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Abstract: This paper presents a backstepping methodology-based semi generic 
adaptive controller scheme for a class of multi-input multi-output (MIMO) 
uncertain underactuated systems in presence of actuator constraints. To develop 
a feasible controller scheme for multi-input multi-output underactuated 
systems, (n – p + 1) dimensions of the n dimensional configuration space are 
stabilised by using one dimension of the input space. This control term is 
developed by applying hierarchical methodology whereas as remaining p – 1 
input dimensions are assigned as dedicated control terms to solve the control 
problem of remaining dimensions of the configuration space. Backstepping 
technique is used to develop the classical control terms whereas wavelet 
networks are used to approximate the uncertain dynamics as well as the 
nonlinear effects of actuator saturation. The proposed scheme, thus, relaxes the 
constraint of completely and accurately known system dynamics as well as the 
requirement of measuring the clipped portion of the control effort. A robust 
control term is used to attenuate the approximation error to a prescribed level. 
Uniform ultimate boundedness (UUB) stability of the closed loop system is 
verified in the Lyapunov sense. Simulation results illustrate the effectiveness of 
theoretical development. 
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1 Introduction 

Underactuated systems refer a particular class of nonlinear systems where the dimensions 
of input space are less than the dimensions of configuration space (Spong, 1997). 
Simultaneous stabilisation of all the configuration variables with lesser actuations often 
results in a complicated controller design as the classical control schemes meant for fully 
actuated systems are not applicable to this class. Depending upon the physical structure 
of the underactuated systems, total degrees of freedom can be partitioned into active and 
passive degrees of freedom with an inherent nonlinear interaction among these degrees 
(Spong, 1997; Olfati-Saber, 2002). Property of under actuation has been displayed by 
several systems like underwater vehicles, twin rotor system, mobile robots, cart-pole 
systems, etc. and the issue of controller design for this class has been addressed by 
several researchers (Olfati-Saber, 2002; Quiser et al., 2007; Chyau and Feng, 2010; Wang 
et al., 2004; Hung et al., 2007; Marton et al., 2008; Qian et al., 2009, 2011, 2012, 2013; 
Qian and Yi, 2010; Chiang and Yah, 2014; Hwang et al., 2014; Aloui et al., 2011; Liu 
and Yamaura, 2011; Lai et al., 2015; Nguyen and Dankowicz, 2015; Kulkarni and 
Kumar, 2015, 2016; Choudhari and Kar, 2017). Underactuated systems are often 
associated with complex nonlinear dynamics which are difficult to model 
mathematically. An inaccurate modelling of these dynamics may undermine the system 
performance, control schemes developed using adaptive framework have been proved 
highly effective for such systems (Quiser et al., 2007; Chyau and Feng, 2010; Wang  
et al., 2004; Hung et al., 2007; Qian et al., 2009, 2011, 2012, 2013; Qian and Yi, 2010; 
Chiang and Yah, 2014; Hwang et al., 2014; Aloui et al., 2011; Liu and Yamaura, 2011; 
Lai et al., 2015; Nguyen and Dankowicz, 2015; Kulkarni and Kumar, 2015, 2016; 
Choudhari and Kar, 2017). Research findings on controller design for underactuated 
systems include the controller design for systems with completely known dynamics 
(Olfati-Saber, 2002) as well as for the systems with uncertainties (Quiser et al., 2007; 
Chyau and Feng, 2010; Wang et al., 2004; Hung et al., 2007; Qian et al., 2009, 2011, 
2012, 2013; Qian and Yi, 2010; Chiang and Yah, 2014; Hwang et al., 2014; Aloui et al., 
2011; Liu and Yamaura, 2011; Lai et al., 2015; Nguyen and Dankowicz, 2015; Kulkarni 
and Kumar, 2015, 2016; Choudhari and Kar, 2017). 

Controller strategies for underactuated systems mainly rely on transformation or 
hierarchical approaches of controller design. First approach emphasise on the 
development of some nonlinear coordinates transformation so as to transform the original 
system model to into some cascade like structure which streamlines the controller design, 
however the cascade like structure which results from the coordinate transformation often 
exhibits a nonlinear relationship between the original and transformed coordinates and so 
results in complicated controller design (Olfati-Saber, 2002; Quiser et al., 2007; Chyau 
and Feng, 2010; Choudhari and Kar, 2017). Second technique utilises the hierarchical  
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methodology to deduce the control law. This technique develops the error surfaces 
following some hierarchical methodology. Approach is initiated with the development of 
lowest order error surface either a subsystem error surface is designated as the lowest 
order error surface and higher order error surfaces are developed by considering the 
subsystem error surfaces either recursively or designating all the subsystem error surfaces 
as the lowest order error surfaces and a second level error surface is constructed by 
suitably appropriately aggregating all the subsystem error surfaces. Control law is derived 
so as to ensure the convergence of highest order error surface which thereby ensures the 
boundedness of all the lower order error surfaces. This approach does not require any 
nonlinear coordinate transformation and utilises the original model of the underactuated 
systems (Hung et al., 2007; Marton et al., 2008; Qian et al., 2009, 2011, 2012, 2013; Qian 
and Yi, 2010; Chiang and Yah, 2014; Hwang et al., 2014; Aloui et al., 2011; Liu and 
Yamaura, 2011; Lai et al., 2015; Nguyen and Dankowicz, 2015; Kulkarni and Kumar, 
2015, 2016). 

Backstepping is a Lyapunov function-based classical recursive approach for the 
development of feedback control laws. In backstepping methodology, overall system is 
decomposed into several smaller subsystems, thereafter the virtual control terms are 
designed by the recursive consideration of these subsystems and this process finally 
results in the designing of actual control term. Control terms are derived in agreement 
with some recursively constructed Lyapunov function and therefore the control term 
developed by applying backstepping procedure ensures the stabilisation of overall system 
(Khalil, 2002; Slotin and Li, 1991). Classical backstepping approach is a model-based 
approach and its effective implementation requires completely and accurately known 
system dynamics. However, the adaptive backstepping approaches are cited in the 
literature for the effective control of systems with uncertain dynamics (Kulkarni and 
Kumar, 2015; Hsu et al., 2006). These adaptive versions incorporate some adaptive 
approximation tool like neural network or wavelet network for the approximation of 
uncertain dynamics (Hsu et al., 2006; Astrom and Wittenmark, 1995). Application of 
backstepping methodology to underactuated systems in an approximate form has also 
been cited in Marton et al. (2008) and Kulkarni and Kumar (2015). 

