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Abstract: The paper considers an integrated single-vendor single-buyer supply 
chain model in which the vendor is assumed to be capacity constrained. The 
vendor can keep the excess units beyond the capacity of its own warehouse 
(OW) in a rented warehouse (RW) whose holding cost is higher than that of the 
own warehouse. The vendor delivers the buyer’s order quantity in a number of 
equal shipments. The proposed integrated model is formulated and some of its 
characteristics are studied analytically. Considering the vendor’s capacity as a 
control variable, the optimal decisions of the model are obtained for a 
numerical example. Sensitivity analysis is also carried out to measure the 
impact of key model-parameters on the outcome of the model. 
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1 Introduction 

The traditional vendor-buyer model assumes that the item is stored at the vendor’s place 
or buyer’s place in a single own warehouse (OW) having unlimited capacity. This 
assumption is unrealistic in the sense that not all organisations can afford OWs of large 
capacities or they may not have the opportunity to avail such warehouses due to several 
reasons. To resolve the warehouse space crisis, the general practice in the market is to 
hire a rented warehouse (RW). Inventory model with two warehouses was first proposed 
by Hartley (1976). Sarma (1987) generalised Hartley’s (1976) model to incorporate 
transportation cost from RW to OW. More works in this direction could be found in 
Goswami and Chaudhuri (1992), Bhunia and Maiti (1998) and their references. Hariga 
(2011) developed an inventory model with multi-warehouse and flexible space contract. 
Liao et al. (2012) discussed the lot sizing decisions with two warehouses and trade credit. 
A two-warehouse partial backlogging inventory model with permissible delay in payment 
was discussed by Yang and Chang (2013). Das et al. (2014) developed a two-warehouse 
inventory model for deteriorating item with finite replenishment over a finite planning 
horizon. They designed a genetic algorithm to determine the optimal decisions of the 
model. Bhunia et al. (2016) applied the particle swarm optimisation (PSO) technique to 
solve a two-warehouse inventory model for deteriorating item under permissible delay in 
payment. 

As far as the supply chain is concerned, a single-vendor and a single-customer 
integrated model was introduced by Goyal (1976). Assuming that the vendor’s 
production rate is finite, Banerjee (1986) developed a lot-for-lot model where the vendor 
produces each shipment-sized quantity as a separate batch. Goyal (1988) argued that 
producing a batch which is made up of equal shipments generally costs lower but the 
whole batch must be completed before the first shipment is made. Lu (1995) examined 
the existence of optimal solution of the model with single vendor, single buyer and equal 
shipments. Later, Goyal (1995) showed that a different shipment size policy could give a 
better solution. The proposed policy involves successive shipments within a production 
batch increased by a constant factor which is equal to the ratio of the production rate over 
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the demand rate. Hill (1999) provided another unequal shipment policy for a  
single-vendor single-buyer integrated production inventory problem. Several researchers 
(Chakraborty and Martin, 1988; Yang, 2004) showed that the vendor’s cost as well as the 
total cost of the integrated system decrease, while the buyer’s cost increases. Huang 
(2004) developed a model to determine an optimal integrated vendor-buyer policy in  
just-in-time (JIT) environment with unreliability condition. Ben-Daya and Hariga (2004) 
showed that co-ordination is effective from vendor’s as well as buyer’s perspectives for 
stochastic demand and variable lead time. Huang et al. (2010) considered order 
processing cost reduction in a single-vendor single-buyer integrated inventory system 
under permissible delay in payments. Teng et al. (2012) studied a vendor-buyer model 
with trade credit financing linked to order quantity under both non-cooperative and 
integrated environments. A vendor-buyer model with stochastic lead time and service 
level constraint was analysed by Soni and Patel (2014). Jauhari and Winingsih (2016) 
developed four integrated vendor-buyer models with stochastic demand where the vendor 
and the shipper offer discounts to the buyer. Recently, Khan et al. (2017) investigated the 
joint effect of imperfect production, inspection errors and stochastic lead time demand on 
the optimal cost of a vendor-buyer supply chain. All these works did ignore the capacity 
restrictions of the vendor and the buyer. 

