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Abstract: In the clinical ophthalmology, the retinal image analysis is a routine 
procedure with a target of the time considering the retinal lesions over the time. 
Unfortunately, there is an absence of the clinical software instruments 
providing a precise tracking the retinal lesions from the image records. Thus, 
the retinal image analysis is carried out by skilled physicians, but without any 
objective software feedback. We aim to propose a procedure having ambitions 
to an automatic and autonomous extraction of the retinal lesion from the retinal 
images, and its time evaluation. The retinal lesions are considered on a base of 
the optical disc which is simultaneously segmented from the retinal images. It 
is clinically supposed that the optical disc has stable geometrical features over 
the time contrarily geometrical features of the retinal lesions are time-
developed. The proposed methodology for a time modelling of the retinal 
lesions comprises three essential procedures. The optical disc and the retinal 
lesions segmentation on a base of the time evolving curves ensure indication 
areas of these retinal objects. Consequently, the binary classification is used 
with a target of an extraction of a respective model of the optical disc and the 
retinal lesions. 

Keywords: retinal lesions; optical disc; modelling; active snake model; 
binarisation; retinal image; RetCam 3; fundus camera; image processing; image 
segmentation; geometrical features; initial contour. 
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1 Introduction 

In the clinical ophthalmology, the retinal area is clinically evaluated on a base of either 
the fundus camera, or the retinal probes (RetCam 3). The main advantage of the fundus 
camera is the retinal image acquiring in a great resolution which typically achieves up to 
million pixels (Dai et al., 2017). The retinal images from the retinal fundus camera allow 
for a precise differentiation of the individual retinal structures with a high contrast. This 
fact is very important for the consequent retinal processing. In a case of the retinal probes 
(RetCam 3), we acquire the retinal images in a lower resolution (typically 640 × 480 
pixels), on the other hand a great advantage of this system is the adjustable fixation to the 
retinal area. This tool is especially beneficial especially in cases of examination of 
younger patient who cannot keep themselves calm during the examination (Xu et al., 
2017). This device is able to capture the retinal nerve, retinal blood vessels and retinal 
lesions. An extraction of the optical nerve geometrical features is closely related with the 
retinopathy disease (Patel et al., 2017). Within this disease, it is especially important to 
track a time evolution of the retinal lesions in a comparison with the optical nerve which 
is denoted as a reference point to the respective retinal lesion. One possible clinical way 
for the evaluation retinal lesions is a ratio between a respective area of the retinal lesion 
to the optical nerve as a reference point (Fan et al., 2017). 

The retinopathy of prematurity (ROP) is a vasoproliferative disease that affects 
especially the prematurely-born infants with a low birth weight. The ROP is the second 
most frequent cause of the blindness of children in developed countries (Dai et al., 2017; 
Xu et al., 2017). In the Czech Republic, it represents the second most frequent cause of 
severe children vision impairment (Oshi et al., 2017; Haq et al., 2017). 

The aim of the ROP screening is an early detection of the first signs of the disease. 
That allows ophthalmologist to optimally schedule the ophthalmological examinations, 
plan a possible treatment and hereby prevent a development of the severe vision  
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impairment (Patel et al., 2017). For a purpose of the clinical rating of the retinal lesions 
size, and for a purpose of measuring distances of the retinal changes and the assessing 
their progression over the time, we use the optic nerve disc diameter as a reference point. 
Figure 1 shows a comparison of the normal (physiological) retinal image where we can 
clearly recognise the retinal blood vessels and retinal structure affected by the retinopathy 
causing the pathological spots which have tendency to increase themselves over the time. 
The retinopathy goes throw by several stages in a dependence of a severity of the 
diseases (Munk et al., 2017). Two main pathological changes are observable. A surface 
of the retinal area is substantially deteriorated (Figure 2), and the pathological lesions 
increase themselves over the time (during individual stages) (Sharath Kumar et al., 2016). 

Figure 1 Morphological comparison of (a) normal (physiologic retinal image) and  
(b) retinopathy image (see online version for colours) 

  
(a)     (b) 

Source: Kubicek et al. (2016c) 

Figure 2 Comparison of retinopathy individual changes: (a) first stage, (b) second stage and  
(c) third stage (see online version for colours) 

 
(a)   (b)   (c) 

Source: Kubicek et al. (2016c) 
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Figure 3 System RetCam 3 for retinal investigation (see online version for colours) 

 

Source: Kubicek et al. (2016c) 

2 System RetCam 3 

The system RetCam 3 is a powerful diagnostic system serving for a spatial imaging of the 
retinal area especially in children. This system offers lighter and easier adjustable retinal 
camera with a minimal resolution 640 × 480 px. This system also offers an acquiring the 
retinal video sequences lasting up to two minutes. There is a possibly of lens changing for 
achieving an optimal wide-angle retinal image. Physician should select a suitable len with 
the scale 130º for the ROP screening, or 120º which can be used for the examination with 
a higher contrast but less accuracy. There is also the high contrast len with the scale 80º 
suitable for the children and adult patients, and 30º with a high focusing and resolution 
for the yellow spot examination or the optical nerve (Imani et al., 2015; Morales et al., 
2015). 

