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1 Introduction

Duadic codes form an important class of cyclic codes. They generalise the well known
quadratic residue codes of prime length. Triadic codes further generalise duadic codes.
While initially duadic codes were studied within the confines of finite fields, there have been
recent developments on duadic codes over some special rings. Pless and Qian (1996) studied
quadratic residue codes over Z4, Chiu et al. (2000) extended the ideas to the ring Zg and Taeri
(2009) considered quadratic residue codes over Zg. Kaya et al. (2014a) and Zhang and Zhu
(2012) studied quadratic residue codes over IF}, + ulF,,, where p is an odd prime. Kaya et al.
(2014b) studied quadratic residue codes over Fy + ulFy 4+ u?Fy whereas Liu et al. (2014)
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studied them over non-local ring F,, + ulF,, + u*F,,, where u® = u and p is an odd prime.
Raka et al. (2017) extended their results over the ring F,, + uF,, + u®F, + u3F,, where
u* = uand p = 1(mod 3). Goyal and Raka (2018) studied quadratic residue codes and their
extensions over the ring F), + uF,, + u?F,, + - - - + u™ 'F, where u™ = u, m any integer
greater than 1 and p is a prime satisfying p = 1(mod (m — 1)). Goyal and Raka (2016)
studied duadic codes and their extensions over the ring F, + uF, + w?F, + - - - + u™~'F,,
where ©" = u and ¢ is a prime power satisfying ¢ = 1(mod (m — 1)), generalising all the
previous results.

In our previous papers (2016, 2018), the condition that ¢ = 1(mod (m — 1)) implied
that the polynomial 4™ — u splits into distinct linear factors over F,. Here we work on
a more general ring. Let f(u) be any polynomial of degree m, m > 2, which splits into
distinct linear factors over F,. Let R = Fy[u]/(f(v)) be a finite non-chain ring. In this
paper, we study duadic codes and triadic codes over the ring R. A Gray map is defined from
R™ — Fy'" which preserves linearity and in some special cases preserves self-duality. The
Gray images of duadic codes and their extensions over the ring R lead to the construction
of self-dual, isodual and self-orthogonal codes. The Gray images of triadic codes over the
ring R lead to construction of complementary dual (LCD) codes over . In another paper,
we will discuss duadic negacyclic codes over the ring R.

The paper is organised as follows: In Section 2, we recall duadic and triadic codes
of length n over F, and give some of their properties. In Section 3, we study the ring
R = Fy[u]/{f(u)), cyclic codes over the ring R and define the Gray map & : R" — F*".
In Section 4, we study duadic codes over R, their extensions and their Gray images. In
Section 5, we study triadic codes over R and their Gray images. We also give some examples
to illustrate our results.

2 Preliminaries

A cyclic code C of length n over F, can be regarded as an ideal of the ring S,, = F,,[x] /(=™ —
1). It has a unique generating polynomial g(x) and a unique idempotent generator e(z). The
set {i : o' is a zero of g(x)}, where « is a primitive nth root of unity in some extension
field of IFy, is called the defining set of C.

Let j(z) = 2(14+ 2+ 2%+ .-+ 2" ). The even weight [n,n — 1,2] cyclic code
[E,, has generating idempotent 1 — j(z), its dual is the repetition code with generating
idempotent j(z).

A polynomial a(z) =", a;z’ €S, is called even-like if a(1) = 0 otherwise it is
called odd-like. A code C with generator polynomial g(z) is called even-like if g(1) =0
and odd-like if g(1) # 0.

For (a,n) =1, pq : Zy, — Z,, defined as p,(i) = ai(mod n) is called a multiplier,
where Z, = {0,1,2,...,n—1}. It is extended on S, by defining u,(>", fiz*) =
S fiata (),

For a linear code C over F, the dual code C is defined as C+ = {z € F} | -y =
0 for all y € C}, where x - y denotes the usual Euclidean inner product. C is self-dual if
C = C* and self-orthogonal if C C C*. A code C is called isodual if it is equivalent to its
dual C* and is called formally self-dual if C and C* have the same weight distribution.
An isodual code is clearly formally self-dual. A linear code C whose dual C* satisfies
C N C* = {0} is called a complementary dual (LCD) code.
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The following is a well-known result:
Lemma 1:

i Let C be a cyclic code of length n over a finite field IF, with defining set T'. Then the
defining set of 14 (C) is piq—1(T) and that of C* is Z,, — p_1(T).

