

 Int. J. Digital Enterprise Technology, Vol. 1, Nos. 1/2, 2018 37

 Copyright © 2018 Inderscience Enterprises Ltd.

Solving problems on a knowledge model of operators
and application

Hien D. Nguyen*
University of Information Technology,
VNU-HCM,
Quarter 6, Linh Trung Ward, Thu Duc District,
Ho Chi Minh City, Vietnam
Email: hiennd@uit.edu.vn
and
National Institute of Informatics,
2 Chome-1-2 Hitotsubashi, Chiyoda,
Tokyo 101-8430, Japan
*Corresponding author

Nhon V. Do and Vuong T. Pham
University of Information Technology,
VNU-HCM, Vietnam
Email: nhondv@uit.edu.vn
Email: vuongpt@uit.edu.vn

Katsumi Inoue
National Institute of Informatics,
2 Chome-1-2 Hitotsubashi, Chiyoda,
Tokyo 101-8430, Japan
Email: inoue@nii.ac.jp

Abstract: Knowledge of operators is useful to build the intelligent problem
solver for knowledge domains about computing. In this paper, we present a
mathematical approach for building a knowledge model of operators, called
Ops-model. The foundation of this model includes: concepts, operators, and
inference rules. Each concept of this model is a class of objects with the
behaviours for solving problems on themselves. General problems on this
model are also studied, such as: reducing an expression, prove an equality of
expressions. The algorithms for solving these problems are also designed.
Ops-model has been applied to specify a part of knowledge domain about
vector algebra in high school. It is used to construct a program for solving
some problems on this knowledge domain. The solutions of this program are
step-by-step, readable and suitable with the learners’ level. It is useful for
supporting students to learn this subject.

Keywords: knowledge representation; intelligent problem solver; automated
reasoning; knowledge engineering; intelligent system; expert system;
knowledge-based system; intelligent computing; digital enterprise.

 38 H.D. Nguyen et al.

Reference to this paper should be made as follows: Nguyen, H.D., Do, N.V.,
Pham, V.T. and Inoue, K. (2018) ‘Solving problems on a knowledge model
of operators and application’, Int. J. Digital Enterprise Technology, Vol. 1,
Nos. 1/2, pp.37–59.

Biographical notes: Hien D. Nguyen is currently a Lecturer in Faculty of
Computer Science at the University of Information Technology, VNU-HCM,
Vietnam. His research interests include knowledge representation, automated
reasoning, knowledge engineering, especially the intelligent systems in
education, such as intelligent problem solver.

Nhon V. Do is currently an Associate Professor at the University of
Information Technology, VNU-HCM, Vietnam. His research interests include
artificial intelligence, computer science, and their practical applications,
especially intelligent systems and knowledge base systems.

Vuong T. Pham is currently a Lecturer in Software Engineering Faculty at the
University of Information Technology, VNU-HCM, Vietnam. His research
interests include artificial intelligence, software engineering, and game
development.

Katsumi Inoue is a Full Professor at the National Institute of Informatics (NII)
and SOKENDAI in The Graduate University for Advanced Studies, and is a
Specially Appointed Professor at the Tokyo Institute of Technology, Japan. His
research interests include artificial intelligence, logic programming and
computer science.

This paper is a revised and expanded version of a paper entitled ‘Method for
solving problems on a knowledge model of operators’ presented at 2016 IEEE
Conference on e-Learning, e-Management and e-Services (IC3e 2016),
Langkawi, Malaysia, 10–12 October 2016.

1 Introduction

Knowledge base and inference engine are important components in intelligent systems.
Among practical applications, a popular kind of the knowledge is computational
knowledge domain. This knowledge domain contains the component about operators. It
helps to improve the accuracy of representation the knowledge of operators between
objects. There are many methods for knowledge representation, such as: first order logic,
description logic, rule-based systems, conceptual graph and ontology (Harmelem et al.
2008; Kent, 2013). Some knowledge models of operators have been proposed and applied
in the knowledge domains of operators.

Formal model of knowledge about operators is very necessary for knowledge
representation. This formal model would be a framework for designing knowledge based
system of computational knowledge. There are many studies for researching this, but
most of them have limitations, thus they are very difficult to apply in practice.

In this paper, a mathematical approach for building the structure of a knowledge
model of operators has been presented. This model, namely ops-model, represents
knowledge of operators between objects. The foundation of this model includes concepts,
operators, and inference rules of knowledge. Each concept is an abstract structure that

 Solving problems on a knowledge model of operators and application 39

includes attributes, equation and deductive rules; and objects in concept have been
equipped behaviour to solve some problems on object. This model also refers to unary
and binary operators and their characteristics: commutation, association, identity. In
addition, the definition abut transforming an expression, simpler relation between two
expressions are presented. The classes of the general problems in the knowledge of
operators and their specification are also studied in this model. Besides that, the
algorithms for solving these problems are built and proved their effectiveness.
Furthermore, ops-model is applied to specify a part of knowledge domain of vector
algebra in high school and construct an intelligent problem solver for solving some
problems in this knowledge domain. Its solutions are step-by-step, readable and suitable
with the learners’ level.

2 Related work

Knowledge of operator is a popular form of knowledge domains, especially
computational knowledge domains. In linear algebra, the operators between matrixes,
vectors, vector spaces, linear maps are foundation of this knowledge domain (Anton and
Rorres, 2010). In vector algebra, the summary, inner products, cross product between
vectors are basic tools for solving the problems in mathematics curriculum (Varberg
et al., 2003; Vietnam Ministry of Education and Training, 2013). In knowledge domain
about direct current electrical circuits, the parallel and series connections between
circuits, capacitors are the operators between these objects (Kuphaldt, 2017). However,
these current knowledge models are not effective for representation practical
applications.

Yang and Cai (2008) built the mathematical structure of knowledge representation
based on extension rules, which particularly aimed to solve contradiction problems with
formal model. Nevertheless, the extension rules model was not effective for representing
real knowledge domains and this model also did not include operators.

The authors represent a method to simplify trigonometric expressions by using
combination rules (Fu et al., 2006). However, the knowledge base of this method is setup
by rule-based system, thus it can only be used for trigonometric polynomials. This model
still has many limitations. In particular, it has not yet considered to represent the
knowledge of operators.

Grefenstette (2013) and Sakama et al. (2017) use the linear algebraic approach to
represent the operators in logic. These operators and their relations are represented by the
matrixes and tensors. Nonetheless, these methods cannot use to represent the
transforming of a logical expression and the application of them to represent the real
knowledge domain is difficult.