However, capacity or space constraint has a major effect on the optimal decisions of 
an integrated system. Most of the studies on integrated vendor-buyer inventory system, as 
mentioned above, ignores the capacity constraint. The reason is perhaps to avoid the 
complexity of the problem. Hoque and Goyal (2000) developed a single-vendor  
single-buyer production inventory system with unequal and equal-sized shipments from 
the vendor to the buyer under capacity constraint of the transport equipment. Lee and 
Wang (2008) studied the impact of buyer’s capacity constraint on the optimal decisions 
in case of a consignment stock policy. Xu and Leung (2009) focused a stocking policy in 
a two-party vendor managed supply chain with space restriction. Hariga et al. (2013) 
considered a supply chain model with vendor-managed inventory (VMI) contract for 
multiple retailers with storage constraint and unequal shipment policy. Hariga et al. 
(2013) developed a supply chain model under a VMI contract considering buyer’s 
warehouse space limitation. Hariga et al. (2014) studied a single vendor multiple retailers 
supply chain system where a maximum stock level is allowed by each retailer. Ouyang et 
al. (2015) considered an integrated inventory model with retailer’s capacity constraint 
and order size dependent trade credit. Giri and Bardhan (2015) investigated the effect of 
buyer’s space constraint on the optimal decision in a vendor-buyer model with  
stock-dependent demand and consigned inventory. 

Though some works have been done on integrated vendor-buyer system with a 
limited capacity, much attention has not been paid to the capacity constraint of the vendor 
as evident from above. Further, no attempt has been made to consider a RW in JELP 
(joint economic lot size problem). In this paper, we propose a generalised JELP assuming 
that the vendor is capacity constrained, i.e., the capacity of its OW is limited. The vendor 
can keep the excess units beyond the capacity of its OW in a RW. If the vendor has to 
meet the buyer’s demand (order quantity) then the question arises, whether the vendor 
will go for accommodating all the produced quantities in its OW whatever may be the 
size of the production lot or it will decide the optimal capacity of OW and accommodate 
the excess units in the RW, even though the holding cost of the RW is more than the OW. 
The novelty of the paper is to find the answer of this question. The rest of the paper is 
organised as follows: notations and assumptions for developing the model are given in 
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the following section. The description of the model is given in Section 3. The proposed 
model is formulated and the solution methodology is presented in this section. In  
Section 4, a numerical example is taken to obtain numerically the optimal solution of the 
developed model. A sensitivity analysis is also carried out to examine the effect of 
changes of key model-parameters on the optimal solution. Finally, in Section 5, the paper 
is concluded with some remarks and future scope of research. 

2 Notations and assumptions 

The following notations are used to develop the proposed integrated vendor-buyer model. 

D demand rate at the buyer 

P(> D) production rate at the vendor 

Q vendor’s production lot size 

n number of shipments per cycle from the vendor to the buyer, a positive integer 

q shipment size 

Sv vendor’s setup cost per setup 

Sb buyer’s ordering cost per order 

hv vendor’s unit holding cost in OW 

vh  additional cost of holding per unit per unit time in the RW compared to OW 

hb buyer’s unit holding cost 

W vendor’s (own) warehouse capacity 

Imax maximum on-hand inventory at the vendor 

T cycle length 

F transportation cost per shipment. 

The following assumptions are made to develop the proposed model. 

1 The supply chain consists of a single-vendor and a single-buyer for trading a single 
product. The vendor follows multiple equal-shipments policy for delivering the order 
to the buyer. 

2 The buyer’s demand rate is constant. The vendor’s production rate is also constant 
and greater than the buyer’s demand rate. 

3 The vendor is capacity constrained. The maximum stocking capacity of the vendor’s 
OW is limited to W which we take as a decision variable. 

4 The vendor can keep the excess units produced beyond the capacity of its OW in a 
RW whose holding cost is higher than that of the OW. 
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5 At the buyer, replenishments are instantaneous and lead time is zero. Shortages are 
not allowed in the buyer’s inventory. 