ii  Let C and D be cyclic codes of length n over a finite field F, with defining sets T}
and Ty respectively. Then C N'D and C 4+ D are cyclic codes with defining sets
Ty U Ty and Ty N T respectively.

iii  Let C and D be cyclic codes of length n over I, generated by the idempotents
Ey,Ey inFylz]/(z™ — 1), then C N'D and C + D are generated by the idempotents
F1FEs and E1 + Es — Eq s respectively.

iv  Let C be a cyclic code of length n over I, generated by the idempotent E, then
1a(C) is generated by ., (E) and C* is generated by the idempotent 1 — E(z~1).

Remark 1: Dual of a linear code over a finite ring is defined in the same way and results
in Lemma 1 (iii) and (iv) also hold true over any finite commutative ring.

2.1 Duadic codes over I

In this subsection, we give the definition of duadic codes and state some of their properties.
Let n be odd, (n,q) = 1 and suppose

Z, = {0} U Sy US,, where
i S1, S5 are union of g-cyclotomic cosets mod n
i S1NS;=0
ili  There exists a multiplier i, (a,n) = 1 such that j,(S1) = S2 and
taq(S2) = S1.

The triplet (g4, S1,.92) is called a splitting modulo n. The codes D; and D5 having S and
S5 as their defining sets respectively are called a pair of odd-like duadic codes and codes C,
and Cy having S; U {0} and Sz U {0} as defining sets are called a pair of even-like duadic
codes.

It is known that duadic codes exist if and only if ¢ is a square mod n.
The next lemma investigates when does a splitting by p—; exist and when it does not.
For reference, see Guenda and Yildiz (2015) and Smid (1987).

Lemma 2: Letn = pi'p5?* - - - p* be the prime factorisation of the odd integer n and q be
a square mod n.

i Ifp; =3(mod4), foralli,1 < i <k, then all splittings mod n are given by [1_1.
ii ~ Ifatleast one p; = 1(mod 4), 1 < i < k, then there is a splitting mod n which is not
given by 1.

The following Lemmas 3 and 4 state various properties of duadic codes. For reference, see
Theorems 6.1.3, 6.4.2, 6.4.3 and 6.4.12 of Huffman and Pless (2003).
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Lemma 3: Let C1=(e1(x)) and Cy=(ea(x)) be a pair of even-like duadic codes of length
n over B, with idempotent generators e1 (x) and e (x). Suppose g, gives the splitting for Cq
and Cs. Let Dy and D5 be the associated odd-like duadic codes with idempotent generators
dy(x) and dy(x). Then:

i eiea =0 and didy = j(x)

ii el +e=1—j(x)anddy +ds =1+ j(x)
il d1 — €1 = j(l’), d2 — € = 3((1?)

v ClﬂCQZ{O}C1+C2:En

v G, is even-like subcode of D; fori = 1,2

vi DiNDy = {j(x))andD; +Dy =S,
vii  D; =C; + (j(z)) = ((x) + e;()) fori = 1,2
viii  Cy is equivalent to Co, D1 is equivalent to Dy

ix If u_y gives the splitting mod n, then C{ = Dy and C3 = Dy

x Ifu_1(Cy) =Cyand p_1(Cy) = Cq, i.e., if u_1 does not give the splitting, then

(Cf' = ]D)Q and (Cé‘ = ]D)l.

Lemma 4: Let Dy and D2 be a pair of odd-like duadic codes of length n over F. Suppose
1 +~?n = 0 has a solution y in F. Let D; be the extension of D;, for i = 1,2, defined by

n—1
D; = {(co,C1y--Cn-1,Co0) : Coo = 'chj, (cosC1y--vyCn_1) € D}
=0

Then the following hold:

i If u_1 gives the splitting of D1 and Do, then Dy and Dy are self-dual.
i Ifu—1(Dy) =Dy, ie, if the splitting is not given by 11, then D, and Dy are duals

of each other and hence Dy and Dy are isodual.