Besides, some methods for automated theorem proving have been studied, such as:
using Groebner bases (Roanes-Lozano et al., 2009), algebraic structure based on temporal
logics (Cordero, 2004), etc. However, these methods cannot represent knowledge
domains precisely. In addition, they also cannot perform the way of human’s thinking to
solve problems.

The other research, Knyazhansky (2012) solved the problem about the information
equivalence of knowledge by constructing the automorphic of knowledge-base.
Nonetheless, the knowledge domain in this study is too simple to apply in practice.

 40 H.D. Nguyen et al.

Recently, the research in Wang (2015) has built an algebraic structure for concepts
with relational operators and compositional operations between concepts. This paper
develops a visualised knowledge representation tool for concept algebra. Besides that, the
authors in (Valipour and Wang, 2016) improved the formal properties and rules of the
relational, reproductive, compositional operations of formal concepts. These properties
can be applied for cognitive machine learning. However, these results are theoretical
foundation, they have not yet been applied in practical application.

In the other research, Tulceanu (2016) used concept algebra for designing a reasoning
mechanism on images. However, this application does not consider the problems
about computation and operators, thus it cannot apply for knowledge domain about
computation.

The COKB model has been used to perform many kinds of practical knowledge
domains and to construct intelligent systems (Do, 2015). Nevertheless, the operator’s
component was not sufficiently studied in COKB. Do and Nguyen (2015) have presented
a reduce model of COKB. This model improved the operators’ component in COKB, and
it also solved problems such as: specification of operators and object determination. This
model has been applied to represent the knowledge about direct current electrical circuits.
Nonetheless, the components of this model have not yet been described in detail; some
operator-related problems were not solved: Reducing an expression and Transforming an
expression.

3 Knowledge model of operators

The knowledge of operators between objects plays an important role in real knowledge
domains, especially computational knowledge. In this section, a knowledge model about
operators is presented. This model includes concepts, operators, and inference rules of
knowledge.

In this paper, some symbols are used:

Ñ : set of real numbers

var(u): set of variables in express u

The knowledge model about operators, called ops-model, consists of three components:

= (C, Ops, Rules)K

In which, C is a set of concepts, each concepts in C is a class of objects with their
behaviours to solve problems on themselves. R is a set of relations on the concepts. Ops
is a set of operators; each operators is a unary or binary mapping, we consider the
properties of it are: commutative, associative, identity. Rules is a set of inference rules. A
rule in this model is one of two forms: deductive rule and equivalent rule.

3.1 The components in ops-model

3.1.1 Structure of components

The components of ops-model have been modelled as followed table.

 Solving problems on a knowledge model of operators and application 41

Table 1 Structure of ops-model

Ru
le

s
Le

ve
l

C

O
ps

Ru

le
de

du
ce

 ∪
 R

ul
e e

qu
i

•
Se

t o
f r

ea
l n

um
be

r
Ñ

•

O
pe

ra
to

rs
 b

et
w

ee
n

re
al

 n
um

be
rs

 Ñ

•
Fo

rm
 1

: r
 ∈

 R
ul

e d
ed

uc
e,

r i
s a

n
de

du
ct

iv
e

ru
le

, r

ha
s t

he
 fo

rm

•
Th

e
ba

sic
 c

on
ce

pt
s

•
O

pe
ra

to
rs

 b
et

w
ee

n
co

nc
ep

ts
 in

 C
(0

)
u (

r)
=

{f
1,

f 2
, …

, f
p}

 →
 {

q 1
, q

2,
…

, q
k}

 =
 v

(r
)

1
Th

e
ba

sic
 c

on
ce

pt
 c

 h
as

 b
ee

n
bu

ilt
 b

as
ed

 o
n

a
se

t
of

 e
le

m
en

ts
. T

hi
s s

et
 is

 a
n

in
st

an
ce

 se
t,

de
no

te
 I c

.
1

2
(0

)
(0

)
(0

)
O

O
O

=
∪

w

he
re

 f i
, q

i
ar

e
fa

ct
s o

f m
od

el
, i

n
w

hi
ch

, k
in

ds

of
 fa

ct
 h

as
 b

ee
n

cl
as

si
fie

d
as

 d
ef

in
iti

on
 2

.3

2
Ic

 ≠
 Ø

In

 w
hi

ch
:

1
Se

t o
f u

na
ry

 o
pe

ra
to

rs

1 (0
)

O
:

•
Fo

rm
 2

: r
 ∈

 R
ul

e e
qu

i,
r i

s a
n

eq
ui

va
le

nt
 ru

le
, r

 h
as

th

e
fo

rm

1
ci

ck
(0

)
(0

)
O

{
:I

I
|c

i,
ck

C
}

⊂
⊕

→
∈

g

=
h

2
Se

t o
f b

in
ar

y
op

er
at

or
s

2 (0
)

O

w
he

re
 g

, h
 a

re
 e

xp
re

ss
io

ns
 o

f o
bj

ec
ts

C
(0

)

3
Ea

ch
 o

 ∈
 I c

, o
 is

 a
n

ob
je

ct
 o

f c
on

ce
pt

 c

2
ci

ci
ck

(0
)

(0
)

O
{

I
I

I
|c

i,
cj

,c
k

C
}

⊂
⊗

×
→

∈

D
en

ot
e:

 le
ft(

r)
 =

 g

(A
ttr

s,
Eq

O
bj

, R
ul

es
O

bj
)

•
O

pe
ra

to
rs

 b
et

w
ee

n
co

nc
ep

ts
 in

 C
(0

) a
nd

 C
(1

):
1

At
tr

s i
s a

 se
t o

f a
ttr

ib
ut

es
:

1
2

(1
)

(1
)

(1
)

O
O

O
=

∪

Ø
 ≠

 A
ttr

s ⊂
 {

x i
, i

 =
 1

…
n

| x
i ∈

 I c
i,

ci
∈

 C
(0

)}

In
 w

hi
ch

:

2
Eq

O
bj

 is
 a

 se
t o

f e
qu

at
io

ns
 b

et
w

ee
n

of
 a

ttr
ib

ut
es

:
1

Se
t o

f u
na

ry
 o

pe
ra

to
rs

1 (1

)
O

Eq
O

bj
 ⊂

 {
g

=
h

| g
, h

 a
re

 e
xp

re
ss

io
ns

, v
ar

(g
) ⊆

 A
ttr

s,
va

r(h
) ⊆

 A
ttr

s}

1
ci

ck
(0

)
(1

)
(1

)
O

{
:I

I
|c

i,
ck

C
C

}
⊂

⊕
→

∈
∪

3
Ru

le
sO

bj
 is

 a
 se

t o
f d

ed
uc

tiv
e

ru
le

s o
f c

on
ce

pt
:

2
Se

t o
f b

in
ar

y
op

er
at

or
s O

2(
1)

:
2

ci
ci

ck
(0

)
(1

)
(1

)
O

{
:I

I
I

|c
i,

cj
,c

k
C

C
}

⊂
⊗

×
→

∈
∪

C
(1

)

R
ul

es
O

bj
 ⊂

 {
u→

v
| u

,v
 a

re
 se

ts
 o

f a
ttr

ib
ut

es
,

va
r(u

) ⊆

A
ttr

s,
va

r(
v)

 ⊆
 A

ttr
s,

u
 v

 =
 Ø

}
Ea

ch
 o

pe
ra

to
r i

s c
he

ck
ed

 it
s p

ro
pe

rti
es

: c
om

m
ut

at
io

n,

as
so

ci
at

io
n,

 id
en

tit
y.

rig
ht

(r)
 =

 h

 42 H.D. Nguyen et al.

Table 1 Structure of ops-model (continued)

Ru
le

s
Le

ve
l

C

O
ps

Ru

le
de

du
ce

 ∪
 R

ul
e e

qu
i

(A
ttr

s,
Eq

O
bj

, R
ul

es
O

bj
)

•
O

pe
ra

to
rs

 b
et

w
ee

n
co

nc
ep

ts
 in

 C
(0

),
C

(1
),

 a
nd

 C
(2

)
•

Fo
rm

 1
: r

 ∈
 R

ul
e d

ed
uc

e,
r i

s a
n

de
du

ct
iv

e
ru

le
, r

 h
as

 th
e

fo
rm

1
Ø

 ≠
 A

ttr
s ⊂

 {
x i

, i
 =

 1
…

 n
 |

x i
 ∈

 I c
i,

ci
 ∈

 C
(0

) ∪
 C

(1
)}

1

2
(2

)
(2

)
(2

)
O

O
O

=
∪

u (

r)
=

{f
1,

f 2
, …

, f
p}

 →
 {

q 1
, q

2,
…

, q
k}

 =
 v

(r
)

2
∃

x o
 ∈

 A
ttr

s,
∃c

xo
 ∈

 C
(1

),
x o

 ∈
 I c

xo

In
 w

hi
ch

:
w

he
re

 f i
, q

i
ar

e
fa

ct
s o

f m
od

el
, i

n
w

hi
ch

, k
in

ds
 o

f f
ac

t h
as

be

en
 c

la
ss

ifi
ed

 a
s d

ef
in

iti
on

 2
.3

3
Eq

O
bj

 ⊂
 {

g
=

h
| g

, h
 a

re
 e

xp
re

ss
io

ns
, v

ar
(g

) ⊆

A
ttr

s,
va

r(
h)

 ⊆
 A

ttr
s}

1

Se
t o

f u
na

ry
 o

pe
ra

to
rs

1 (2

)
O

1
ci

ck
(0

)
(1

)
(2

)
(2

)
O

{
:I

I
|c

i,
ck

C
C

C
}

⊂
⊕

→
∈

∪
∪

•

Fo
rm

 2
: r

 ∈
 R

ul
e e

qu
i,

r i
s a

n
eq

ui
va

le
nt

 ru
le

, r
 h

as
 th

e
fo

rm

2
Se

t o
f b

in
ar

y
op

er
at

or
s

2 (2
)

O

g
=

h

2
ci

cj
ck

(0
)

(1
)

(2
)

(2
)

O
{

:I
I

I
|c

i,
cj

,c
k

C
C

C
}

⊂
⊗

×
→

∈
∪

∪
w

he
re

 g
, h

 a
re

 e
xp

re
ss

io
ns

 o
f o

bj
ec

ts

D
en

ot
e:

 le
ft(

r)
 =

 g

C
(2

)

4
R

ul
es

O
bj

 ⊂
 {

u→
v

| u
,v

 a
re

 se
ts

 o
f a

ttr
ib

ut
es

,
va

r(u
)

⊆
 A

ttr
s,

 v
ar

(v
) ⊆

 A
ttr

s,
u

 v
 =

 Ø
}

Ea
ch

 o
pe

ra
to

r i
s c

he
ck

ed
 it

s p
ro

pe
rti

es
: c

om
m

ut
at

io
n,

as

so
ci

at
io

n,
 id

en
tit

y.

rig
ht

(r)
 =

 h

 Solving problems on a knowledge model of operators and application 43

3.1.2 Length of expression

Definition 3.1: definition of expression

<expr>::= o | ⊕ <expr> | <expr>⊗<expr>

o: object

⊕: unary operator ⊗: binary operator

If ⊗ is associative then: (p, q, r are expressions)

p ⊗ q ⊗ r = (p ⊗ q) ⊗ r = p ⊗ (q ⊗ r)

Definition 3.2: length of an expression

Let g be an expression, length(g) – length of expression g – is computed like this:

a if g only has object x then:

length(g) = 1 if x ∈ Ic and c ∈ C(0)

length(g) = 2 if x ∈ Ic and c ∈ C(1)

length(g) = 3 if x ∈ Ic and c ∈ C(2)

b if g = ⊕ f, which f is expression, and operator ⊕ is an unary operator, then:

length(g) = length(f) + 1

if g = f ⊗ h, which f, h are expressions, and ⊗ is a binary operator, then:

length(g) = length(f) + length(h)

Definition 3.3: Let p is an expression, we define a tree T(p) to represent p inductively as
follows:

a if p is an object, then T(p) is a single node labelled with p

b if p = ⊕q, where ⊕ is an unary operator and q is an expression, then T(p) is a tree
with the root labeled with ⊕ whose immediate successor is T(q)

c if p = q Θ r, where Θ is a binary operator, q and r are expressions, then T(p) is a tree
with the root labeled with Θ which has two immediate successors T(q) and T(r).

d if p = q1 ⊗ q2 …⊗ qk, where ⊗ is a associative binary operator and qj (j = 1 …k) are
expressions, then T(p) is a tree with ⊗ is the root labelled which has k immediate
successors T(q1), …, T(qk).

Definition 3.4: let two logical expressions p and q:

p is a sub-expression of q ⇔ T(p) is a sub-tree of T(q)

Definition 3.5: let two expressions p and q, a relation ‘simpler than’ (<<) is a binary
relation such that:

Height(T(p)) Height(T(q))
if and only if

length() length()
p q

p q
≤⎧

<< ⎨ ≤⎩

with Height(T(expr)) is the height of tree T(expr).