The system RetCam 3 is primarily intended for the retinopathy diagnostic of the 
prematurely born infants because it is possible to do screening after two weeks from born 
(Laaksonen et al., 2016; Xiao et al., 2017). A high risk of the ROP is on newborn with a 
weight under 1,000 g. By the international standards, each child with a lower weight than 
1,500 g should be examined on this disease (Nugroho et al., 2016). RetCam 3 can be 
utilised also on different retinal diseases, for example on the retinal cancers 
(retinoblastoma), or other anomalies (Bibiloni et al., 2016; Christodoulidis et al., 2016). 
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Figure 4 Retinal images in system RetCam 3 (see online version for colours) 

 

Source: Kubicek et al. (2016c) 

3 Proposed segmentation procedure for retinal lesions and optical disc 
modelling 

A structure of the segmentation algorithm is adjusted to the retinal image records from 
the system RetCam 3. If we had processed the retinal images from the fundus camera,  
we would have worked with high resolution images having a bigger contrast of the 
optical disc (OD) and the retinal lesions from its background (blood vessels and other 
retinal structures) (Santhi et al., 2016). In a case of the retinal images acquired from the 
RetCam 3 system we must keep on a mind that we are working with the low resolution 
images, on the other hand those retinal images are challenging for segmentation purposes 
(Kirsali et al., 2014; Awan et al., 2015). 

Due to the aforementioned reasons, the proposed segmentation procedure has to 
include the image preprocessing part optimising the retinal image features of the retinal 
records. Consequently, the image segmentation procedure is applied. In a context of the 
segmentation procedure, we suppose that the segmentation procedure is represented by 
the active snake model. The active snake model represents a time iteration procedure 
forming the time evolution curve in predefined iteration steps. The main requirement of 
the clinical practice is to the segmentation algorithm works autonomously without the 
user intervention. In this regard we have to define the initialisation curve roughly 
approximating the analysed object (optical nerve and retinal lesions). Consequently, the  
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active snake model spreads itself in iteration steps to boundaries of objects which are  
being segmented. In the consequent step, we obtain the resulting curve reflecting an area 
of the respective retinal object. This curve is transformed into the binary object. By the 
binary segmentation we can classify areas of the OD, retinal lesions and image 
background. Therefore, we can calculate the image area size (geometrical features) of the 
OD and retinal lesions in a form of a number of the pixels. As it was stated before, there 
is a clinical assumption that the OD area should be stable over the time (geometrical 
features of the OD are unified over the time). Contrarily, the geometrical features of the 
retinal lesions are not stable, and we suppose the increasing tendency. The main question 
is how it is possible to objectively measure the retinal lesions (geometrical features) over 
the time. In the clinical practice, a time evolution of the retinal lesions is only 
subjectively estimated. It is supposed that this approach is strongly affected by a relative 
subjective error in a dependence of the clinical ophthalmologic expert skills. Objective 
feedback brings an objective evaluation to the expert’s opinion, and mainly brings 
diagnosis improving. Also, an important aspect of an automatic time evaluation of the 
retinal lesions is a prediction model allowing for a time prediction of the retinal lesions 
development. 

3.1 Preprocessing of retinal images 

This part is intended for achieving as detailed optical nerve and retinal lesions 
observation as possible. The whole structure of the proposed algorithm is summarised in 
the Figure 5. Firstly, the image preprocessing is applied due to weaker image features 
caused by a lower resolution of the RetCam 3. The image processing ensures a better 
achievement of the retinal image features. This step is done by the edge sharpening, and 
histogram equalisation ensuring the retinal structures enhancement, it predetermines a 
higher accuracy of the segmentation. The models of the retinal structures are given by the 
active contour procedure time-iteratively approximating the OD and retinal lesions areas. 
The final mathematical models of the retinal structures reflect the size of the retinal 
lesions against the OD. These features are usable for the retinal lesions time 
development. 