6 It is assumed that b v vh h h  (Hill, 1999) as the value of the product usually 
increases when the product moves down the supply chain, and accordingly the 
holding cost is more at the buyer’s place than that at the vendor’s RW. Though this 
assumption is not to be true in all cases, it is made here to establish a relationship of 
the holding costs at the buyer and the vendor (own and RWs). 

3 Model formulation 

We assume that the buyer’s order quantity is Q(= nq) which is delivered by the vendor in 
n regular shipments of size q. Obviously, for each replenishment, the buyer’s inventory 
will be depleted after q/D time. Since P > D, more than q quantity is produced by the 
time q/D but only q quantity is delivered to the buyer. This process continues up to the 
time instant when the vendor’s inventory level reaches the capacity W. To find the 
vendor’s inventory holding areas in its OW and RW, we first assume that the vendor’s 
OW capacity W is greater than the maximum on-hand inventory level Imax. Then the total 
holding area will be equal to the holding area of its OW. On the other hand, if W < Imax, 
then we have to consider the holding areas in the OW as well as the RW. If, however, 

0vh  then our proposed model coincides with that of Ha and Kim (1997). 

3.1 Vendor’s cost 

To find the vendor’s holding area, we divide the total inventory area into some sub-areas. 
The inventory holding area before the first shipment at the vendor’s warehouse is 

2

1 .
2
qA
P

 The time period after the first shipment and before the completion of 

production is ( 1) .n q
P

 So, the number of shipments in this time period is 

1
( 1) ( 1) ,n q D n Dm

P q P
 

where x  is the greatest integer less than or equal to x. 
If iIL  and iIL  denote respectively the inventory levels of the vendor just before and 

after the time of ith shipment then we have 

1( 1) ( 2) , and ( 1) ( / 1), 2,3ii
PIL q i i q IL i q P D i m
D

…  

Clearly, we have 0.iiIL IL q  Let Θi denote the inventory holding area at the 
vendor between (i – 1)th and ith shipments. Then we have, 
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So, the total holding area up to the th
1m  shipment is 

1 2

2
2

(2 3) 2 4
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m

i

q PA i i
D D

 

Figure 1 The inventory diagram when vendor is capacity constrained 

 

 

The remaining time between th
1m  shipment and completion of production is (see  

Figure 1). 

1 1
3

( 1) 1 .n q m q n mδ q
P D P D

 

The corresponding holding area for the time period δ3 is 1
3

3 max[ ].
2 m
δA IL I  During the 

time of production, the highest inventory level is given by 
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max 1 /I q n m P D  

The idle time i.e., the time between completion of production and (m1 + 1)th shipment is 

given by 4 3 .qδ δ
D

 So, the corresponding inventory holding area will be δ4Imax. 

After time δ4, the inventory level drops down to Imax – q. So, the remaining number of 

shipments is max
2 .qI

m
q

 In this time duration, the inventory area is given by 

2
max1

( ).
m

k

q I kq
D

 So, the total holding area after the completion of production is 

2

4 4 max max
1

m

k

qA δ I I kq
D

 

We now find the holding area in the RW. Note that if W ≥ Imax then there is no need of a 
RW. Let us assume that at the time of kth shipment, the vendor’s inventory level curve 
crosses (or touches) the capacity level W. Then we have 

( 1) ( 2)

2

1 , if 1 is an integer

or, 1 1

k
PqIL k k q W
D

PqW q
Dk

Pq q
D

W q W qk
Pq Pqq q
D D

W qk
Pq q
D

 

The intersection of the vendor’s inventory level curve with its capacity level line will 
occur if W < Imax. However, the number of intersections plays a vital role in calculating 
the inventory holding area in the RW. Therefore, it is important to consider the conditions 
on which the number of intersections depends. 