 44 H.D. Nguyen et al.

The relation ‘simpler than’ has properties are: reflexive and transitive.

3.2 Unification of facts

Definition 3.6

a Classify kinds of facts

Kind Meaning Specification Condition

1 Information about object kind x:c x ∈ S*, c ∈ C
2 Determination an object x x ∈ Ic, c ∈ C

x ∈ Ic, c ∈ C 3 Determination an object by a value
or a constant expression

x = <const>

<const>: constant
4 Equality on objects x = y x, y ∈ Ic, c ∈ C

x ∈ Ic, c ∈ C 5 Dependence of an object by an
expression.

x = <expr>

<expr>: expression
<expr1>: expression 6 Equality of expressions <expr1> = <expr2>
<expr2>: expression

b The unification of two facts

Give two facts f1 and f2, they are unified, ≅, when they satisfy the following conditions:
1 f1 and f2 have them same kind k, and
2 if k = 1, 2: f1 = f2

if k = 3:

left(f1) ≅ left(f2) and compute(right(f1)) = compute(right(f2))

if k = 4:

(left(f1) ≅ left(f2) and right(f1) ≅ right(f1))

or (left(f1) ≅ right(f2) and right(f1) ≅ left(f2))

if k = 5, 6:

simplify(expand(left(f1) – right(f1) – left(f2) + right(f2))) = 0 or

simplify(expand(left(f1) – right(f1) + left(f2) – right(f2))) = 0

which
• compute(expr): compute the value of the expression expr.
• simplify(expr): simplify the expression expr.
• expand(expr): expand the expression expr.

c Relations on set of facts

Let x be a fact, A and B are sets of facts, the relations between them have been defined as
followed:

 Solving problems on a knowledge model of operators and application 45

x ʘ A ⇔ ∃ g ∈ A, x ≅ g A B = {x| x ʘ A ʘ x ʘ B}

A B ⇔ ∀x ∈ A, x ʘ B A B = {x| x ʘ A ʘ x ʘ B}

A ≅ B ⇔ A B ˄ B A A\B = {x| x ʘ A ʘ not(x ʘ B)}

4 Model of problem and algorithms

4.1 Model of problem and solution

Definition 4.1: model of problems

a Kind 1: model of problems consists of three sets below:

O = {O1, O2, …, Om}, the set of objects in the problem.

F = {f1, f2, …, fn}, the set of facts

G = {‘KEYWORD’: expr} with ‘KEYWORD’ is a keyword of the goal and expr is
an expression, ‘KEYWORD’ may be the followings:

• ‘determine’: it means to determine an expression or an object
• ‘compute’: it means to determine the value of an expression
• ‘reduce’: it means to reduce the expression.

The problem will be denoted by (O, F) → G

b Kind 2: model of problems has the form:

(,), →O F E G

where

E = {expr1, expr2, …, exprp} is the set of expressions between objects in O.

G = {‘KEYWORD’: expr} with ‘KEYWORD’ may be the followings:
• ‘prove’: it means to prove an equality of expressions
• ‘transform’: it means to transform an object into an expression between certain

objects.

Problems in kind 1 with goals are: determine an object and compute values of an attribute
were studied and solved in Do and Nguyen (2015). In this paper, we will study the
methods for solving the other problems in kinds 1 and 2.

Definition 4.2: transform an expression.

1 Let expr, s, u be expressions.

Denote: subs(expr, s, u) is a new expression that is substituted u for s in the expression
expr.

2 Let f be an expression, f has a sup-expression g and an equivalent rule r.
• f can be transformed by rule r if g is a side of r.

a if g = left(r): Let r(f) = subs(f, g, right(r))

 46 H.D. Nguyen et al.

b if g = right(r): Let r(f) = subs(f, g, left(r))
• OR f can be transformed by rule r if ∃ a variable po in r and an expression eo

such that g is a side of subs(r, po, eo)
a if g = left(subs(r, po, eo)):

Let r(f) = subs(f, g, right(subs(r, po, eo)))
b if g = right(subs(r, po, eo)):

Let r(f) = subs(f, g, left(subs(r, po, eo)))

An object in ops-model has basic behaviours for solving problems on its attributes.
Determining the closure of a set of object’s facts is most important behaviour.

Definition 4.3: the closure set of object’s facts:

Let Obj = (Attrs, EqObj, RulesObj) be an object of a concept in C, and A is a set of facts
on object Obj

a if e ⊂ EqObj: e is an equation system between k variables {x1, x2, …, xk} ⊆ Attr

e can be applied to A if from facts of kind 3, 4 and 5 in A, we have:
• e can be solved to compute the values of {x1, x2, …, xk}.

Let e(A) = A {x1, x2, …, xk}
• OR e can be produced new relations as equation between {x1, x2, …, xk}

Let:

is kind 3

e(A) A subs(e, left(), right())
f A

f

f f
∈

=

b If g ∈ RulesObj: g is a deductive rule, g has form: u(g) → v(g)

g can be applied to A if u(g) A. Let g(A) A v(g)=

c Let r0(A) = A and s = [r1, r2, …, rm] with rk ∈ RulesObj or rk ⊆ EqObj, s is called
object deduce if satisfies three conditions:
1 ∀k, m, rk can be applied to rk–1(A).

Let rk(A) = rk(rk–1(A))
2 ∀r ∈ RulesObj\{r1, r2, …, rm}, r cannot be applied on rm(A).
3 ∀r ⊆ EqObj\{r1, r2, …, rm}, r cannot be applied on rm(A)

Let DObj(A) = {s = [r1, r2,…, rm] | s is an object deduce}

d Let: Obj.Closure(A): = rm(A)

Obj.Deduce(A): = dA, with dA ∈DObj(A) and card(dA) = min{card(s) | s ∈ DObj(A)}

Definition 4.4: let knowledge domain K = (C, Ops, Rules) as ops-model, Obj = (Attr,
EqObj, RuleObj) is an obiect of concepts in C, rule r ∈ Rules and A is a set of facts.

a Let A|Obj = {f ∈ A | var(f) ⊆ Obj.Attrs}

Obj(A) = Obj.Closure(A|Obj)

 Solving problems on a knowledge model of operators and application 47

b if r ∈ Rulededuce: r has the form: u(r) → v(r)

r can be applied on A if u(r) A

Let r(A) A v(r)=

c if r ∈ Ruleequi: r is an equation of k objects, r has form g(x1, x2, …, xi) =
h(xi + 1, xi + 2, …, xk) with xi is an object. (i = 1, …, k)

*r can be applied on A if:
1 1 2 kcard(A {x , x , , x }) k 1= −K

Let 1 2 kr(A) A {x , x , , x }= K

2 OR ∃ f ∈ A, f can be transformed by r.

Let r(A) A \{f} {r(f)}=

Definition 4.5: let knowledge domain K = (C, Ops, Rules) as Ops-model, give a problem
S on Ops-model. Suppose D = [d1, d2, …, dk] is a list of elements which dj ∈ Rules or dj
∈ O. Denote: F0 = F, F1 = d1(F0), F2 = d2(F1), …, Fk = dk(Fk–1) and D(F) = Fk.