In the input of the entire segmentation procedure we suppose that the retinal image 
records are generated in the RGB spectrum. In the mathematical sense, it means that the 
retinal image is composed from three image layers (R – red, G – green and B – blue). In 
each of these layers, the retinal structures (OD and retinal lesions) may be imagined 
under a different contrast, and other image features causing a better or worse retinal 
structures observation. As far, as it is obvious, that a success of any segmentation 
procedure is strongly depended on an observation of the native image records. Therefore, 
we should select an optimal RGB channel where it is supposed as contrast observation of 
the retinal structures as possible. On a base of the empirical observations we state that the 
optimal image features are achieved by extracting the R+G combination. An extraction of 
the individual image channels is depicted on the Figure 6. The best observation (R + G 
channel) of the OD is depicted on the Figure 7. 
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Figure 5 (a) Structure of the proposed algorithm and (b) individual steps of retinal image 
preprocessing (see online version for colours) 

  
(a)    (b) 

Figure 6 Comparison of retinal image channels: (a) red channel, (b) green channel and  
(c) blue channel 

 

 

  
(a)   (b)   (c) 
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Figure 7 Extraction of R + G channel combination 

 

The second part of this initialisation image preprocessing step deals with an extraction of 
a suitable channel for the retinal lesions. Unfortunately, a quality of the retinal images is 
not always adequate. In some cases, the retinal images are more or less deteriorated by 
the image noise and artefacts. Sometimes, physician does not select an optimal location 
of the retina probe. Consequently, the retinal image may be geometrically distorted, or it 
is captured under a worse contrast. Different retinal images are indicated on the Figure 8. 

Figure 8 Sample of retinal image dataset: different image features on retinal images captured by 
RetCam 3 (see online version for colours) 

 

The retinal lesions, which we are focused on in the analysis, are standardly represented 
by the bloody spots manifesting by the red colour spectrum. A detection of the retinal 
lesions is more complicated by a fact that its brightness spectrum is frequently identical 
with the retinal blood vessels. An example of such retinal records is depicted on the 
Figure 9. 

A selection of a suitable RGB layer (Figure 10), or their combination we achieve  
the retinal lesion features enhancement (brightness enhancement, sharpness, image 
background suppression). 
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Figure 9 Pathologic retinal image containing retinal lesions in a form of the bloody spots  
(see online version for colours) 

 

Figure 10 Extraction of individual image layers in retinal image with retinal lesions:  
(a) R channel, (b) G channel and (c) B channel (see online version for colours) 

 
(a)   (b)   (c) 

Figure 11 Imaging retinal lesion in R + G channel (see online version for colours) 
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Features of the individual layers are utilised in the algorithm for improving lesions 
visibility against the retinal background, and result enhancement of consequent retinal 
preprocessing operations. The best highlighting the retinal lesions is again achieved by 
the R+G combination. During the R + G extraction we suppress the blue channel it 
mathematically means that a matrix representing the blue channel is filled by the zeros. 
The R+G combination in an application on the retinal lesions is indicated on the  
Figure 11. 

In the next operation, the image sharpening and retinal lesions boundaries 
enhancement are applied. By those operations, the retinal lesions are highlighted from its 
background. In a principle of the image sharpening, we increase the retinal lesions 
contrast along its boundaries where brightness spectrum changes itself. The Boundary is 
represented by a sufficiently change of the brightness in the retinal image. In the image 
sharpening, we highlight higher spatial frequencies in the image while other lower 
frequencies are suppressed. 

In the algorithm, we utilise the masking for the image sharpening. This technique is 
based on a possibility of a subtraction of the blur image from the native image. This 
procedure utilises a fact that the blurred image contain a higher content of lower 
frequencies that the original image. By a subtraction we obtain a relative reduction of 
lower frequencies, and highlighting higher frequencies (retinal lesions boundaries). This 
process is not obvious on the first sight (Figure 12), however it is an important part for 
next steps. 

Figure 12 (a) Native image and (b) image after masking 

 
(a)     (b) 

Consequently, the image equalisation is carried out. This method is utilised for the image 
contrast enhancement. This method increases a global contrast in the retinal images. We 
use this method because the RetCam 3 images are standardly represented by close 
contrast values. It means that there are not the strong boundaries among the individual 
retinal lesions and the retinal image background. In a principle, we carry out a change in 
a brightness level distribution of the image histogram. By the histogram equalisation we 
obtain an adequate distribution of the individual brightness image levels. 
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Figure 13 (a) Native retinal image (b) Histogram (see online version for colours) 

 
(a) 

 
(b) 

For achieving better contrast image features of the retinal lesions, the CLAHE method is 
used (Figure 14). It is a method of the adaptive histogram equalisation (contrast-limited 
adaptive histogram equalisation). In a comparison with a standard form of the adaptive 
histogram equalisation, the CLASHE operates on small regions (tiles). It brings a feature 
ensuring that even small objects are better differentiated under a higher contrast in a 
comparison with the image equalisation. An advantage is that the method is applied on 
the smaller image areas against the commonly used histogram equalisation going through 
the entire image. In each small area of the image, the image contrast is increased step by  
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step. The histogram is utilised individually for each image area. The neighbouring areas 
are consequently jointed by the bilinear interpolation for an elimination of the artificially 
created boundaries. 