If the intersection occurs after (k – 1)th shipment then .kIL W  Again, if the vendor’s 
inventory level drops down to W after kth shipment then .kIL W  These two conditions 
simultaneously hold when (P/D – 1) > 0 i.e., P > D. Along with these conditions, if the 
condition 1kIL W q  is true then one and only one intersection is guaranteed. 

Proposition 1. Two consecutive intersections of the vendor’s inventory level curve with 
the capacity level line do not arise provided that P > 2D. 
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Proof: We have 

1

( / 1) ( / 2)
and ( / 1)

k

k

IL W qk P D q P D W
IL W q qk P D W

 

Thus the conditions kIL W  and 1kIL W q  jointly hold only when 2 0P
D

 giving 

P > 2D. 

Proposition 2. Three consecutive intersections of the vendor’s inventory level curve with 

the capacity level line do not arise provided that 3 .
2
DP  

Proof: If ,kIL W  then 1 .kIL W  So, three consecutive intersections of the vendor’s 
inventory level curve and capacity level line is possible only when 1kIL W  and 

2 .kIL W  The condition for satisfying this is given by 

2
2( 1) 1 3k

P PIL k q q W
D D

 

which holds if 2 3 0.P
D

 

Thus we can formulate a sequence of the ratio of P and D depending on which the 
number of intersections can be calculated. Here, we have the sequence 

2 3 4 5 6, , , , ,
1 2 3 4 5

…  for the ratio P/D and the corresponding sequence of number of 

intersections is {1, 2, 3, 4, 5, …}. This is represented graphically in Figure 2. 
From above, we have the following observations: 

1 as the ratio P/D tends to 1, the number of intersections increases 

2 when P = D, the total number of intersections either becomes zero or equal to the 
total number of shipments 

3 the ratio P/D decreases implying that the usage of the RW also decreases. 

To further analyse the model, we assume that P > 2D, i.e., the number of intersections 
between the vendor’s inventory level curve and the capacity level line is only one. For the 
other cases, calculations can be done in a similar manner. 

In the following, we first find the holding area at the RW. If the vendor’s inventory 
level curve first touches the capacity level line after the (m1 – 1)th shipment then the 
holding area at the RW in (q/D – δ1) time is 

1 1 1 1

1

1

1 1 2 ,
2

2 1
where .

q Pqδ m m q W
D D

PW m q
Dδ

P
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Figure 2 Relation between number of intersections and P/D 

 

According to our assumption, the minimum inventory level at the time of th
1m  shipment 

is less than Imax and it again reaches the capacity level after 1mW IL
P

 time, and the 

vendor’s inventory level curve crosses the capacity level line and reaches Imax until 
completion of production after δ3 time. The point to be noted here is that δ1 + δ2 = q/D 

and δ3 + δ4 = q/D (see Figure 1). The area for the time 3
q δ
D

 is given by 

1
2 3 max

1 .
2

mW ILδ I W
P

 

The area in the RW for the time interval between the completion of production and the 
first shipment after it is 

1
3 4 max 4

1 1, where .m nδ I W δ q
D P

 

Here nq
P

 is the time when production is completed. It is obvious that the maximum  

on-hand inventory level at the vendor is the same as the inventory level at the completion 
of production. The remaining holding area in the RW is given by 
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max
4 max

1

, where 1.
s

i

q I q WI iq W s
D q

 

So, the average total cost of the vendor is given by 

( , , ) v r v w v
v

h HC h HC STC n q W
T

 (1) 

where HCr is the total inventory area at the RW and HCw is the total inventory area at the 
OW. So, HCr = ∆1 + ∆2 + ∆3 + ∆4 and HCw = A1 + A2 + A3 + A4. 

3.2 Buyer’s cost 

The buyer’s ordering cost is Sb and total transportation cost is nF. Therefore, the annual 
total cost of the buyer is 

( , ) where .
2

b b
b

S nF h q nqTC n q T
T D

 (2) 

3.3 Integrated system cost 

From (1) and (2), the annual total cost of the vendor-buyer integrated system is given by 

( , , ) ( , , ) ( , )v bTC n q W TC n q W TC n q  (3) 

Our objective is to minimise TC(n, q, W) subject to the condition Imax > W > 0. 