Wavelet network is a nonparametric system identification tool which can approximate 
any nonlinear function with arbitrary accuracy. Wavelet network can be viewed as a 
nonlinear regression structure where regression functions are scaled and shifted versions 
of some wavelet and associated scaling functions (Hsu et al., 2006). Normally, the 
wavelet function used for the construction of regression functions is some compactly 
supported, orthonormal basis of multiresolution analysis. Multiresolution allows the 
network construction by following a systematic methodology, starting with some coarser 
level resolution and gradually including the finer resolutions following the tradeoff 
between accuracy and computational complexity. Othonormality of the basis functions 
ensures a unique representation of any function with no redundancy (Mallat, 1989). 
Wavelet network with orthonormal wavelet basis satisfying the norms of multiresolution 
analysis provides an explicit function representation at different resolutions. Compact 
support of wavelet basis allows efficient learning and rapid convergence of training 
algorithms (Zhang et al., 1995; Xu and Tan, 2007). Research findings on the application 
of wavelet network for system identification and control are cited in Hsu et al. (2006), Xu  
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and Tan (2007), Billings and Wei (2005), Zekri et al. (2008), Lee and Li (2012) and Xue 
et al. (2013). 

Practical actuators are associated with the problem of amplitude limitation and cannot 
reproduce the control effort beyond certain limits (Gao and Selmic, 2004). Limited 
application of control effort degenerate the system performance or even makes the closed 
loop system unstable. In order to ensure the desired system performance, the saturation 
effects of actuator are required to be considered. Several research findings which detail 
the controller designing aspects with a consideration of actuator saturation are cited in 
Gao and Selmic (2004), Zhou et al. (2006), He and Jagannathan (2007) and Yuan et al. 
(2014). These techniques tackle the actuator saturation in anti-windup paradigm and 
either emphasise on the development of some auxiliary dynamics or on the application of 
some adaptive tool like neural network for the effective compensation of the nonlinear 
effects of saturation (Gao and Selmic, 2004; Zhou et al., 2006; He and Jagannathan, 
2007; Yuan et al., 2014). 

This paper presents a backstepping-based adaptive control scheme for a class of 
multi-input multi-output (MIMO) underactuated systems (Aloui et al., 2011) with system 
uncertainties and prior consideration of input constraints. In the proposed controller 
scheme, one control term is designated to stabilise (n – p + 1) configuration variables of n 
dimensional configuration space whereas the remaining control terms are assigned as 
dedicated control terms to rest of the (p – 1) configuration variables. First control term is 
derived by applying a two level hierarchical backstepping control design where as 
remaining control terms are based on classical adaptive backstepping methodology. 
Control scheme thus allows the application of approximate backstepping control to  
(n – p + 1) configuration variables and classical backstepping approach to rest of the 
configuration variables. This approach can be considered as an optimal control approach 
under the restrictions imposed by the systems under consideration. This scheme ensures 
effective regulatory or tracking performance of the configuration variables to which 
dedicated control terms are assigned and at the same time ensures the stability of rest of 
the variables. Wavelet networks are constructed for effective approximation of system 
uncertainties and the nonlinear effects induced by the actuator saturation. Thus, the 
control scheme is semi generic in the sense that it relaxes the requirement of modelling 
the complex nonlinear dynamics. Also, a wavelet-based saturation compensator is used 
which effectively mitigates the nonlinear effects of actuator saturation. Adaptive 
saturation compensator not only restores the desired system performance within a short 
span of time but also time relaxes the constraint of measuring the clipped part of control 
effort (Gao and Selmic, 2004). Adaptation laws are developed for the tuning of network 
parameters and a robust term is incorporated to attenuate the approximation error of the 
wavelet network (Hsu et al., 2006; Yuan et al., 2014; Astrom and Wittenmark, 1995). 
Controller scheme so developed ensures the convergence of system error dynamics and 
boundedness of closed loop signals in presence of system uncertainties and actuator 
saturation. 

This paper is organised as follows: preliminaries and system model are given in 
Section 2, whereas Section 3 describes the designing of wavelet-based adaptive controller 
scheme for underactuated systems with partially known system dynamics and subjected 
to actuator saturation. Results of the simulation performed for a MIMO underactuated 
system are illustrated in Section 4, whereas Section 5 concludes the paper. 
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2 Problem formulation and preliminaries 

2.1 Actuator saturation 

Practical actuators are associated with the problem of saturation and whenever the input 
tries to exceed the stipulated limit the actuator output does not replicate the input and  
gets stuck to saturation bound in either direction, depending on the sign of input. The 
input-output relationship of an actuator with actuator saturation can be defined as (Zhou 
et al., 2006) 

max

max max

;| |
sgn( );| |

v v u
u

u v v u
<⎧

= ⎨ ≥⎩
 (1) 

where v ∈ ℜ and u ∈ ℜ are actuator input and output respectively while umax ∈ ℜ+ 
represents the saturation bound. As indicated by equation (1), whenever the actuator 
undergoes saturation certain portion of the input is clipped off and is given as 

Δu u v= −  (2) 

Clipping of certain portion of the input can be observed as an undesired nonlinear 
dynamics which is invoked by actuator saturation (Gao and Selmic, 2004). This nonlinear 
dynamics can degrade the system performance and may even lead to uncertainty and is 
therefore required to be tackled during the controller design. In this work, this nonlinear 
dynamics is effectively approximated and mitigated by using a wavelet network. 