A problem S is called solvable if there is a list D such that G ⊆ D(F). In this case:

∀ j = 1, …, k:

• If dj ∈ Rules
1 If dj is a deduce rule: stepj = [dj, u(dj), v(dj)]
2 If dj is an equivalent rule: stepi = [dj, fj, dj(fj)] with fj ∈ Fj–1 and fj can be

transformed by dj.

• If dj ∈ O: stepj = [dj, Fj–1, dj(Fj–1)\Fj–1]

Let Sol = [step1, step2, …, stepk] and Sol is a solution of problem S.

4.2 Algorithms for solving problem

Algorithm 4.1: let Obj = (Attrs, EqObj, RulesObj) be an object as section II and A be a
set of facts related to Obj. This algorithm is determine Obj.Closure(A).

Input Object Obj = (Attrs, Facts, RulObj), A is a set of facts related to Obj.

Output Obj.Closure(A).

Step 0 flag := true;
 KnownFacts := A;
Step 1 Searching rules in Obj.RulObj can be applied based on KnownFacts
 while (flag!=false) do
 2.1 if (rule r can be found) then
 for e in v(r) do
 KnownFacts := KnownFacts {e};
 if (new facts can be determined from KnownFacts) then

 48 H.D. Nguyen et al.

 Determining new facts from facts in KnownFacts by apply reasoning
rules;

 end if;
 end do;
 end if;
 2.2 if (rule r cannot be founded) then
 flag := false;
 end if;
 end do;
Step 2 Searching rules in Obj.EqObj can be applied
 flag:=true;
 while (flag!=false) do
 flag:=false;
 for e ⊂ Obj.EqObj do
 if (e can be applied to KnownFacts) then
 flag:=true;
 KnownFacts := KnownFacts e(KnownFacts);

 end if;
 end do;
 end do;
Step 3 Obj.Closure(A) := KnownFacts

Algorithm 4.2: algorithm for proving an equality of expressions

Let knowledge domain K = (C, Ops, Rules) as Ops-model, and the problem S = (O, F), E
→ G as definition 3.1b, this algorithm will prove an equality of expressions. The solution
of problem S has been found though these steps:

Input (O, F), E → G with E = {f, g}

Output The solution of the proof: f = g

Step 0 KnownFacts := F;
 Sol := [];
 Solution_found := false;
 flag:=true;
Step 1 Use objects in O and facts of KnownFacts to determine the closure of a set of object’s

facts by using algorithm 4.1
 while not(Solution_found) do
 for Obj in O do
 if (object Obj produces new facts) then
 KnownFacts := KnownFacts Obj.Closure(KnownFacts)
 Sol:= [op(Sol), Obj];

 Solving problems on a knowledge model of operators and application 49

 if (G KnownFacts) then

 Solution_found := true;
 end if;
 end if;
 end do; #for
 end do; #while
Step 2 Searching rule in Rules-set can be applied based on KnownFacts
 while (flag!=false) and not(Solution_found) do
 flag:=false;
 f1 := f;
 2.1 if (rule r can be found) and (r ∈ Ruleequi) then
 flag:=true; Sol:=[op(Sol), r];
 if f1 << g then f1 := Expf1; # Expf1 is defined as definition 4.6
 else f1 := Reduf1; # Reduf1 is defined as definition 4.6
 end if;
 end if;
 2.2 if (rule r can be found) and (r ∈ Rulededuce) then
 flag := true;
 Sol:=[op(Sol), r];
 for e in v(r) do
 KnownFacts := KnownFacts {e};
 if (new facts can be determined from KnownFacts) then
 Determining new facts from facts in KnownFacts by apply

reasoning rules;
 end if;
 end do;
 end if;
 2.3 if (G KnownFacts) then

 Solution_found := true;
 end if;
 2.4 if (rule r cannot be founded) then
 Flag := false;
 end if;
 end do;
Step 3 if (Solution_found) then
 From list Sol, build the solution of this problem.;
 else
 There is no solution was found;
 end if;

 50 H.D. Nguyen et al.

Definition 4.6: let an expression g:

• Simple_Expand(g) := [r1, r2, …, rk] is a list of equivalent rules in Ruleequi such that:

()
0

1
1

with 1,i i
i i i

g g
g g i k

g r g+
−

=⎧
<< =⎨ =⎩

Denote: Expg = gk

• Simple_Reduce(g): = [r1, r2, …, rm] is a list of equivalent rules in Ruleequi such that:

()
0

1
1

with 1,i i
i i i

g g
g g i m

g r g+
−

=⎧
<< =⎨ =⎩

Denote: Redug = gm

Algorithm 4.3: Algorithm for reducing an expression

Let knowledge domain K = (C, Ops, Rules) as Ops-model, give the problem S = (O, F)
→ G. The problem S has the goal is reducing the expression f, G = {Reduce: expr}, it
means searching the expression g satisfies:

expr , exprg and h h g h≡ ∀ ≡ ⇒ <<

Input (O, F) → G with G = {Reduce: expr}

Output g

The idea of this algorithm: this algorithm uses equivalent rules to simplify expression
expr as simple as possible. We get the new expression, called min. After that, the
expression min will be expanded and reduced the expansion expression, we get the
expression h. If the new expression h is simpler than expression min, then record min by
h. The processing to expand the expression is repeated at most β times (β is constant).
The final result is expression g.

Constant β is chosen based on the sample space of common exercises in the
knowledge domain. For instance, in the knowledge domain about vector algebra, the
expressions can be simplified at most β times for the expansion. Thus, we choose β = 7.