Proposition 3. For fixed capacity level W and number of shipments n, the cost function 
TC(n, q, W) is piecewise continuous in q. 

Proof: We have from (3), TC(n, q, W) = TCv(n, q, W) + TCb(n, q). For fixed n, TCb(n, q) 
is a continuous function in q. In order to examine the nature of the cost function  
TCv(n, q, W), we see that HCr = ∆1 + ∆2 + ∆3 + ∆4 where ∆4 depends only on s where 

max

1

1

1

1

1

/ 1

/ 1 / 1

/ /

/ /

I q Ws
q

q n m P D q W
q

n m P D W q

n m P D W q

n m P D W q

 

As – P/D – W/q  always gives an integer value, and P, D and W are fixed, therefore,  
–1 < –P/D – W/q < 0 gives –P/D – W/q  = –1. 

This shows that ∆4 is piecewise continuous and hence the cost function TCv(n, q, W) 
is piece-wise continuous in q for given n and W. 

In the following, the convexity of the cost function TC(n, q, W) is established when 
the vendor’s capacity constraint is an integer multiple of the shipment size. 
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Proposition 4. The average cost function TC(n, q, W) is convex in q when the vendor’s 
capacity W is an integer multiple of shipment size q. 

Proof: Suppose that W = Lq, where L is a positive integer. Then from equation (1),  
TCv(n, q, W) takes the form aq + b/q, where a and b are constants. Similarly, from 
equation (2), TCb(n, q) can be transformed into the same form. Further, we check that 

2 2

2 2
( , , ) ( , , ) 0v v

d dTC n q W TC n q Lq
dq dq

 

implying that TCv is convex in q. Hence TC(n, q, W) is convex in q. 

4 Numerical example 

To illustrate the proposed model numerically, we consider the following data, a  
part of which is taken from Salameh and Jaber (2000): P = 160,000 units/year,  
D = 50,000 units/year, Sv = Rs. 300/cycle, Sb = Rs. 100/cycle, hv = Rs. 2/unit/year,  

vh  = Rs. 1/unit/year, hb = Rs. 5/unit/year and F = Rs. 25/delivery. 

Figure 3 The convexity of TC(n, q, W) for n = 8 (see online version for colours) 

 

We find that for any given n, the average cost function TC(n, q, W) represents a convex 
surface. One instance is shown in Figure 3. We, therefore, perform a line search on n and 
find the optimal values of q and W and the corresponding average cost TC for each value 
of n. The results are shown in Table 1. 

Table 1 shows that the capacity level W increases and the lot size q decreases with the 
increase in the number of shipments n. The cost function attains the minimum value for  
n = 8, and the corresponding optimal values are q* = 701.13, W* = 1,963.18 and  
TC* = 10,696.8. 
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Table 1 Optimal results 

n q* W* TC* 

5 971.26 777.01 10,809.2 
6 855.21 1,539.33 10,718.6 
7 766.65 1,609.96 10,714.6 
8 701.13 1,963.18 10,696.8 
9 645.93 2,454.54 10,748.9 
10 599.85 2,579.37 10,836.0 

Table 2 Optimal results when W is fixed 

W n* q* TC* 

500 6 832.94 10,843.7 
1,000 6 845.02 10,752.4 
1,500 7 765.26 10,715.3 
2,000 8 702.64 10,697.2 
2,500 8 710.48 10,716.1 
3,000 8 742.61 10,788.5 

We now obtain the outcome of the proposed model when the vendor’s capacity is fixed. 
Table 2 shows that, as W increases, TC* first decreases and then increases and the 
minimum value of TC* is attained for W  (1,500, 2,500). We have verified that the 
minimum value TC* is 10,696.8 which is obtained for W = 1,963.18. This result exactly 
matches with the result given in Table 1. 