2.2 System formulation 

Consider an uncertain MIMO underactuated system described by the following dynamics 

( )

2 1 2

1 2 1
1

2 1

Σ ( ) ; 1,2, ,

i i

p

i i iq q
q

i i

x x

x f X g X u i n

y x

−

=

−

=⎧
⎪
⎪= = + =⎨
⎪
⎪ =⎩

∑ …  (3) 

System described by equation (3) is composed of n interconnected subsystems in 
Brunovsky canonical form (Spong, 1997; Olfati-Saber, 2002) with X = [x1, x2, ···, x2n]T  
∈ ℜ2n as the state variables of the system, U = [u1, u2, ···, up]T ∈ ℜp represents the control 
vector applied to the system through the actuators, due to the underactuation property  
n > p, yi(t) ∈ ℜ is the output of ith subsystem ( )2 2

1( ) : and :n n
i iqf X g Xℜ → ℜ ℜ → ℜ  

are system nonlinearities abbreviated as fi and giq respectively while 
[ ]1 1 3 2 1, , , .T n

nX x x x −= ∈ℜ  Nonlinearities fi are considered as smooth uncertainties 
while the nonlinear function giq is either strictly positive or negative and giq ∈ L∞,  
∀x ∈ Sx, t ≥ 0. Here, Sx ⊂ ℜ2n is some compact set of allowable state trajectories. 

Objective is to design a control scheme for equation (3) with a prior consideration of 
uncertain dynamics and input constraints. Control law must ensure the stabilisation of all 
the dimensions of the configuration space and boundedness of tracking errors for all the 
degrees of freedom corresponding to given desired trajectories. 
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To facilitate the controller design, following assumptions have been considered 
regarding the nature of desired trajectories and input constraints. 

Assumption 1: Desired trajectory vector yd ∈ ℜn is selected such that 
, , , 1,2, , .∞∈ =id id idy y y L i n  

Assumption 2: Input constraint imposed by actuator nonlinearity is in accord with the 
description of saturation nonlinearity (1) and (2) given in Section 2.1. Thus, for  
equation (3), the input-output relationship of actuator i can be described as 

max

max max

;| |
sgn( );| |

i i i
i

i i i i

v v u
u

u v v u
<⎧

= ⎨ ≥⎩
 (4) 

Δi i iu v u= +  (5) 

where vi and ui are input and output of the actuator, respectively. Term vi can be 
considered as the unconstrained input for equation (3), uimax is saturation bound and Δui 
represents the portion of input concealed by the actuator whenever it undergoes 
saturation. 

Under the constraints of actuator saturation (4, 5), system dynamics (3) can be 
expressed as 

( ) ( )

2 1 2

2 2 1 1
1 1

2 1

Σ ( ) Δ

; 1,2, , 1

i i

p p

i i iq q iq q
q q

i i

x x

x f X g X u g X v

y x i n p

−

= =

−

=⎧
⎪
⎪= = + +⎨
⎪
⎪ = = − +⎩

∑ ∑
…

 (6) 

In equation (6), nonlinear term giq(X)Δuq represents the nonlinear effects induced by the 
saturation of actuator q in ith subsystem and the elements of vector v = [v1, v2, ···, vp]T 
represents the unconstrained control efforts .Further, the system dynamics can be 
expressed as 

( )

2 1 2

3 2 1
1

2 1

Σ ( )

; 1, 2, , 1

i i

p

i i iq q
q

i i

x x

x q X g X v

y x i n p

−

=

−

=⎧
⎪
⎪= = +⎨
⎪
⎪ = = − +⎩

∑
…

 (7) 

where nonlinear vector field qi is defined as 

1

( ) ( )Δ
=

= + ∑
p

i i iq q
q

q f X g X u  (8) 

System dynamics (7) can be viewed as a saturation free version of equation (3) and can 
be utilised for designing the auxiliary control term to be augmented with the standard 
control law so as to deal actuator saturation in anti-wind up paradigm. 

Assumption 3: System nonlinearities giq are such that the matrix g defined as 
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11 12 1

21 2

1

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

p

p

n np

g g g
g g

g

g g

 (9) 

contains at least p – 1 linearly independent rows. 

2.3 Wavelet network approximation 

Wavelet decomposition of any function f(x) ∈ L2(ℜ) can be expressed as (Zhang and 
Benveniste, 1992) 

1( )
∈

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

Z
α φ q

q
qqq

x b
f x

aa
 (10) 

here x ∈ Ωx ∈ ℜ is the input argument, φ(.) is scaling function associated with some 
wavelet basis ψ(.) satisfying the norms of multiresolution analysis whereas aq, bq are 
dilates , translates which are in general restricted to a dyadic lattice as aq = 2–j and  
bq = k2–j with k, j ∈ Z and αq is the weight parameter. According to the properties of 

multiresolution analysis (10) can be expressed as (Mallat, 1989; Xu and Tan, 2007) 

( ) ( )0 0

0

0 0

0

2 /2
, ,

, , , ,

( ) 2 2 2 2

( ) ( )
∈ ≥ ∈

∈ ≥ ∈

= − + −

= +

∑ ∑∑

∑ ∑∑
Z Z

Z Z

α φ β

α φ β

o
J J j j

J k j k
k j J k

J k J k j k j k
k j J k

f x x k ψ x k

x ψ x
 (11) 

here, J0 ∈ Z is the coarsest resolution level while αJ0,k ∈ ℜ and βj,k ∈ ℜ denotes the 

weights of scaling and wavelet functions. 
A wavelet network can be viewed as the practical implementation of wavelet 

decomposition (10) where a truncated version of equation (11) is implemented. 
Approximation precision acts as a governing factor in deciding the size of wavelet 
network. Wavelet network estimation of any nonlinear function f(x) ∈ L2(ℜ) can be 
expressed as (Xu and Tan, 2007) 

( ) ( )0 0

0 0

0 0

00

2 /2
, ,

, , , ,

ˆ ( ) 2 2 2 2

( ) ( )