Step 1 Setup initial values for variables. 2.2 Simple reducing of temp_expr
 h:= Redutemp_expr;

//g is a result of simplification
process of f

Old_expr := Old_expr {h};

 if h << min then

//min is an expression whose
length is shortest in each step.

 min := h;

 D:=D ∪ Simple_Reduce(temp_expr); // D is a list of rules that deduce to
the solution of the problem.

 count := 0;

//Old_expr is a set of old
expressions

 else

 g:= expr; count := count +1;
 min:=g; end: # 2.2
 D:=[]; g := h;

 Solving problems on a knowledge model of operators and application 51

 Old_expr := {expr}; Go to step 2.
Step 2 Step 3
 g := min;

Use the heuristic rule to search the
equivalent rules for transforming
an expression.

From list D, build the solution of this
problem.

 Combine simple reducing and
simple expansion until get shortest
expression or count >β.

return g;

 2.1 Simple expansion of g.
 Old_expr := Old_expr {g}
 D:= D ∪ Simple_Expand(g);

 if Expg ∉ Old_expr then

 temp_expr := Expg;
 else
 goto Step 3.
 end: # 2.1

4.3 Theorems

Lemma: given a knowledge domain K = (C, Ops, Rules) as ops-model, and hypothesis
(O, F) of a problem on this model. There exists an unique maximum set L(O, F) such that
it contains all expression that can be deduced from (O, F).

Theorem 4.1: let a knowledge domain K = (C, Ops, Rules) as model of operators, and a
problem P = (O, F) → G on this model. The following statements are equivalent:

1 Problem P is solvable.

2 G ⊆ L(O, F)

3 There exists a list D such that G ⊆ D(F)

This theorem shows that forward chaining reasoning will deduce to goals of problems.
Besides, algorithms 4.1 and 4.2 were designed based on forward chaining reasoning, so
this theorem is ensure the effectiveness of these algorithms.

Theorem 4.2: give the problem P = (O, F) → G in knowledge model of operators, with G
= ‘reduce: expr’. The complexity of algorithm 4.3 to solve this problem is:

()2.()O n l d+

In which

l = length(expr)

n = number of equivalent rules in rules-set.

d = max{abs(length(left(r)) – length(right(r))) | r is an equivalent rule}

 52 H.D. Nguyen et al.

5 Applications

5.1 Design knowledge base of vector algebra

Based on knowledge about vector algebra in high school has been mentioned in textbook
of (Vietnam Ministry of Education and Training, 2013), a part of this knowledge domain
can be represented by Ops-model. This knowledge base has also been used to build the
program for solving the problems about vector expressions automatically.

1 C–set of concepts: the set C consists of concepts such as ‘point’, ‘vector’, ‘segment’,
‘triangle’ and ‘quadrangle’.

Eg. 4.1: C(0) = {ℜ, POINT, LINE}

C(1) = {SEGMENT, VECTOR}

Concept VECTOR ∈ C(1) has structure:

Attrs = {_A, _B, module}, which:

_A, _B: POINT

module:Ñ ;

EqObj = {module = Segment(_A,_B)}

RulesObj = { }

C(2) = {ANGLE, TRIANGLE and types of it, QUADRANGLE and types of it,
CIRCLE, …}

Concept PARALLELOGRAM ∈ C(2) consists of:

Attrs = {A, B, C, D, a, b, c, d, S, p...}

A, B: POINT

a, b, c, d: SEGMENT

S, p: ℜ

EqObj = {Angle(A)+ Angle(B)+ Angle(C)+ Angle(D) = 360,

, ,

, }

AB DC AD BC

AC AB AD BD BA BC

= =

= + = +

uuur uuur uuur uuur

uuur uuur uuur uuur uuur uuur
K

RulesObj = {{a = b}→ {ABCD: RHOMBUS},

{e = f} → {ABCD: RECTANGLE}}

 Solving problems on a knowledge model of operators and application 53

Figure 1 Parallelogram

2 Ops–set of operators between concepts

Ops-set includes these operators as followed:
Table 2 Operators in vector algebra

Operator Meaning Arguments Return Properties

+ Sum of vectors Vector × Vector Vector Commutative
associative identity

* Product between a real
number and a vector

Ñ × Vector Vector

. Inner product of vectors Vector × Vector Ñ Commutative

o Cross product of vectors Vector × Vector Vector

3 Rules-set: rules in this model are classified of two forms: deductive rules and
equivalent rules.
a Some deductive rules in rules-set

R1: {AB: segment, M: point, M midpoint AB}

{ }10,
2

MA MB AM MB AB→ + = = =
uuur uuur r uuuur uuur uuur

R2: {u, v: vector, u ⊥ v} → {u.v = 0}

R3: {a,b,c: vector, c = a o b} → {c ⊥ a, c ⊥ b}

R4: {ABC: triangle, G: Point, G center of ABC} → { 0}GA GB GC+ + =
uuur uuur uuur r

R5: {ABC: triangle, M: Point, N: Point, M is midpoint AB, N is midpoint AC}

{ }1
2

MN BC→ =
uuuur uuur

 54 H.D. Nguyen et al.

b Some equivalent rules in rules-set

R6: A, B: Point, AB BA= −
uuur uuur

R7: A, B, C: Point, AB BC AC+ =
uuur uuur uuur

R8: u: vector, u2 = u.u = (u.module)2

R9: u, v: vector, u.v = u.module * v.module * cos(u, v)

R10: u, v: vector, uov = –vou

5.2 Design the inference engine of system

Model of problem in this knowledge base is defined as definition 4.1. This inference
engine can solve the practical problems with the solutions are naturally alike those of
human. Besides the above algorithms in Section 4.2, the program has been integrated the
heuristic rules for searching the solutions of the problems.

5.2.1 Heuristic rule about using sample problems

When dealing with a practical problem, a convenient way to proceed is considering
whether we have met a similar or related problem before or not. If so, then the solution
for the practical problem can be obtained effectively by using the results of the related
problem. The related problems are called sample problems (Do et al., 2013).

In the knowledge domain about vector algebra, the transforming on common
expressions has been uses as the sample problems in the processing of the expression.
Via this transforming, the algorithms can speed up to search the solution of the problems.
Some transforming for common expressions is as followed:

Eg. 4.2: some of sample problems have been used in this heuristic rule:

a (SP1): A, B, M: point
2 2

2

2 2

()

2. .

AB AB

AM MB

AM MB AM MB

=

= +

= + +

uuur uuur

uuuur uuur

uuuur uuur uuuur uuur

b (SP2): u,v, t: vector, v + t = 0
r

. . .()

. 0

0

u v u t u v t

u

+ = +

= ⋅

=

r

r

5.2.2 Arrange the order of rules in priority

When dealing with a practical problem, this heuristic rule arranges the order of inference
rules in knowledge base to apply. This arrangement will prioritise to apply the rules
which related with the facts in the practical problem. By using this heuristic rule, the

 Solving problems on a knowledge model of operators and application 55

processing of the program can omit the rules that do not need for solving the current
problem.