We now perform the sensitivity analysis of the key model-parameters. We change the 
value of one parameter at a time and keep all other parameters unchanged. Table 3 shows 
the changes in the optimal results for –20%, –10%, 0%, 10% and 20% changes in the 
parameter-values. 

The following observations are made from Table 3. 

1 As the production rate increases, the system cost increases but the capacity level and 
shipment size decrease. 

2 For an increase in demand rate, the capacity level, the shipment size and the average 
total cost increase. 

3 The RW’s holding cost exhibits very low sensitivity to the average cost of the 
system. Similar effects on the capacity level and shipment size are also observed. 

4 Effects of the capacity level, shipment size, the OW’s holding cost and the buyer’s 
holding cost on the average cost of the supply chain are found similar in nature. The 
average cost of the supply chain increases in each case. The capacity level and the 
shipment size decrease in both the cases. 

5 The vendor’s set-up cost and the buyer’s ordering cost have similar effects on the 
supply chain; they increase the average cost, capacity level and shipment size 
moderately. 
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Table 3 Sensitivity analysis 

Parameter Value 
Optimal results 

q* W* TC* 

P 129,660 723.10 2,256.06 10,371.1 
144,000 711.01 2,218.34 10,548.4 
160,000 701.13 1,963.18 10,696.8 
176,000 694.04 1,943.32 10,806.5 
193,600 684.31 1,666.98 10,960.0 

D 40,500 614.76 1,521.71 9,881.94 
45,000 654.55 1,555.57 10,312.4 
50,000 701.13 1,963.18 10,696.8 
55,000 745.24 2,086.66 11,069.7 
60,500 792.88 2,450.73 11,445.7 

vh  0.8 689.91 1,931.76 10,870.7 
0.9 700.86 1,962.40 10,696.6 
1.0 701.13 1,963.18 10,696.8 
1.1 701.22 1,963.41 10,697.0 
1.2 701.09 1,963.05 1,0697.3 

hv 1.6 750.69 2,101.82 9,990.8 
1.8 725.97 2,032.71 10,331.2 
2.0 701.13 1,963.18 10,696.8 
2.2 678.71 1,900.38 11,050.3 
2.4 656.34 1,837.87 11,426.5 

hb 4.0 724.03 2,027.29 10,358.4 
4.5 713.14 1,996.79 10,520.1 
5.0 701.13 1,963.18 10,696.8 
5.5 689.91 1,931.75 10,870.7 
6.0 678.24 1,899.06 11,058.8 

Sv 243 666.99 1,867.57 10,176.0 
270 683.62 1,914.14 10,426.0 
300 701.14 1,963.20 10,696.8 
330 718.48 2,011.76 10,961.0 
363 736.97 2,063.59 11,244.4 

Sb 81 690.02 1,932.05 10,526.1 
90 695.30 1,946.84 10,607.3 

100 701.14 1,963.20 10,696.8 
110 706.96 1,979.48 10,785.6 
121 713.31 1,997.27 10,882.4 
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5 Conclusions 

Buyer’s and vendor’s capacities play important role in determining the optimal policy of 
an integrated vendor-buyer inventory system. This paper develops a single-vendor a 
single-buyer integrated inventory model considering vendor’s capacity constraint. The 
vendor has limited capacity of its OW. It can keep the excess units produced beyond the 
capacity of OW in a RW whose holding cost is higher than that of the OW. The study 
suggests that the vendor cannot make an effective production plan for full usage of its 
OW only. In order to have the minimum average cost of the integrated system, the vendor 
needs a RW. In the proposed model, the capacity of the vendor’s OW is taken as a 
control variable. Further, it is shown that if the vendor’s OW capacity is unlimited then 
the proposed model coincides with the basic JELP model proposed by Ha and Kim 
(1997). This indicates that ours is a generalised JELP model. In our model, we have 
considered the vendor’s capacity constraint. One can immediately extend this model by 
considering the buyer’s capacity constraint as well. There are also several other scopes of 
extending the model such as consideration of imperfectness in the production system, 
non-constant demand, process improvement by learning, and so on. 
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