Figure 14 (a) Native image and (b) application of CLAHE 

  
(a)     (b) 

Figure 15 (a) Original histogram (b) Histogram equalisation (see online version for colours) 

 
(a) 
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Figure 15 (a) Original histogram (b) Histogram equalisation (continued) (see online version  
for colours) 

 
(b) 

An important part of the image features enhancement is a brightness transformation 
(Figure 16). In the proposed algorithm, the brightness transformation is applied in a form 
of the contrast boosting with a target of a maximisation of the retinal lesion contrast. The 
process is applied in a form of the point brightness transformation. This operation is 
applied individually for each pixel. It means that the result of a transformation is 
calculated on a base of the one pixel. 

Figure 16 (a) Native image and (b) point contrast transformation 

 
(a)     (b) 
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Last step in the preprocessing of the retinal images is a selection of the region of interest 
(RoI). Regarding to different image quality it was impossible to apply an algorithm on 
the entire image area, but it is necessary to select a particular area with the respective 
lesion. This approach brings a benefit in a form of an expansion of the image area. It is 
obvious that the retinal lesions are pretty small regards to the entire retinal structure. 
Therefore, by the RoI application, the retinal lesions are expanded to a bigger spatial area 
(Figure 18). This fact consequently ensures a better visibility of the respective retinal 
lesions. The RoI is defined iteratively by the user selection (Figure 17). Unfortunately, in 
the selected area the blood vessels may be present. The retinal blood vessels have an 
identic brightness spectrum as the retinal lesion therefore it is complicated to eliminate 
them. 

Figure 17 Preprocessed image where area of one retinal lesion is highlighted by RoI (see online 
version for colours) 

 

Figure 18 RoI including retinal lesion 
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3.2 Segmentation of retinal images via active snake model 

The segmentation procedure consist the main contribution in the entire retinal lesions 
modelling. This procedure is able to automatically adjust to the shape of the retinal 
lesions and the optical nerve to extract models of those structures. From the clinical point 
of a view, it is the only one appropriate way for reliable extraction features of the optical 
nerve and the retinal lesions. The optical nerve is approximated by a mathematical model 
which reflects the geometrical features of the optical nerve area, and allows for a further 
clinical evaluation in a form of the geometrical features such as the area and the nerve 
diameter which is commonly clinically called by the abbreviation papilla diameter (PD). 
The optical nerve can be extracted from the first retinal image (first patient examination), 
next retinal images acquired over the time give information about a time development of 
the retinal lesions, and we suppose that the optical nerve has stable geometrical features 
(OD area). 

There are theoretically more alternatives for the retinal structures modelling. One 
possible way is an employment of the multiregional segmentation splitting the image area 
into several disjointing parts. Unfortunately, a brightness spectrum of the retinal lesions 
and the blood vessels are identical. It means that it is impossible to classify the retinal 
lesions from other retinal structures in a context of the multiregional segmentation. The 
Active contours (snake) model is able to adopt to the retinal objects in a predefined 
number of the iteration steps. This presumption represents a good feature for the retinal 
lesions and the OD modelling via the active snake model. The active snake model is 
perceived as an iteratively time minimising model which is able to detect specific 
features in the image area. An important feature is that the snake model represents a 
flexible model modifying its geometrical features over the time iterations. Regarding a 
structure of the active snake model, the model is composed from a predefined number of 
the discrete points (snaxels) connected between each other by straight lines (Figure 19). 
An evolution of the active contour is performed by an iterative process which controls the 
final contour shape. 

Figure 19 RoI including retinal lesion 
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Active snake model is given by sequence of snaxels s. This curve can be described by the 
parametric function (1). 

( ) [ ( ), ( )]v s x s y s=  (1) 

where x(s) and y(s) represent coordinates x and y through the contour and s signs a 
normalised index of the control points. The energy function that describes the active 
contour is composed from two main components, the internal energy and the external 
energy. Curve compactness is formed by the internal forces. The external forces tend the 
curve towards to the object’s borders. 

The internal energy is composed from two parts: the elastic energy and the bending 
energy. The internal energy is described by (2) and (3). 

int elastic bendE E E= +  (2) 

22 2

int 2
( ) ( )dv d vE s s

ds ds
= +α β  (3) 

where α is an adjustable constant that specifies the continuity and β is an adjustable 
constant as well which specifies the contour curving. The elastic and bending energies are 
defined by the following expressions: 

2[ ( ) ( 1)]elasticE v s v s ds= − −∫α  (4) 

2[ ( 1) ( ) ( 1)]bendE v s v s v s ds= − − + +∫ β  (5) 

* [ ( )]snake snakeE E v s ds= ∫  (6) 

{ }
1

*
int

0

[ ( )] [ ( )] [ ( )]snake image conE E v s E v s E v s ds= + +∫  (7) 

where Eint is the internal energy of the curve, Eimage is the energy of the image and Econ 
determines the external limitations (Kubicek et al., 2016a, 2016b). 