2.2 Triadic codes over IF

In this subsection, we give the definition of triadic codes and study some of their properties.
For reference see Sharma et al. (2007) and Pless and Rushanan (1988). Let (n,¢) = 1 and
suppose

Z, = S1U S5 U S3U X, where

i 51,52, 53 and X, are union of g-cyclotomic cosets mod n
ii 51,52, 53 and X, are pairwise disjoint

iii  There exists a multiplier y, (a,n) = 1 such that p,(S1) = S2, 114 (S2) = S,
Ma(Sg) = Sl and /J,a(Xoo) = Xoo
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It is clear that 0 € X, always. Let X. = X, — {0}. Note that here the multiplier y,
cannot be p_1.

Then the codes, for i = 1, 2,3, having S; U X/ or (S; U X )€ as their defining sets
are called odd-like triadic codes and the codes having (S; U X/ )¢ or S; U X, as their
defining sets are the associated even-like triadic codes. Let I; denote the odd-like codes
having S; U X/ as their defining sets; I} denote the odd-like codes having (S; U X )€ as
their defining sets; C; denote the even-like codes having (.S; U X/ )¢ as their defining sets
and C! denote the even-like codes having S; U X, as their defining sets.

Clearly Dy, Dy, D3 are equivalent codes; D}, D%, DY are equivalent; Cq, Co, C3 are
equivalent and C/, C}, Cj are equivalent codes.

Fori =1,2,3, let e;(x) and e}(x) be the even-like idempotent generators of even-like
triadic codes C; and C/, respectively, d;(x) and dj(x) be the odd-like idempotent generators
of odd-like triadic codes I; and I} respectively.

As the defining set of C; is Se U S3 U {0}, the defining set of 11,(Cy) is prg-1(S2 U
S3U{0}) = S1 U Sz U{0}. Therefore y,(Cy) = C3 and hence pi,(e1) = e3. Similarly
ta(ea) = e1, pales) = ex and po(di) = ds, pa(de) = di, pa(ds) = da. Similar results
hold for €] and d.

Triadic codes over I, of prime length p exist if and only if g is a cubic residue mod p.
When length n is a prime power, the conditions for the existence of triadic codes over I,
are given by Sharma et al. (2007) and for general n, see Bakshi et al. (2007).

Similar to the properties of duadic codes, we have following results for triadic codes.

Proposition 1: We have

i CiNCanC3=CiNCy=CiNC3=CaNC;5

i Ci+Co+C3=E,=(x—-1)=(1-j))

i D+ D+ D3 =D +Dy =Dy +D3 =Dy + D3

v DiNDyND; = (§(x))

v Ci+D;=S,C,nND;={0}fori=1,2,3

vi ep(x)es(z)es(x) = er(x)ea(x) = er(x)es(x) = ea(x)es(x)
vii  e1(x) + ea(x) + e3(x) — 2e1(x)ea(x)es(z) = 1 — j(x)
vii  dy(x)da(z)ds(z) = j(x)

X d1 + d2 + d3 - d1d2 - d2d3 — d3d1 + d1d2d3 = d1 + d2 - dldg
=d + d3 — dad3z = di +d3 — d3d;

x  di(x) =1—ei(x), ej(x)d;(x) =0fori=1,2,3.

Proof: By Lemma 1 (ii), the defining set of each of C; N C3 N C3, C; N C5, C2 N C3 and
C3NCy is S1 U Sy U S5 U {0}, hence they are equal. The defining set of C; + C + C3
is {0}, which is the defining set of even weight code E,, whose generating idempotent
is 1 — j(x). Again by Lemma 1(ii), the defining set of each of Dy + Dy + D3, Dy + Do,
D5 + D3 and D3 + Dy is X/, hence they are all equal. The defining set of Dy N Dy N D3
is 51U S US3 U X! =Z, — {0}, which is the defining set of the repetition code whose

generating idempotent is j(z). The defining set of C; N D; is whole of Z,, hence it is {0}
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inthering S,, = Fy[x]/(z™ — 1); whereas defining set of C; 4+ I; is (), so C; + D) is equal
to S,,. The other results follow by Lemma 1(iii). O