∈ = ∈

∈ = ∈

= − + −

= +

∑ ∑ ∑

∑ ∑ ∑

α φ β

α φ β

o

J j

J j

J
J J j j

J k j k
k K j J k K

J

J k J k j k j k
k K j J k K

f x x k ψ x k

x ψ x

 (12) 

here, the function estimation is carried using a wavelet network with J0 ∈ Z and J ∈ Z as 

the coarsest and finest resolution levels respectively whereas the translates at a particular 
resolution level are confined to a finite set and the set ( )0 0, 1, ,⊂ = +Z jd

jK j J J J  
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represents translates for a particular resolution level, dj ∈ Z represents the number of 

translates used at a particular resolution j. 
In vector form, equation (12) can be expressed as 

00

0

ˆ ( ) ( ) ( )
=

= + ∑α φ β
J

T T
J jjJ

j J

f x x ψ x  (13) 

here, the weight vector are [ ] [ ]0 0
0

, , and 
∈ ∈

= =α α β β
J j

T T
J J k j j kk K k K  while the scaling 

function and wavelet function vectors are [ ] [ ]0 0
0

, ,and .
∈ ∈

= =φ φ
J j

T T
J J k j j kk K k Kψ ψ  

According to the approximation theory of wavelet networks, there exist some integer 
JN, such that with J ≥ JN, any nonlinear function f(x) ∈ L2(ℜ) over a compact set Ωx ⊂ ℜ, 
can be approximated to an arbitrary accuracy as (Xu and Tan, 2007) 

00

0

* *( ) ( ) ( ) ( ); Ω
=

= + + ∀ ∈∑α φ β
J

T T
J j xjJ

j J

f x x ψ x ε x x  (14) 

where 0
* * and α βJ j  are optimal weight vectors and ε(x) is the approximation error. For 

optimal weight vectors, it is assumed to be bounded by |ε(x)| ≤ ε* with constant ε* > 0 for 
∀x ∈ Ωx. Optimal weight vectors are unknown and are required to be estimated. 

Considering 0
ˆˆ  and α βJ j  as the estimates of 0

* *and α βJ j  then the wavelet network 
estimate of f(x) can be defined as 

00

0

ˆ ˆˆ( ) ( ) ( )
=

= + ∑α φ β
J

T T
J jjJ

j J

f x x ψ x  (15) 

An estimation error can be defined as 

00

0

ˆ( ) ( ) ( ) ( ) ( ) ( )
=

= − = + +∑α φ β
J

T T
J jjJ

j J

f x f x f x x ψ x ε x  (16) 

where 0  and α βJ j  are weight estimation errors, defined as  

0 0 0
* * ˆˆ  and = − = −α α α β β βJ J J j j j  

With appropriate weight update laws, weight estimation errors can be confined to a small 
residual set and by selecting the appropriate numbers of dilates and translates, estimation 
error ( )f x  can be made arbitrarily small on the compact set such that the bound 

( ) ≤ mf x f  is satisfied for all x ∈ Ωx ⊂ ℜ. 
For the estimation of multivariate functions of the form f(x): ℜn → ℜ, wavelet 

network can be constructed by using multidimensional wavelet basis. One commonly 
used approach for the construction of multidimensional wavelet basis of a given 
resolution level is tensor product of single dimensional wavelet basis of same resolution 
level. This approach results in the generation of separable wavelet basis and straight 
forward extends the properties of multiresolution analysis to multidimensional case. For n 
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dimensional case, there exist one scaling function 0 ,φJ K  which is obtained by the tensor 
product of single dimensional scaling functions ( )0 , ; (1, 2, , ) and 2 1−φ i

n
J k ix n  wavelet 

functions ( ), 1, 2, , 2 1= −q n
j Kψ q  which are obtained by considering the single 

dimensional wavelet and scaling functions in different dimensions (Xu and Tan, 2007). 

( )

( )

0 0, ,
1

,,
1

; 1,2, , 2 1

=

=

=

= = −

∏

∏

φ φ i

i

n

J K J k i
i
n

q n
j k ij k

i

x

ψ φ x q

 (17) 

with 

( ) ( )

( )

1
1

, ,,
1

2 1
,,

1

;
−

=

−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

=

∏

∏

φ i n

n
i

n

j k i j k nj K
i

n

j k ij K
i

ψ x ψ x

ψ ψ x

 

where K = [k1, k2, ···, kn]; ki ∈ Kj and ( ), ij k iφ x  is either ( ) ( ), , or .φ i ij k i j k ix ψ x  
Multidimensional wavelet networks are associated with the problem of curse of 
dimensionality which implies an enormous increase in the size of wavelet network with 
dimensions of the problem. Curse of dimensionality results in extensively high 
computational burden (Zhang et al., 1995; Billings and Wei, 2005). To reduce the 
computational burden up to certain extent, in this work a multi input-multi output wavelet 
network is used for the estimation of uncertain dynamics and resolutions are considered 
keeping the constraint of computational tractability in view. 

3 Controller designs 

This section presents a backstepping-based adaptive control scheme for the system (3) to 
achieve the control objective. Overall, control scheme is developed in two steps, first step 
describes the development of pseudo control terms as per the backstepping methodology 
whereas second step describes the development of actual control inputs taking into 
account the constraints imposed by underactuation property along with system 
uncertainties and input constraints (Marton et al., 2008; Kulkarni and Kumar, 2015, 
2016). 