4 Mathematical modelling of retinal lesions and OD 

The final mathematical model of respective OD and retinal lesions should reflect the 
geometrical features of these retinal objects, and reliably approximate an area of a 
manifestation of these objects in the retinal images (Kubicek et al., 2016c). There are two 
model representations. Model can be represented by a closed curve reflecting an area of 
the OD and respective retinal lesions. The main disadvantage of this method is non-
reflecting object area it means that we capture boundaries without spatial information 
reflecting the size of the structure area. Instead of utilising a closed curve, we utilise the 
binary classification as a final form of the model. The binarisation is a procedure 
classifying the retinal image into two main regions. 

Firstly, the boundaries of the retinal objects are approximated by the closed smooth 
curves. In the initialisation phase the circle is defined. This circle is iteratively deformed 
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within predefined iterations. The following figures represent an evolution of the active 
contour model for three retinal lesions and the OD. On the retinal lesions we present a 
comparison of 100 and 200 iterations (Figure 20), contrarily the OD area approximation 
is presented for 100, 150, 200 and 300 iterations (Figure 21). 

Figure 20 An active contour segmentation of three retinal lesions from RetCam 3:  
(a) initial contour, (b) 100 iterations and (c) 200 iterations (see online version  
for colours) 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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Figure 21 An active contour segmentation of OD from RetCam 3 (see online version  
for colours) 

 

Note: From left: initial contour, 100, 150, 200, 300 iterations. 

4.1 Model of OD 

Before applying the segmentation procedure, the initial contour is placed on the 
segmented object. There is a requirement so that the initial mask reliably approximates 
geometrical features of the OD and the lesions. There are two reasons for this task. At 
first, an area of similarity has significant impact on a number of the iterations. If we used 
an initial contour badly approximating the retinal structure (geometrical features of 
contour are significantly different) we would have to use a bigger number of the iteration 
steps. This fact causes an increased computational time. An area similarity is important 
due to an accuracy of the segmentation. If the initial curve is underestimated or 
overestimated the segmentation snake has tendency goes out of the object of interest. 
This fact would lead to an improper segmentation results, and a distortion of a final 
model of the retinal structures. A placement of the initial contour on the OD area is 
depicted on the Figure 22. Besides an area of the initial contour, a key feature is also the 
geometrical shape. The geometrical shape also determines segmentation accuracy. The 
best way is a utilising the geometrical shape which is similar to analysed objects. In a 
case of segmenting the optical nerve and the retinal lesions, the best compromise 
represent either the ellipse or the circle because those retinal objects exhibit circular 
geometrical features closely similar to the circle and ellipse. 

Figure 22 (a) Placement of initial contour roughly approximating area of OD (b) Binary mask of 
defined contour (see online version for colours) 

 

  
(a)     (b) 

The final model of the optical nerve is formed by a time evolution of the initialisation 
contour. Final shape is especially affected by a number of the iterations. On a base of the 
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experiments using of 300 iterations appears itself as the best compromise for reaching as 
relevant approximation of the optical nerve as possible (Figure 23). If we underestimate 
the segmentation process in a context of a number of the segmentations, the segmentation 
curve badly approximate a target area. Other words speaking the segmentation curve does 
not manage to achieve boundaries of the optical nerve. On the other hand if we 
overestimate the segmentation process by an excessive number of the iterations, the 
segmentation curve may have tendency to spread itself out of the segmented area. 
Consequently, a modelled area of the OD will be much bigger than an original area of the 
OD. The snake method has a one substantial advantage it allows for to track individual 
steps of the segmentation process. By this positive feature, the segmentation curve can be 
terminated earlier than in the final step of the segmentation. An evolution process of the 
segmentation procedure is depicted on the Figure 23. 

Figure 23 The time evolution of the active contour from (1) initialisation contour to the  
(6) final model of optical nerve 

 

An important part of the segmentation model is defining the final area (binary model) of 
the OD. During the segmentation, the active snake model modifies the internal and 
external energy. In this context, we can interactively determine the energy map which is 
related to each segmentation step. In the energy map, we can recognise two essential 
areas characterising the energy distribution (Figure 24). An area inside of the 
segmentation curve have negative values of the energy, contrarily an area outside of the 
segmentation curve have positive values of the snake energy. By this selective approach 
we can classify whether a respective pixel belongs inside or outside of the OD. 

An important part of any segmentation algorithm is verification. We need to have a 
certain feedback about the algorithm effectivity. For needs of the clinical 
ophthalmologists, suitable solution is the image fusion. It is supposed that the original 
native image area is overlaid by the segmentation result. By this approach we can 
visually track a correlation of the OD model with the native record where the OD is 
present. Extract of the image fusion is depicted on the Figure 25. 
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Figure 24 (a) Energy map of active snake model applied on optical nerve and  
(b) binary classification of OD area (see online version for colours) 

 
(a) (b) 

Figure 25 Testing image fusion algorithm on the image data extract 

 

4.2 OD geometrical features extraction 

The last step of the OD segmentation is the geometrical features extraction. There are 
several methods which are able to transform the image distance on real measurements 
units. Unfortunately, we are limited by a fact that the real distances acquired by the 
system RetCam 3 are unknown. It means that a distance on the image does not reflect the 
real retinal distance. Considering this fact, the OD parameters are measured and 
evaluated in the image units (pixels). In our method, the OD area is approximated by the 
circle with a same area as the original binary model. Therefore, the most important the 



   

 

   

   
 

   

   

 

   

   26 J. Kubicek et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

OD parameters are area and OD diameter. Those parameters are especially important for 
further processing of the retinal lesions where the OD is given as a reference point. In the 
processing of the retinal lesions we consider that the lesion area is measured against the 
OD radius. 