Proposition 2: We have

i CinC,nC;={0}

ii T+CL+CL=C+CL=C|+C, =C,+Cj
i DiNDyND; =D) ND,) =D, ND; = D) NDY

v Di+Dy+Dy =S, =(1),

v Ci+D;=S, C,NnD,={0}

Vi dy(@)dy()d (@) = di (2)d (@) = di () (@) = dy(w)dh ()
it di(@) + i) + dy(w) — 2] (@)dy()d () = 1
viti e} (z)ehy(x)es(x) =0

ix €} +eh+es—elel —ehel —ehel + elehel =) + e, — elel

= e, + el — ehel :e’1+eg—ege’1

x dé()—l—e(x) () i(@) =
xi Ci+(j(x)) = N (j(x)) = {0}
xii  Ci+ (j(x)) = Dz, Cin (j(x)) = {0}
xii C;NC,={0},C; +C,=(1-j(z)),
xiv. D;ND; = (j(x)),,D; + D} =S,
v+ j(@) =dj, e;+j(x) =di, eij(x) =0, ejj(x) = 0and
wi eiel=0,e+e.=1—j(z),did, = j(x),d;i +di =1+ j(2).
Proof: Statements (i)—(x) are similar to thzit of (i) to (x) of Proposition 1. For (xi), we note
that the defining set of the repetition code (j()) is Z, — {0}. Therefore the defining set of
C; N (j(x)) is Zy, and defining set of C; + (j(z)) is same as that of ;. Similarly, we have

(xii). The defining set of C; N C} is Z,, and thatof C; 4+ C} is {0}. The defining setof D; N D,
is Z,, — {0} and that of D; + D} is (). Now (xv) and (xvi) follow by Lemma 1(iii). O

Proposition 3:  Suppose X__ is empty, then we have the following additional results:

i CiNCnNC3=CiNCy=CiNC3=CynNCs={0}
i Di4+Dy+D3=D1+Dy=Dy+D3=D;+D3 =S8,
ii DiNDyND;=D)ND,=D,ND; =D ND; = (j(z))
v Ci+CH+Cl=C,+CL=C+C,=CH+C,=E,=(1-j))
v ep(z)ez(x)es(r) = er(x)ea(x) = er(z)es(x) = ex(x)eg(z) =0

vi dy(2)dy()ds(x) = dy(2)dy(x) = dy (2)ds(2) = dy(x)d3(x) = j(x)
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vii  di +dy 4+ ds — didy — dods — dsdy + didads = di + doy — dids
=dys+d3z —dodz =dy +d3 —dzdy =1

viii e} + 5+ e5 —ejey — epey — ezel +ejenes =€) + e —efeh
=eh +eh —eheh =) +ef —ehel =1—j(x).

Proof follows immediately from Propositions 1 and 2, using Lemma 1.

Proposition 4: Let C;, C}, fori = 1,2,3, be two pairs of even-like triadic codes over F
with D;, I} the associated pairs of odd-like triadic codes. Then

Ci" = p—1(Di) and C- = 1 (D}).
Further, if u_1(D;) = Dy, then

C} =D;,C* =D and so C; and C, are LCD codes .

K2

Proof:  As the defining set of Cy is (S; U X/)¢ = {0} U S U Ss, the defining set of C{,
by Lemma 1(i) is

n— p-1({0} U Sz U Ss)
~1(Zn) — p-1({0} U S2 U S3)
1(51USQUS3UX ) ,LL_1({O}US2U53)
~1(S1U X))
_1(defining set of D).
This proves that C;- = pi_1(ID;). Similar is the proof of others.

When p—1(D;) = Dy, i.e., the defining set of ID; is mapped to itself by p_1, we see
that the defining set of D} also goes to itself by 1 and so p_1(ID;) = D). Therefore
Ci- = p-1(D;) = Dy, CF- = p—1 (Dj) = Dy,

Further in case p—1(ID;) = D;, we get, from Propositions 1(v) and 2(v), that C; N (CZ-l =
C;ND; = {0} and C; N C+ = C, N D} = {0}; proving that C; and C’ are LCD codes.

