such anticipated expansion
works, it shall set a starting point on measuring the stability and capability of the features
for any software produced and undergoing system testing phase.

References
Areias, C., Cunha, J.C., Iacono, D. and Rossi, F. (2014) ‘Towards certification of automotive

software’, IEEE Proceedings of 2014 International Symposium on Software Reliability
Engineering Workshops (ISSREW), pp.491–496.

ASEAN NCAP (2016) [online] http://www.aseancap.org/our-test/the-ratings-explained/ (accessed
5 September 2016).

Aspire Systems (2011) Continuous Software Quality through Technical Health Index, Aspire
System’s whitepaper, pp.1–5 [online] http://www.aspiresys.com/WhitePapers/
Whitepaper_Continuous_Software_Quality_through_Technical_Health_Index.pdf (accessed
22 September 2015).

Bao, T., Liu, S. and Han, L. (2010) ‘Research on an analysis method for software trustworthiness
based on rules’, IEEE Proceedings of 2010 14th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), pp.43–47.

 134 M.D.M. Suffian et al.

Bein, W. and Jeffery, C. (2010) ‘Towards an openness rating system for open source software’,
IEEE Proceedings of 2010 43rd Hawaii International Conference on System Sciences
(HICSS), pp.1–8.

Bianco, V.D., Lavazza, L., Morasca, S. and Taibi, D. (2011) ‘A survey on open source software
trustworthiness’, IEEE Software, Vol. 28, No. 5, pp.67–75.

Dubey, A., Karsai, G. and Mahadevan, N. (2011) ‘Model-Based software health management for
real-time systems’, IEEE Proceedings of 2011 Aerospace Conference, pp.1–18.

EURO NCAP (2016) [online] http://www.euroncap.com/en/about-euro-ncap/how-to-read-the-stars/
(accessed 5 September 2016).

Immonen, A. and Palviainen, M. (2007) ‘Trustworthiness evaluation and testing of open source
components’, IEEE Proceedings of 2007 Seventh International Conference on Quality
Software (QSIC ‘07), pp.316–321.

Nami, M. and Suryn, W (2012a) ‘Case study: using requirements and finite state machine for
evaluating software trustworthiness’, Proceedings of 38th Annual Conference on IEEE
Industrial Electronics Society (IECON 2012), pp.3095–3100.

Nami, M. and Suryn, W. (2012b) ‘Software testing is necessary but not sufficient for software
trustworthiness’, Proceedings of 2012 International Conference on Trustworthy Computing
and Services (ICTCS 2012), pp.34–44.

Nami, M. and Suryn, W. (2012c) ‘Software trustworthiness: past, present and future’, Proceedings
of 2012 International Conference on Trustworthy Computing and Services (ICTCS 2012),
pp.1–12.

Nami, M. and Suryn, W. (2013) ‘Software trustworthiness: past, present and future’, Trustworthy
Computing and Services, Vol. 320, pp.1–12, Springer, Berlin, Heidelberg.

Port, D. and Wilf, J. (2013) ‘The value of certifying software release readiness an exploratory study
of certification for a critical system at JPL’, IEEE Proceedings of 2013 ACM International
Symposium on Empirical Software Engineering and Measurement (ESEM), pp.373–382.

Pradana, D.S. and Ferdiana, R. (2014) ‘Mobile applications rating assessments based on users
experience perception’, IEEE Proceedings of 2014 Makassar International Conference on
Electrical Engineering and Informatics (MICEEI), pp.175–179.

Tao, H. and Chen, Y. (2009) ‘A metric model for trustworthiness of software’s’, Proceedings of the
2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent
Agent Technology (WI-IAT ‘09), Vol. 3, pp.69–72.

Tao, H. and Chen, Y. (2010) ‘A new metric model for trustworthiness of softwares’, IEEE
Proceedings of 2010 International Conference on Information Science and Applications
(ICISA), pp.1–8.

Xia, Z. and Pan, W. (2010) ‘Research on the trustworthiness of software’, IEEE Proceedings of
2010 2nd International Conference on Information Science and Engineering (ICISE), pp.1–4.

Zhao, X., Liu, Y., Shi, Y. and Zhang, L. (2010) ‘An empirical study of the influence of software
trustworthy attributes to software trustworthiness’, IEEE Proceedings of 2010 2nd
International Conference on Software Engineering and Data Mining (SEDM), pp.603–606.