On a base of the empirical studies we know that the OD can be reliably approximated 
by the ellipse where the radius diameter of major and minor axes is approximately 0.14 
mm. It means that the OD is closely resembled to the circle. On a base of this fact, the 
OD is approximated by the circle with a same area as the original binary record. The OD 
radius is consequently calculated by (8) and (9). 

2S π r= ⋅  (8) 

sr
π

=  (9) 

where S indicates an area of the OD and r indicates a radius of the OD in pixels. We can 
allow this poor precision caused by an approximation because the OD and the retinal 
lesions are nearly identical with the circle. Therefore, the circle approximation appears as 
a suitable solution. The resulting comparison of its radiuses is in accordance except for a 
negligible deviation. 

Lastly, we have tested a recurrent application of the segmentation procedure on the 
real native retinal records. We pay attention to the biggest difference of the OD radius 
during the recurrent detection. 

We have done the OD modelling on a sample of the 120 patient records. It hardly 
ever happened that the segmentation results exhibited significantly different results. In 
majority of cases we registered an identical detection results. In the 51 cases we 
registered totally identical detection (42% of test). The biggest difference is equalled to 
the three pixels, while we can predict that this difference is caused by an inappropriate 
placement of the initial contour. Important fact is also an average error per one case 
which is 0.73 pixels. If we take under consideration that a spatial area of the retinal 
record is 307 200 pixels, an average detection fail is approximately 0.0002%. The 
following chart represents an extract of the algorithm testing. For each image, the 
segmentation procedure has been tested three times. Error indicates the biggest difference 
between individual segmentation attempts. 
Table 1 Testing of recurrent application of segmentation 

Image 1  Segmentation 2  Segmentation 3  Segmentation Error 

1 23 22 23 1 
2 23 22 22 1 
3 20 20 21 1 
4 21 22 21 1 
5 17 17 17 0 
6 17 18 17 1 
7 18 17 17 1 
8 23 23 23 0 
9 19 19 17 2 
10 20 20 20 0 
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4.3 Retinal lesions modelling 

A second crucial part of the segmentation procedure is a modelling of the retinal lesions. 
In a comparison with the OD, we suppose that the retinal lesions are not stable over the 
time, while from the clinical point of a view, the OD has same geometrical parameters 
over the time. A disadvantage of the retinal lesions modelling is an inability of measures 
the real geometrical parameters of the retinal structures. The system RetCam 3 allows for 
only an export of the native retinal images without any tool allowing for the 
measurement. Therefore, all the geometrical parameters are commonly calculated in the 
pixels. From the clinical point of a view we evaluate an area of the respective retinal 
lesion in a dependence of the OD. Other words speaking, an evaluation of the retinal 
lesions says how many times the OD fits itself inside of the retinal lesion. This parameter 
is determining for the clinical evaluation of the retinal lesions over the time. 

For extraction of the retinal lesions in a form of the binary model we utilise a same 
image preprocessing procedure as in a case of the OD. We tackled with an issue of an 
insufficient contrast of the lesions against the image background. After applying the 
contrast transformation (concluding step of the image preprocessing) we obtain a final 
image for the segmentation (Figure 26). 

Figure 26 Sample of two testing images after image preprocessing 

 

The main contribution in the retinal lesions modelling is the segmentation of the 
individual retinal lesions. We have tackled with a same issue as if in a case of the OD. 
Individual retinal lesions are relatively small against the entire retinal image area. 
Therefore, it is needed to expand an area of the retinal lesions with a target of a better 
visibility of the retinal lesion, and an accurate effect of the segmentation algorithm. This 
task is connected with the interpolation procedure increasing a number of the pixels in the 
RoI, and enhances the contrast features. 

The segmentation procedure is applied on the RoI where the individual retinal lesion 
is present. After the segmentation is done, a final model of the retinal lesion is done by 
the binary classification. The following outputs represent the segmentation results of the 
individual retinal lesions. The lesions have a miscellaneous characteristic in its 
placement, and also in its shape. There are the lesions which are completely divided from 
each other, and therefore they are simply detectable. On the other hand, there are also the 
lesions laying on the retinal blood vessel, or closely to them. First result of the 



   

 

   

   
 

   

   

 

   

   28 J. Kubicek et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

segmentation is depicted on the Figure 27. A model of the individual retinal lesion is 
generated on a base of the 300 iterations. 