3 Cyclic codes over the ring R and The Gray map

3.1 Cyclic codes over the ring R

Let ¢ be a prime power, ¢ = p°. Throughout the paper, R denotes the commutative ring
F,lu]/(f(u)), where f(u) is any polynomial of degree m > 2, which splits into distinct
linear factors over Fy. Let f(u) = (u — aq)(u — a2)...(u — auy,), with a; € Fy, o # aj
R is a non-chain ring of size ¢™ and characteristic p. The ideals (- ) ) fort=1,2,.
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are all the maximal ideals of R. Let n;, ¢ = 1,2, ..., m denote the following elements of

R :

L (u—an)(u—ag) - (u—am-1) (u—am)
mn (a1—az)(ar—az) - (a1—am—1)(@1—aum)’

(u—ar)(u—ag) - (u—am—1)(u—am,)

2= (az—a1)(az—asz)-(az—am—1)(az—oum)’
1
. (u—a)(u—ag)(u—aio1) (u—aig) (U= Qm) M
i (ai—ar)(ai—az)(ai—a;i—1)(ai—ait1) - (i—am)’
_ (u—ar)(u—a2) (u—apm—o)(U—Qm—1)
Tim (am—ar)(am—az)-(m—am—2)(@m—am-1)"

Lemma 5: We haven? =n;, nin; =0 for1 <4,j <m,i#j and > .- n; =1linR.

Proof: Tt is clear that 7;n; = 0 (mod f(u)) for 1 <i,j <m, i # j. To prove n? =,
it is enough to prove that 7;(n; — 1) =0 in R, so it is sufficient to prove that (u —
a;)| ni(n; — 1) for each j. By definition of 1;, it is clear that (u — «;)| n; forall j # i. Also
ni(ci) = 1, 50 (u — ;)| (n; — 1) for all i. Therefore f(u)| n;(n; — 1) and hence n? = n;
in R. Now to prove Y ", n; = 1 in R, it is sufficient to prove Y.~ 7; = 1 (mod f(u)).
As () +m2(e) + -+ - + () = 1 for all 4, we find that (v — a;)| (1 + 792 + -+ +
Nm — 1) for all ¢ and the result follows. 0

The decomposition theorem of ring theory tells us that

R=mR®NLR® - dn.R.
For a linear code C of length n over the ring R, let

Ci={x1 €F} : 3wa,23,..., 2, € F} such that nizy + noxo + - + Ny € C},
Co={z2 € Fy : I w1, 23,..., 2, € Fy such that mizy +naz2 + -+ + N € C},

Con ={xm €Fy : Ja1,29,..., 21 € F] suchthat mxy + - + Ny, € Ch.

Then Cy, Cs, ..., Cyy, are linear codes of length n over Fy, C = 11C1 @ 17202 @ -+ - ® 7mCn
and |C| = [Cy] |Ca] -+ [Cr.
The following is a result of Goyal and Raka (2016).

Theorem 1: Let C = 1n11C; ® 1n2Co @ - - - @ 1,y Copy, be a linear code of length n over R.
Then

i Ciscyclicover R ifand only ifC;, i = 1,2,...,m are cyclic over .

i IfCi = (9:(x), gi(2) € i, gil@)|(@" — 1),
then C = (m1.91(2),1292(x), - .., hmgm (2)) = {(g(z))
where g(x) = mg1 + n292 + -+ + Ymgm and g(z)|(z™ — 1).

i Further |C| = g™~ 2% deg(9:),

v Suppose that g;(z)h;(x) = 2™ — 1, 1 <i < m. Let h(x) = nihi(x)+
naha(z) + - - + b (), then g(x)h(z) = 2™ — 1.

v Ct=mCi &l @ - @nnCh.
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vi  Ct = (ht(2)), ht(z) = mhi(z)+mhy(z)+ -+ nmhi (x), where hi-(x) is
the reciprocal polynomial of h;(x), 1 <i < m.

Vil |CL‘ = q27";1 deg(g:)

3.2 The Gray map

Every element r(u) of the ring R = F,[u]/(f(u)) can be uniquely expressed as

r(u) =719+ mu-+ T2u2 + .4 rmilum—l

=101 + 7202 + -+ N,
where a; = r(a;) fori = 1,2, ..., m. This is so because, by (1), n;(e;) = 1 and ;(a;) =0
forall j #i,1 <i,5 <m.