3.1 Step 1 

While designing the standard control term for equation (3), it is assumed that the system 
is saturation free and giq(X)Δuq = 0. To facilitate the designing of pseudo control terms 
system Σ3, equation (7) can be rewritten as 
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1 2

4
2

1

Σ
( ) ( )

=

⎧ =
⎪

= ⎨ = +⎪
⎩

∑
p

i iq q
q

X X

X q X g X v
 (18) 

where [ ]2 2 4 2, , ,= ∈ℜT n
nX x x x  and for unconstrained system nonlinear vector field qi 

is defined as qi = fi(X). 
Defining tracking error vector as 

1 1= − de X y  (19) 

1 2= − de X y  (20) 

Considering a Lyapunov function of the form 

1 11
1
2

= TV e Pe  (21) 

where P = diag[P11, P22, ···, Pn,n]; Pi,i < 0. 
Differentiating equation (21) along system trajectories 

( )
11

21

=

= −

T

T
d

V e Pe
e P X y

 (22) 

with a pseudo term defined as 

2 1= − +d dX Ke y  (23) 

where K = diag[k1, k2, ···, kn]; ki > 0, equation (22) results in 

( )
( )

1 2 2 21

2 11

2 11 1

2 11 1

= − + −

= −

= −

= −

T
d d d

T

T T

T T

V e P X X X y

e P e Ke
e Pe e PKe
e Pe e Qe

 (24) 

where error vector e2 is defined as 

2 2 2= − de X X  (25) 

To streamline the controller design, error vectors e1 and e2 are suitably partitioned as 

[ ]
[ ]

1 1
1 11 12 11 12

1 1
2 21 22 21 22

, ; ,
, ; ,

− + −

− + −

= ∈ℜ ∈ℜ

= ∈ℜ ∈ℜ

n p p

n p p

e e e e e
e e e e e

 (26) 

With this partition, equation (24) results in 

( ) ( )
1 1 21 2 22 1 11 2 1211 12 11 12

2 2
1 21 2 22 min 1 11 min 2 1211 12

= + − −

≤ + − −

T T T T

T T

V e Pe e P e e Q e e Q e

e Pe e P e λ Q e λ Q e
 (27) 

where 
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[ ]1 11 22 ( 1)( 1), , , − + − += n p n pP diag P P P  

[ ]2 ( 2)( 2) ,, ,− + − += n p n p n nP diag P P  

[ ]1 11 22 ( 1)( 1), , , − + − += n p n pQ diag Q Q Q  

[ ]2 ( 2)( 2) ,, ,− + − += n p n p n nQ diag Q Q  

Here, λmin(.) represents the minimum eigenvalues of respective matrices. It is apparent 
from equation (27) that convergence of e2 to some residual set in the neighbourhood of 
origin ensures the uniform ultimate boundedness of e1. Next step describes the 
development of control terms to ensure the boundedness of e2. 

3.2 Step 2 

Due to the restrictions imposed by underactuation, classical backstepping methodology is 
not applicable to the systems of class (3). In order to deduce a feasible control law for the 
systems under consideration, an approximate backstepping approach is presented. This 
approach utilises a hierarchical framework to develop the system dynamics which makes 
the development of feasible control law. To streamline the controller designing, 
following assumption is taken. 

Assumption 4: There exist a set of vectors of real valued elements such that 

{ } 1Ω | det( ) 0 ;Ω − += ≠ ⊂ ℜn p
ρ ρρ G  (28) 

where 

1 1 1

1 2
1 1 1

( 2)1 ( 2)2 ( 2)

1 2

− + − + − +

= = =

− + − + − +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ ∑
n p n p n p

i i i i i ip
i i i

n p n p n p p

n n np

ρ g ρ g ρ g

g g g g

g g g

 

Considering e21 and defining an integral error term of the form 

1 21= TS ρ e  (29) 

where ρ = [ρ1, ρ2, ···, ρn–p+1]T; ρ ∈ Ωρ is the vector of coupling parameters. Error term 
S1(17) can be viewed as second level error surface which is obtained by suitably 
aggregating the elements of error vector e21 which can be considered as the first level 
error terms (Chyau and Feng, 2010; Wang et al., 2004). Convergence of S1(29) ensures 
the boundedness of first level error terms and hence stabilisation of related subsystems. 

Defining an error vector of the form 

[ ]3 1 1 2( 2) 222, , , ,− += =⎡ ⎤⎣ ⎦
T TT

n p ne S e S e e  (30) 

Defining a Lyapunov function of the form 
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2 1 33
1
2

= + TV V e Re  (31) 

where R = diag[R11, R22, ···, Rpp]T; Rii < 0. 
Differentiation of Lyapunov function V2(31) results in 

( ) ( )
( ) ( )

[ ]
( ) ( ) ( )
[ ]

2 1 33
2 2

1 21 2 22 min 1 11 min 2 12 311 12 3
2 2

1 21 2 22 min 1 11 min 2 1211 12

1 2( 2) 23

2 2
max 1 11 21 2 22 min 1 11 min 2 1212

3

, , ,− +

= +

≤ + − − +

≤ + − −

+

≤ + − −

+ − +

T

T T T

T T

TT
n p n

T

T
d

V V e Re

e Pe e P e λ Q e λ Q e e Re

e Pe e P e λ Q e λ Q e

e R S e e

λ P e e e P e λ Q e λ Q e

e R E X Gv

 (32) 

where λmax(P1) is maximum eigenvalue of P1 while 

1

2
1

1

2 2( 2) 2
1

, , ,  and

, , ,

− +

− +

=

− +

− +

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑

Tn p

i i n p n
i

Tn p

d i id n p d nd
i

E ρ q q q

X ρ x x qx

 

Defining the control input vector as 

[ ]1 1− −= − +d av G E X R v  (33) 

where [ ]1 2, , ,= T
a a a apv v v v  is the vector of stabilising inputs and is defined as 

[ ]3 4= − −av Ae Be  (34) 

where 

[ ]11 22, , , ; 0,= <pp iiA diag A A A A  

( )4 11 12,⎡ ⎤= ⎣ ⎦
TT

ie e sign S e  

( 2),( 2) ,
1and , , , ;0 1.− + − +

⎡ ⎤= < <⎢ ⎥
⎣ ⎦

n p n p n nB diag P P η
η

 

Substitution of control term (33 and 34) in (32) results in 

( ) ( ) ( )

( ) ( ) ( )

( )

2 2
2 max 1 11 21 2 22 min 1 11 min 2 1212

3 43 3
2 2 2

max 1 11 21 2 22 min 1 11 min 2 12 1112 1

2
min 1 22 11 1 2 1222

1

≤ + − −

+ − −

≤ + − − −

− − −

T

T T

T

T

V λ P e e e P e λ Q e λ Q e
e Ae e Be

λ P e e e P e λ Q e λ Q e A S

λ A e e S e P e
η
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here A1 = diag[A22, ···, App] 