Figure 27 Testing the retinal lesions segmentation for six dominant retinal lesions (see online 
version for colours) 

 

 

Note: 300 iterations are used for segmentation. 

Second testing image does not dominate such he dark lesions as the first testing image 
(Figure 27). Nevertheless, the segmentation algorithm is able to detect even those less 
contrast retinal lesions (Figure 28). 
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Figure 28 Testing the retinal lesions segmentation for six dominant retinal lesions (see online 
version for colours) 

 

Note: 300 iterations are used for segmentation. 

The following retinal image (Figure 29) shows one of precisely detectable lesions. The 
lesion is circumscribed well, and fortunately there are not any other retinal objects on the 
extracted RoI. 

Since that a position of the retinal lesions is not always such ideal like in the previous 
case where the lesion was placed individually, in some cases there is a distortion by other 
objects which cannot be eliminated from the retinal image. In the following image  
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(Figure 30), there is the retinal lesion which we cannot precisely extract from the image 
background. The retinal lesion model is distorted by the adjacent blood vessel crossing 
the retinal lesion. The resulting retinal lesion radius and area is overestimated by the 
blood vessel pixels. 

Figure 29 Particular imaging of retinal lesion model (see online version for colours) 

 

Figure 30 Retinal lesion model with imprecise classification caused by adjacent retinal blood 
vessel (see online version for colours) 
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4.4 Extraction of retinal lesions geometrical features 

The retinal lesions are characterised by its radius and area. A radius and area of the lesion 
depends on the lesion location, and a presence of unwanted objects as the retinal blood 
vessels, or other tiny adjacent lesions which cannot be eliminated from the RoI. If the RoI 
consists other objects with a similar brightness spectrum as the retinal lesions, the active 
snake model might have tendency to spread to this area. In a result, the final model would 
be overestimated by these objects. A reliability of the method is partially depended on the 
other objects jointed with the respective retinal lesion. 

The lesion area is compared with an area of the OD. The results are shown in Table 2. 
After the OD and retinal lesions segmentation procedures, its areas are calculated in a 
form of a number of the pixels lying inside those retinal objects. The following outputs 
(Figure 31 and Figure 32) show results of the retinal lesion models for the geometrical 
parameters extraction. 

Figure 31 Segmentation model for geometrical parameters extraction for testing image 1  
(see online version for colours) 

 

Figure 32 Segmentation model for geometrical parameters extraction for testing image 2  
(see online version for colours) 
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Table 2 Retinal lesions geometrical features extraction for testing image 1 

Lesion ID Lesion area Lesion radius % area of OD OD area 

1 503 13 44 1,139 
2 1,139 19 100 
3 1,915 25 168 
4 1,752 24 154 
5 739 15 65 
6 254 9 22 

Table 3 Retinal lesions geometrical features extraction for testing image 2 

Lesion ID Lesion area Lesion radius % area of OD OD area 
1 1,977 25 194 1,018 
2 723 15 71 
3 1,908 25 187 
4 757 16 74 
5 916 17 90 
6 546 13 54 

On a base of the results, that the six analysed lesions take less than 100% OD area. Five 
tested lesions take more than 100 % of the OD, and one lesion is identical as the OD. 

4.5 Quantitative comparison of retinal modelling 

In the last step, a quantitative comparison of the active contour model applied on the 
RetCam 3 data is carried out. A quantitative comparison is carried out on a sample of the 
30 RetCam 3 records. As ground truth, the manual segmentation of the retinal lesions and 
the OD is utilised in a form of the retinal object size. In each case, the manual 
segmentation has been performed three times to eliminate subjective error. Finally, an 
average value from three manual segmentations is considered as the ground truth. A 
quantitative comparison is carried out against methods which are considered as the 
representative state of the art for the regional image segmentation. 

• Otsu multiregional hard thresholding (OTSU-N) proposed in Otsu (1979). 

• Fuzzy C-means (FCM): performs segmentation using a clustering method proposed 
in Bezdek (984). 

• The iterative thresholding segmentation (ITS) proposed in Wu et al. (2000). 

The following scalar measures are considered for the retinal image quantitative 
comparison: 

• Rand index (RI): it measures a similarity between two data clusters. RI compares 
assignments between pairs of elements in two clusters on a base of a calculation of a 
fraction of the correctly classified elements against all the elements. RI definition for 
C1 and C2 clusters is following: 
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where N denotes a total number of the points, n11 denotes a number of the pairs that 
they are in the same cluster in C1 and C2 and n00 is a number of the pairs belonging to 
different clusters. The RI gives results in a range [0;1]. 0 indicates that the data 
clusters do not agree on any pair of the points, contrarily 1 indicates that the data 
clusters are completely same (Rand, 1971). 