For designing inference engine of this system, determination the list of rule can be
done by these steps:

Input FactSet: set of currently facts in searching processing

Output ListRules: list of rules may be applied

Stage 1 Choose the rules in rules-set may be applied
 • Determine structure of rule r in rules-set
 • Based on FactSet and hypothesis of rule r, make facts database to store information

about facts in hypothesis.
 • Using Sort Merge Joint to make a joint between facts database by the same

columns.
 • If result of joint is not NULL then r may be applied, so record rule r into ListRules.
Stage 2 Arrange the order of ListRules
 • Sorting the rules in ListRules by:
 • Number of the facts in rule that related with the facts in FactSet.
 • If the rules are equivalent rules, sorting by the simpler (<<) relation
 • If the rules are deductive rules, the rules about midpoint, perpendicular or parallel

are priority.

5.3 Testing and experiments

5.3.1 Result of testing

The program for solving problems about Vector Algebra has been tested to solve the
exercises in the curriculum of the high-school mathematics in Vietnam (Vietnam
Ministry of Education and Training, 2013). Via the structure of this knowledge base, the
problems have been solved by using the transforming steps, replacement and deductive
rules. The solutions are step-by-step and readable. The reasoning uses the knowledge of
the student about this course. This program can solve some basic and advanced exercises.
It is useful for the studying of the students in Vector Algebra at the high school.

Eg. 4.3: (Prob. S1) let triangle ABC and point G be a centre of this triangle. Let point M.
Prove: MA2 + MB2 + MC2 = GA2 + GB2 + GC2 + 3MG2

1 Specification of problem:
• O:= {ABC: triangle, G: point, M: point}
• F:= {G centre of ABC}
• E:= {MA2 + MB2 + MC2, GA2 + GB2 + GC2 + 3MG2}
• G:= Prove: MA2 + MB2 + MC2 = GA2 + GB2 + GC2 + 3MG2

2 Solution of program:
2 2 2MA MB MC+ +

 56 H.D. Nguyen et al.

1 2 2 2
MA MB MC+ +
uuur uuur uuuur

 apply rule R8

2 () () ()
2 2 22

MG GA MG GB MG GC+ + + + +
uuuur uuur uuuur uuur uuuur uuur

apply rule R7

3 2 2 2 2
3 2. . 2. . 2. .MG GA GB GC MG GA MG GB MG GC+ + + + + +
uuuur uuur uuur uuur uuuur uuur uuuur uuur uuuur uuur

4 ()2 2 2 2
3 2. .MG GA GB GC MG GA GB GC+ + + + + +
uuuur uuur uuur uuur uuuur uuur uuur uuur

5 2 2 2 2
3 2. .0MG GA GB GC MG+ + + +
uuuur uuur uuur uuur uuuur r

 apply rule R4

6 2 2 2 23MG GA GB GC+ + + apply rule R8

In this example, steps 1–3 are applied the sample problem SP1 to expand the expression.
After that, steps 4–6 are applied the sample problem SP2 to simplify the expression in
step 3. Thus, this example can be solved fast.

Eg. 4.4: (Prob. S2) let parallelogram ABCD. Denote I is a midpoint of segment CD.

Transform: BI
uur

 into an expression of AB
uuur

 and AD
uuur

1 Specification of problem:
• O:= {ABCD: parallelogram, I: point}
• F:= {I midpoint CD}
• E := {}

• G:= Transform: BI
uur

 by ,AB AD
uuur uuur

2 Solution of program:

1 BI BA AD DI= + +
uur uuur uuur uuur

 apply rule R7

2 BA AB= −
uuur uuur

 apply rule R6

3 {DC:segment, I: point, I midpoint CD} { }1
2

DI DC→ =
uuur uuur

 apply rule R1

4 1
2

BI AB AD DC+ = +
uur uuur uuur uuur

5 {ABCD: parallelogram} { }DC AB→ =
uuur uuur

 properties of the
parallelogram

6 1
2

BI AB AD AB= − + +
uur uuur uuur uuur

7 1
2

BI AB AD= − +
uur uuur uuur

5.3.2 Experiments

The exercises are collected from the workbook of Ministry of Education and Training
(2013). They are classified to these kinds.

 Solving problems on a knowledge model of operators and application 57

• Kind 1: reduce an expression of vectors.

• Kind 2: prove the equation between two expressions.

• Kind 3: compute the value of an expression.

• Kind 4: transform a vector into an expression between certain vectors.

With the other programs for solving vector problems, they only solve the problems about
vector calculator. Symbolab (2017) can solve many kinds of problems in mathematics,
but it only solves the vector problems about computing the value of a simple expression.
(Woflfram|Alpha, 2017) can illustrate the results of vector calculator however they are
not the solution of the problems for the students.

The results for solving these kinds of problems are as this followed table.
Table 3 The ability for solving problems of the systems

Problem Kind 1 Kind 2 Kind 3 Kind 4 Total
Number of problems 20 21 15 7 63

Program for solving problems
about vector algebra

17 15 13 6 51

Symbolab 5 3 7 0 15

Number of
problems
can be
solved

Wolfram|Alpha 6 3 7 0 16

This program has been also examined by 161 students of three high-schools: two schools
in Ho Chi Minh City and one school in Binh Duong province, Vietnam. This survey is
also interested in four criteria: user-friendly interface, sufficient knowledge base, the
ability to solve problems and usefulness.

Firstly, each student chooses four exercises in the exercises which can be solved by
the program (51 problems), each kinds is one exercise. They receive the solutions of them
from the program. Secondly, they are requested to input other three exercises by
specification language, and the program shows the solutions of them. Based on these
results, the students evaluate this program by four criteria with level from 1–5,
respectively very bad–very good. The result of this survey is as followed:
Table 4 Result of the survey

Level
(Very bad → very good) Criterion

1 2 3 4 5
User-friendly interface 19% 81%
Sufficient Knowledge 21% 79%
Ability to solve problem 20% 80%
Usefulness 19% 81%

As the result of this survey, our program meets the requirements of an intelligent problem
solver in education (VanLehn, 2006). It is useful for supporting high-school students to
learn about vector algebra. The program has a sufficient knowledge base to solve the
common problems in this knowledge domain. Its solutions like the solving method of

 58 H.D. Nguyen et al.

human. They include reasoning steps which are suitable with the knowledge’s level of the
students. Hence, the students can use this program for their studying.