( ) ( ) ( )

( )

2 2 2
2 max 1 11 21 min 1 11 min 2 12 11 1

2
min 1 22 11 1

1
≤ − − −

− −

V λ P e e λ Q e λ Q e A S

λ A e e S
η

 (35) 

Thus, the system is stable as long as 

( ) ( ) ( )

( )

2 2 22
min 1 11 min 2 12 11 min 1 22 11 11

max 1 11 21

1⎛ ⎞− + + + ≥⎜ ⎟
⎝ ⎠
λ Q e λ Q e A S λ A e e S

η

λ P e e
 (36) 

Thus, 2V  is negative outside a compact set which indicates the uniform ultimate 
boundedness of all the closed loop signals. As the system nonlinearities fi(X) are assumed 
uncertain, implementation of the control law (33) is not feasible. To render the control 
law feasible, uncertain dynamics are approximated by using wavelet network. 

Whenever the control effort undergoes saturation, some part of the control effort is 
clipped off (2), the effect of actuator saturation can be considered in terms of additional 
nonlinear dynamics as described by equation (8). Under the effect of actuator saturation 

nonlinear vector field qi becomes 
1

( ) ( )Δ
=

= + ∑
p

i i iq q
q

q f X g X u  and accordingly changes 

the vector field E. In this work, the elements of nonlinear vector field E are approximated 
as it also accounts for the nonlinear dynamics inserted by actuator saturation. This 
approximation thereby allows the effective compensation of saturation dynamics and also 
relaxes the constraint of measuring Δuq. 

Under the effect of uncertain dynamics and actuator saturation, control term (33) 
becomes 

31 1
2

ˆ
2

− −⎡ ⎤= − + + −⎢ ⎥⎣ ⎦
d a

ev G E X R v
ζ

 (37) 

where Ê  represents the wavelet network approximation of E. 
Update laws for the weight update of wavelet networks are 

0

0

0,1 0,1 1 11 1

0, 0, 2( )

0 0
1 11 1,1 ,1

2( ), ,

ˆ ( )

ˆ ( ); 2,3, ,
, 1, ,ˆ ( )

2,3, ,
ˆ ( ) 1,2, , 2 1

− +

− +

= − = −

= − = − =

= +⎫= − = − ⎪ =⎬
⎪= − = − = −⎭

α α φ

α α φ

β β

β β

J J J

J i J i i ii n p i J

q q q
jj j

q q q ni ii n p ij i j i j

κ R S x

κ R e x i p
j J J Jγ R S ψ x
i p

γ R e ψ x q

 (38) 

here κi > 0, γi > 0 and 0 < ζ < 1. The term 3
22

⎛ ⎞−⎜ ⎟
⎝ ⎠

e
ζ

 is the robust control term inserted in 

control law (33) so as to attenuate the approximation error of wavelet network to a 
prescribed attenuation level (Hsu et al., 2006). 

Controller scheme can be viewed in a generalised manner and any (p – 1) subsystems 
with linearly independent row in equation (9) can be assigned dedicated control terms. 
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To examine the effectiveness of control law (37), consider the Lyapunov function of 
the form (Khalil, 2002; Astrom and Wittenmark, 1995) 

0

2 1
0, , ,0,

3 1 33
1 1

1 1
2 2

−

= = =

⎛ ⎞
⎜ ⎟= + + +
⎜ ⎟
⎝ ⎠

∑ ∑ ∑α α β βnp qT qJT
J i j i j iJ iT

i ii j J q

V V e Re
κ γ

 (39) 

Differentiating equation (39) and substituting the control term (37) 

( ) ( ) ( )

[ ]

( ) ( ) ( ) ( )
0

2 2
2 max 1 11 21 2 22 min 1 11 min 2 1212

2 1
0, , ,0,

3
1 1

2 2 22
max 1 11 21 min 1 11 min 2 12 11 min 1 221

11 1 33 32

1 1
2

−

= = =

≤ + − −

⎛ ⎞
⎜ ⎟+ − + + +
⎜ ⎟
⎝ ⎠

≤ − − − −

− + −

∑ ∑∑α α β βn

T

p qT qJT
J i j i j iJ iT

d
i ii j J q

T T

V λ P e e e P e λ Q e λ Q e

e R E X Gv
κ γ

λ P e e λ Q e λ Q e A S λ A e

e S e RE e Re
η ζ

0

2 1
0, , ,0,

1 1

−

= = =

⎛ ⎞
⎜ ⎟+ +
⎜ ⎟
⎝ ⎠

∑ ∑∑α α β βnp qT qJT
J i j i j iJ i

i ii j J qκ γ

 (40) 

Substitution of update laws (38) in (40) results in 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 22
2 max 1 11 21 min 1 11 min 2 12 11 min 1 221

11 1 33 32

2 2 22
max 1 11 21 min 1 11 min 2 12 11 min 1 221

2
11 1 max 3 min 32

2
max 1 11 21 min 1 11 min 2

1 1
2

1 1( ) ( )
2

≤ − − − −

− + −

≤ − − − −

− + −

≤ − −

T T

V λ P e e λ Q e λ Q e A S λ A e

e S e Rε e Re
η ζ

λ P e e λ Q e λ Q e A S λ A e

e S λ R ε e λ R e
η ζ

λ P e e λ Q e λ Q e ( )2 22
12 11 min 1 221

2 2max
11 1

min

1 ( )
2 ( )

− −

− +

A S λ A e
λ R ζe S ε

η λ R

 (41) 

So the system stability is ensured as long as 

( ) ( ) ( )

( )

2 2 22
min 1 11 min 2 12 11 min 1 22 11 11

2 2max
max 1 11 21

min

1

( )
2 ( )

⎛ ⎞+ + + + ≥⎜ ⎟
⎝ ⎠
⎛ ⎞

+⎜ ⎟
⎝ ⎠

λ Q e λ Q e A S λ A e e S
η

λ R ζλ P e e ε
λ R

 (42) 

Thus, the control law (37) ensures the uniform ultimate boundedness of all the closed 
loop signals in presence of uncertain dynamics and actuator saturation. 