• Variation of information (VI): it measures a distance between two segmentations in a 
sense of the average conditional entropy described by: 

( ) ( ) ( ) ( )1 2 1 2 1 2, 2 ,VI C C H C H C I C C= + −  (11) 

where H(Ci) represents an entropy associated with the cluster, and I represents a 
mutual information between C1 and C2 clusters (Meila, 2005). 

• Receiver operating characteristic (ROC) curve: the ROC represents a classification 
model mapping instances between the data classes. In a quantitative comparison, we 
interpret the ROC curve by the area under curve (AUC) parameter giving the results 
in a range [0;1]. 1 indicates the best correlation between the segmentation results 
(Hastie et al., 2009). 

• Mean squared error (MSE): it is an estimator measuring the average of the error 
squares between two segmentation results. The MSE represents a risk function which 
corresponds with the expected value of the squared or quadratic error loss (Al-Najjar 
and Soong, 2012). 

The RI and AUC measures greater is better, contrarily for VI and MSE smaller is better. 
The best result for each measurement is highlighted. The average for each tested 
parameter (RI, VI, AUC) is considered in the following tables. 
Table 4 Quantitative testing and comparison of the retinal image segmentation (retinal lesions) 

 OTSU-N FCM ITS Active contours 
RI 0.712 0.729 0.699 0.731 
VI 2.991 2.871 3.412 2.873 
AUC 0.881 0.921 0.798 0.952 
MSE 31.118 29.365 32.598 23.548 

Note: For each configuration, the best result is italicised. 

Table 5 Quantitative testing and comparison of the retinal image segmentation (OD) 

 OTSU-N FCM ITS Active contours 

RI 0.689 0.692 0.569 0.712 
VI 2.871 2.870 3.551 2.871 
AUC 0.874 0.897 0.655 0.912 
MSE 33.255 31.215 33.655 25.211 

Note: For each configuration, the best result is italicised. 
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5 Conclusions 

Regarding a fact that a number of the premature infants recently have had a grown 
tendency, an early diagnostic of the RoP is an important step to prevent the child 
blindness. For a correct diagnostic it is necessary to physician be aware about a state of 
the immature retina. Therefore, it is necessary to achieve the best observations of the 
pathological spots on the retinal images in a comparison with the native retinal images. 
The retinal lesions extraction brings an objectification of the subjective diagnosis in a 
form of the feedback of a ration between the respective retinal lesions to the OD. 

A model of the retinal lesions and the OD is based on a complex method comprising 
several steps. An important part is the retinal image preprocessing ensuring better image 
features of the retinal lesions and the OD. This part of the algorithm enhances the retinal 
object boundaries and contrast among the retinal objects and the image background. It is 
supposed that an effect of the segmentation is strongly depended on a quality of the input 
retinal records. Segmentation is carried out in a form of time evolving curve iteratively 
approximating an area of the retinal lesion and the OD. In a final step of the model, the 
binary classification is carried out. The snake model generates the energy map classifying 
the spatial image area into two parts depending on the energy convention. Inside of the 
snake, the energy is negative, contrarily outside, the energy is positive. By this selective 
approach we can classify the pixels belonging to the object being segmented. 

From the clinical point of a view, the most important result of the segmentation is the 
geometrical features extraction of the retinal objects. For this task, we calculated an area 
and radius of the OD and the retinal lesions. Clinical experts suppose that the OD 
geometrical parameters should be stable over the time. It means that the OD can be 
considered from the first retinal image record. On the other hand the retinal lesions have 
tendency to spread over the time. Clinicians often track a time evolution of the retinal 
lesions subjectively in a comparison with the OD radius, or other geometrical features. 
The proposed model of the retinal structures allows for a modelling of the retinal lesions 
including the radius and the area extraction. This application brings objective feedback to 
clinical practice. 

Lastly, we have compared an application of the active contour model on the  
RetCam 3 image records with other segmentation methods (OTSU-N, FCM and ITS) well 
representing the state of the art of the regional segmentation. A quantitative comparison 
has been carried out by the RI, VI, AUC and MSE parameters. Except for the VI 
parameter, the active contour method achieves the best results in a comparison with other 
methods. It can also be noted that the FCM method appears to be more effective than 
OTSU-N. This fact is probably caused by the hard thresholding utilised by the OTSU-N. 
The analysed retinal structures are often badly observable and detectable as well. It is 
especially caused by a lower resolution and contrasts therefore, the hard thresholding 
methods produce less accurate results. An important issue of the retinal image processing 
is also the retinal lesion brightness spectrum overlap with the retinal blood vessels. The 
multiregional segmentation methods often classify those retinal objects to a same class 
thus, the segmentation result is overestimated it is a cause of a less accuracy of the 
multiregional segmentation. Judging by the stated facts, the active contour method 
appears as suitable instrument for the retinal structures modelling. 
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