6 Conclusions

In this paper, a mathematical structure of knowledge model of operators is presented,
namely Ops-model. The foundation of this model has three components: concept,
operators between concepts and rules. Each concept is an abstract structure that includes
attributes, equation and deductive rules and objects in concept have been equipped
behaviours to solve some problems on object. Ops-model is effective in formally
representing the knowledge of operators. The model problems in kinds 1 and 2 have been
studied. The algorithms are also designed to solve problems: problems of reducing an
expression, proving an equality of expressions and transforming an object into a
expression of certain objects. These algorithms are also proved their effectiveness.

Ops-model is useful tool for designing practical knowledge bases, especially
knowledge domains of computing. It has been applied to specify a part of the knowledge
domain about vector algebra in high school. The program for automatic solving some
problems on this knowledge domain has been built, such as: reduce a vector expression,
prove the equation between two vector expressions, compute the value of an expression
and transform a vector into an expression between certain vectors. The system provides
readable and human-alike solutions. These solutions can be understood by the high
school students and their reasoning is suitable with the learner’s level.

In the future, we will continue to complete the knowledge model of operators and
solve some problems of operators such as: solving equations systems between objects.
Besides, the combined model of ops-model and the knowledge model of relations
(Nguyen et al., 2015) will be more suitable for real applications. It will become the
foundation of general knowledge model.

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM)
under grant number C2016-26-06.

References
Anton, H. and Rorres, C. (2010) Elementary Linear Algebra, 10th ed., John Wiley & Sons.
Cordero, P., Gutiérrez, G., Martínez, J. and Guzmán, I.P. (2004) ‘A new algebraic tool for

automatic theorem provers’, Annals of Mathematics and Artificial Intelligence, Vol. 42, No. 4,
pp.369–398.

Do, N.V. (2015) ‘Ontology COKB for knowledge representation and reasoning in designing
knowledge-based systems’, Communications in Computer and Information Science (CCIS),
Springer, Vol. 513, pp.101–118.

Do, N.V. and Nguyen, H.D. (2015) ‘Reducing model of COKB about operators knowledge and
solving problems about operators’, in Camacho, D. et al. (Eds.): New Trends in Computational
Collective Intelligence, Studies in Computational Intelligence 572, Springer, pp.39–49.

 Solving problems on a knowledge model of operators and application 59

Do, N.V., Nguyen, H.D. and Mai, T.T. (2013) ‘Designing an intelligent problems solving system
based on knowledge about sample problems’, Proceeding of 5th Asian Conference on
Intelligent Information and Database Systems (ACIIDS 2013), March 2013, pp.465–475,
LNAI 7802, Springer, Kuala Lumpur, Malaysia.

Fu, H., Zhong, X. and Zeng, Z. (2006) ‘Automated and readable simplification of trigonometric
expressions’, Mathematical and Computer Modeling, Vol. 44, Nos. 11–12, pp.1169–1177.

Grefenstette, E. (2013) ‘Towards a formal distributional semantics: simulating logical calculi with
tensors’, Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume
1: Proceedings of the Main Conferene and the Shared Task, pages 1–10, 13–14 June 2013,
Atlanta, Georgia.

Harmelem, F., Lifschitz, V. and Porter, B. (2008) Handbook of Knowledge Representation,
Elsevier, Amsterdam.

Kent, R.E. (2013) ‘The first-order logical environment’, Pfeiffer, H.D. et al. (Eds.): Conceptual
Structures in Research and Education, LNCS, Vol. 7735, pp.210–230, Springer-Verlag Berlin
Heidelberg.

Knyazhansky, M. (2012) ‘Knowledge bases over algebraic models: some notes about
information equivalence’, International Journal of Knowledge Management, Vol. 8, No. 1,
pp.22–39, ISSN: 1548-0666.

Kuphaldt, T.R. (2017) Direct Current, Vol. 1 [online] https://www.allaboutcircuits.com/textbook/
(accessed 31 October 2017).

Nguyen, H.D, Pham, V.T., Le, T.T. and Tran, D.H (2015) ‘A mathematical approach for
representation knowledge about relations and its application’, in KSE 2015: Proceeding of
2015 IEEE International Conference on Knowledge and Systems Engineering, pp.324-327, Ho
Chi Minh, Vietnam, ISBN: 978-1-4673-8013-3.

Roanes-Lozano, E., Laita, L.M., Hernando, A. and Roanes-Macias, E. (2009) ‘A Groebner
bases-based approach to backward reasoning in rule based expert systems’, Annals of
Mathematics and Artificial Intelligence, Vol. 56, Nos. 3–4, pp.297–311, Springer.

Sakama, C., Inoue, K. and Sato, T. (2017) ‘Linear algebraic characterization of logic programs’,
Proceeding of 10th International Conference on Knowledge Science, Engineering and
Management (KSEM 2017) , August 2017, LNAI 10412, Springer, Melbourne, Australia.

Symbolab (2017) https://www.symbolab.com/solver/vector-calculator (accessed 28 August 2017).
Tulceanu, V. (2016) ‘Consideration regarding an algebraic model for inference and decision on

heterogeneous sensory input’, Soft Computing Applications, Advances in Intelligent Systems
and Computing 356, pp.539–548, Springer.

Valipour, M. and Wang, Y. (2016), ‘Formal properties and mathematical rules of concept algebra
for cognitive machine learning’, Journal of Advanced Mathematics and Application, Vol. 5,
No. 1, pp.69–86, American Scientific Publishers.

VanLehn, K. (2006) ‘The behavior of tutoring system’, International Journal of Artificial
Intelligence in Education, Vol. 16, No. 3, pp.227–265.

Varberg, D., Purcell, E. and Rigdon, S. (2003) Calculus: Chapter 13 – Vector Algebra, 9th ed.,
Prentice-Hall.

Vietnam Ministry of Education and Training (2013) Textbook and Workbook of High school
Mathematics, Publisher of Education, Vietnam.

Wang, Y. (2015) ‘Concept algebra: a denotational mathematics for formal knowledge
representation and cognitive robot learning’, Journal of Advanced Mathematics and
Application, Vol. 4, No. 4, pp.61–86, American Scientific Publishers.

Wolfram|Alpha (2017) https://www.wolframalpha.com/examples/Vectors.html (accessed 28 August
2017).

Yang, C. and Cai W. (2008) ‘Knowledge representations based on extension rules’, Proceedings of
the 7th World Congress on Intelligent Control and Automation, Chongqing, China.