4 Simulation results 

To demonstrate the effectiveness of the controller scheme developed in previous section 
[equation (39)], a simulation is carried out with an objective to stabilise a three link 
planner robot manipulator with two active and one passive joint under the consideration 
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of uncertain dynamics and actuator saturation. Robotic links are connected using revolute 
joints in serial link mechanism with first link connected to the base. Dynamics considered 
for simulation is meant for a robot manipulator with first passive joint and next  
two active joints. Euler-Lagrange equation for the system dynamics is as under (Liu and 
Yamaura, 2011). 

( ) ( ) ( )1 2 1 2 1, Γ+ + =M X X C X X H X u  (43) 

where 

( )
1 2 3 2 3 3

1 2 3 2 3 3 2 3 5 3 3 2 3 5

3 3 3 2 3 5 3

2 cos cos
cos

+ + +⎡ ⎤
⎢ ⎥= + + + +⎢ ⎥
⎢ ⎥+⎣ ⎦

a a a a a a
M X a a b b m l c x b m l c x

a b m l c x b
 

( )
( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )

1 3 1 2 3 1 2 3 3 3 2 3 5 3 3 1 3 3 5

2
1 2 3 1 2 3 1 2 3 3 1 3 3 5 2 3 2 3 52

2
3 2 3 5 3 1 3 3 5 1 3 2 3 52

sin sin sin

, sin sin sin

sin sin sin

⎡ ⎤− + − − +
⎢ ⎥

= + + + −⎢ ⎥
⎢ ⎥

+ + +⎢ ⎥⎣ ⎦

r m l c m l l x r m l c x r m l c x x

C X X x m l c m l l x m l c x x r m l c x

x m l c x m l l x x r m l c x

 

( )
( )( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

1 1 2 3 1 1 2 2 3 1 1 3

1 3 3 1 3

2 2 3 2 1 3 3 3 1 3 3 3 1 3

sin sin

sin
sin sin sin

⎡ ⎤⎛ ⎞+ + + + +
⎢ ⎥⎜ ⎟⎜ ⎟= + +⎢ ⎥⎝ ⎠
⎢ ⎥+ + + + +⎣ ⎦

g m c m m l x g m c m l x x
H X gm c x x

g m c m l x x gm c x x gm c x x

 

0 0
Γ 1 0

0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

here, ( ) ( ) ( )3 3 3 1 3 1
1 1 2 1, ,  and × × ×∈ℜ ∈ℜ ∈ℜM X C X X H X  are inertia matrix, carioles 

matrix and gravity matrix respectively. 
Element of the vector [ ] 3 1

1 1 3 5, , ×= ∈ℜTX x x x  denotes the link angles. Variable x1 
denotes the angular position of the first link with respect to vertical axis whereas x2 and x3 
denotes the angular positions of next two respective links with respect to axis passing 
through the centre of mass of the preceding link. Vector [ ] 3 1

2 2 4 6, , ×= ∈ℜTX x x x  

contains corresponding velocity variables. [ ] 2 1
1 2

×= ∈ℜTu u u  is the torque vector 
applied to the system . Other variables appearing in the system dynamics are 

( ) ( )
( )

( )

1 1 3 1 2 3 1 2 3 3 1 3 3 5

2 2 3 1 2 3 1 2 3 3 2 3 5

3 3 3 2 3 3 3 1 3 3 5

2
1 2 4 4

2
2 2 6 4 6 6

2 2
3 2 4 4 6 2 6 4 6

cos cos
cos cos

cos cos
2
2 2
2 2 2

= + + + +

= + + +

= + + +

= +

= + +

= + + + +

a b m l c m l l x m l c x x
a b m l c m l l x m l c x
a b m l c x m l c x x
r x x x
r x x x x x
r x x x x x x x x
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System parameters mi, li, ci and Ii(i = 1, 2. 3) are link parameters and respectively denotes 
the mass, length, distance from ith joint to centre of mass and moment of inertia about the 
centre of mass for ith link with 

2 2 2
1 1 1 2 31 1 1

2 2
2 2 2 32 2

2
3 3 3 3

= + + +

= + +

= +

b I m c m l m l
b I m c m l
b I m c

 

whereas g is acceleration due to gravity (Liu and Yamaura, 2011). 
System dynamics (43) can be represented in the following state space form 

2 1 2

6 2 1 1 2 2Σ ; 1,2,3
− =⎧

⎪= = + + =⎨
⎪ =⎩

i i

i i i i

i i

x x
x f g u g u i
y x

 (44) 

Control scheme (37) is applied to above dynamics (44) with an objective to stabilise it 
about [0, 0, 0, 0, 0, 0]T under the magnitude constraints imposed by system actuators  
and consideration of nonlinearities fi(i = 1, 2, 3) as system uncertainties. For the clear 
illustration of the effectiveness of control scheme simulation is carried out for two cases 

4.1 Case 1 

Control term u1 is designed to assure the stabilisation of first and second link dynamics 
whereas u2 is assigned as dedicated controller to third link. 

