Probabilistic fracture mechanics analysis of reactor pressure vessel with underclad and through-clad cracks under pressurised thermal shock transient
by Kuen Tsann Chen; Kuen Ting; Anh Tuan Nguyen; Li Hua Wang; Yuan Chih Li; Tai Liang Kuo
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 12, No. 1, 2018

Abstract: Semi-elliptical underclad cracks resulting from the fabrication process of a reactor pressure vessel (RPV) were able to be detected by non-destructive testing method. Meanwhile, after long-term operation under severe conditions, such as high temperature, high pressure, and irradiation, the RPV becomes brittle and susceptible to damage, especially when subjected to pressurised thermal shocks (PTS). Therefore, the probabilistic fracture mechanics (PFM) analysis of RPV with the crack should be applied to evaluate the operation safety. To the best of the authors' knowledge, few studies or computer codes have applied PFM analysis for such cracks. Therefore, this study conducts PFM analysis for cracks by modifying the calculation procedure of FAVOR 12.1 computer code. The results show that during the lifetime of a nuclear power plant, such cracks will not threaten the RPV's safety. Additionally, three methods were proposed to improve FAVOR 12.1's ability to perform PFM analysis for axial through-clad cracking.

Online publication date: Mon, 25-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com