After considering the nonlinear effects of saturation dynamics (3), system (44) can be 
rewritten as 

2 1 2

7 2 1 1 2 2Σ ; 1,2,3
− =⎧

⎪= = + + =⎨
⎪ =⎩

i i

i i i i

i i

x x
x q g v g v i
y x

 (45) 

where 
2

1

Δ ; 1, 2,3
=

= + =∑p p pi i
i

q f g u p  (46) 

Here, the nonlinear term gpiΔui represents the nonlinear effect of saturation dynamics and 
the nonlinearity qp thus, combines the nonlinear system dynamics as well as nonlinearity 
induced by the saturation. These nonlinearities are approximated by using wavelet neural 
network. Wavelet approximation of the nonlinear saturation dynamics also relaxes the 
requirement of measuring the saturation error [equation (3)]. 
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Figure 1  Trajectories of link angles with unconstrained actuators (see online version for colours) 

 

A wavelet network with n = 6 and arguments (x1, x2, x3, x4, x5, x6) is constructed using 
Daubechies wavelet (db3) for the approximation of system nonlinearities. The coarsest 
and finest resolution levels for the wavelet network are taken as J0 = 1 and J = 3 
respectively. Number of translates at coarsest resolution level for (x1, x3, x5) are taken as 
K11 = 3 and those for (x2, x4, x6) are taken as K12 = 5. Translates are made double when 
resolution is increased by 1. Online adjustment of weight parameters is carried out using 
adaptation laws (38) with initial conditions set to zero for all the wavelet parameters. 
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Figure 2  Control efforts with unconstrained actuators (see online version for colours) 
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Figure 3  Trajectories of state variables under actuator saturation (see online version for colours) 
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Figure 4  (a) Control efforts under actuator saturation (b) Expanded view (see online version  
for colours) 
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(b) 

To highlight the controller performance under the condition of saturation, the simulation 
is carried out in two phases. During the first phase, actuator saturation is neglected and 
the system is assumed unconstrained. Simulation is carried out with following system 
parameters (Liu and Yamaura, 2011), initial conditions and controller settings: 
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2 3

3 3

2 2 1 1 2 1

2 2 3
1 2 3

0.150m; 0.150m; 0.200m
0.216kg; 0.952m;

(0) [1.5,0,1.05,0,0,0]
[1,1,1] [0.75,3.75,3.2]

0.1429kgm; 0.983kgm
0.1389kgm ; 0.0299kgm ; 0.0028kgm
[ 0.5,0.5]

= = =
= =

=
= =

= + =

= = =

= − =

i

T

T

l l l
m c
x
P diag K diag
m c m c m l
b b b
ρ R dia [1,1]

[3, 2]
0.5; 0.1;
0.5; 0.5;( 1, 2)

=
= =
= = =i i

g
A diag
η ζ
κ γ i

 

Simulation results are shown in Figures 1and 2. With the control scheme (37), 
convergence of link angles to the close neighbourhood of origin can be observed. 

Figure 5 Trajectories of link angles with unconstrained actuators (see online version for colours) 

0 5 10 15 20
-1

0

1

2

3

time (sec)

x1
 (r

ad
)

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

time (sec)

x3
 (r

ad
)

0 5 10 15 20
-2

-1

0

1

time (sec)

x5
 (r

ad
)

 

 



   

 

   

   
 

   

   

 

   

    Adaptive backstepping control for a class of MIMO 21    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 6 Control efforts with unconstrained actuators (see online version for colours) 
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Figure 7 Trajectories of state variables under actuator saturation (see online version for colours) 
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Figure 8 (a) Control efforts under actuator saturation (b) Extended view (see online version  
for colours) 
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Figure 9 Trajectories followed by link angles (see online version for colours) 

 

During the second phase of simulation, simulation is carried out for the same initial 
conditions and controller parameter settings with the consideration of actuator saturation 
with saturation limits u1max = 8.5 Nm and u2max = 0.6 Nm. Results of the simulation 
performed are shown in Figures 3 and 4. As reflected by the figures, system performance 
is almost similar to the unconstrained response obtained during the first phase. Control 
efforts initially undergo saturation thereby causing a slight detuning of the system 
response and invoking the nonlinear effects of saturation. However, wavelet network, due 
to its potential to approximate the nonlinearities accurately and rapidly, reshape the 
control efforts and drive the actuators out of saturation within a short span of time. 
Control efforts, thereafter retune the system response rapidly to its original unconstrained 
form. 
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4.2 Case 2 

This time control term u2 is designed to assure the stabilisation of second and third link 
dynamics and u1 is assigned as dedicated controller to first link. Simulation is carried for 
the following settings: 

1max 2max

(0) [2.62,0,0.05,0, 0.05,0]
[1,1,1] [1.75,3.1,6.5]
[3, 2]

0.5; 0.1;
0.5; 0.5;( 1,2)

12Nm; 1.8Nm

= −
= =
=
= =
= = =

= =

T

i i

x
P diag K diag
A diag
η ζ
κ γ i
u u

 

Simulation results are shown in Figures 5, 6, 7 and 8. With the control scheme (37), 
convergence of link angles to the close neighbourhood of origin can be observed 

To illustrate the effectiveness of the proposed scheme, a comparison study is carried 
out; the closed loop response of the system under consideration is simulated with the 
initial settings x(0) = [17π/18, 0, 0, 0, π/60, 0]T taken in Lai et al. (2015). Simulation is 
carried out considering the system uncertainties and actuator saturation. System response 
and control efforts are shown in Figures 9 and 10 respectively. As reflected by the state 
trajectories, despite of system uncertainties and actuator saturation, link angles rapidly 
converge to equilibrium position and settle down in 10 seconds. 

Figure 10 Control effort (see online version for colours) 
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5 Conclusions 

This paper presents a semi generic adaptive control scheme, developed by integrating the 
backstepping methodology with hierarchical framework to ensure the stabilisation of a 
class of uncertain multi- input multi- output underactuated systems with actuator 
saturation. Under the constraints imposed by the property of underactuation, a feasible 
control scheme is derived by integrating backstepping and hierarchical controller design 
scheme. In the controller scheme presented one control term is derived by applying 
hierarchical framework to appropriate number of subsystems whereas the remaining 
controllers are assigned as dedicated controllers to rest of the subsystems. Backstepping 
methodology is used to derive the feedback control laws. Control scheme so derived 
ensures the uniform ultimate boundedness of all the closed loop signals. Wavelet neural 
networks are used for the approximation of uncertain nonlinear dynamics as well as the 
nonlinear dynamics invoked by the actuator saturation. Convergence analysis of the error 
dynamics is carried out in the Lyapunov sense. Effectiveness of the controller scheme is 
illustrated through the simulation 
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