Define a Gray map ® : R — F* by

r(u) = may + neag + -+ + Nnam — (a1,a2,...,am)V,

where V' is any nonsingular matrix over IF; of order m x m. This map can be extended
from R™ to (F7*)" component-wise.

For an element r € R, let the Gray weight be defined as wg(r) = wy(®(r)), the
Hamming weight of ®(r). The Gray weight of an element in R™ and Gray distance d¢ of
two elements in R"™ are defined in the natural way.

Theorem 2: The Gray map ® is an[F, - linear, one to one and onto map. It is also distance
preserving map from (R"™, Gray distance d¢) to (F*", Hamming distance dg ). Further if
the matrix V satisfies VVT = X, \ € Iy, where VT denotes the transpose of the matrix
V, then the Gray image ®(C) of a self-dual code C over R is a self-dual code in Fo.

Proof: The first two assertions hold as V' is an invertible matrix over IF,.
Letnow V = (v;), 1 < i,j < m, satisfying VVT = AI,,,. So that

vak:)\forallj,lgjgm and Zvjkwkzoforj#f. )
k=1 k=1
Let C be a self-dual code over R. Let r = (ro,71,...,7n—1),8 = (80,81, ---,8n—1) € C,

where r; = a1 + n2ai2 + -+ + Pmaim and s; = mbin + n2biz + -+ + Nmbim. Using
the properties of 7;’s from Lemma 5, we get

7:8; = Ma;1b;1 + N2ai2bi2 + - - 4+ N Gimbim, .-

Then

m m n—1
0:7"'5: TriS; = anaijb,;j:an<Zaijbij)
3 3 i Jj=1 i=0

implies that

n—1

Zaijbij =0, forallj=1,2...,m. 3
i=0
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Now
m m m
‘I)(Tl) = (ail, Ai2,y ..., aim)V = (Z aijvjl, Z aijvﬂ g e ,Z aijvjm)
Jj=1 Jj=1 j=1
Similarly
m m m
O(s;) = (Z bievehz bicvez s . .. ,Z bizvem)-
(=1 =1 =1

Using (2) and (3), we find that

n—1 n—1 m m m
(r) - (s)= ) O(ri) - B(s:) = Z Z Zaij bie vjk Vek
1=0 =0 k=1 j=1 (=1
n—1 m m n—1 m m m
OB SRAN)SENES 3D b DRI e
i=05=14=j k=1 i=0 j=14=14#£j k=1
n—1 m
=A Zai]‘ bi]
1=0 j=
m n-—1
=23 (X aisby) =0,
j=1 =0
which proves the result. O

4 Duadic Codes over the ring R

In this Section, we study duadic codes over the ring R = F,[u]/(f(u)) in terms of their
idempotent generators, the extensions of duadic codes and their Gray images. Let R,
denote the ring % The definitions, results for duadic codes over R and their proofs
are similar to those obtained by the authors (2016), where f(u) was taken as u™ — u,
a special polynomial. Here f(u) being a general polynomial, the ring R gives us more
flexibility for obtaining the Gray images which lead to the construction of many new self-
dual, isodual and self-orthogonal codes. Moreover, we need not restrict to the condition that
g = 1(mod(m — 1)) taken by the authors (2016). We omit the proofs of the results as these
are similar to those given by the authors (2016).

Using the properties (Lemma 5) of idempotents 7;, we have

Lemma 6: Let 1;, 1 <1 < m be the idempotents as defined in equation (1). Then for
1,02, ..., im € {1,2} and for any tuple (d;, ,d;,, . .., d;,, ) of odd-like idempotents not all
equal and for any tuple (e;,, €;,, ..., €; ) of even-like idempotents not all equal, 11 d;, +
Madi, + -+ - + Nmd;,, andme;, + n2ei, + - - - + Nmei,, are respectively odd-like and even-

like idempotents in the ring R, = <an[f]1>.
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We assume that ¢ is a square mod n so that duadic codes of length n over I, exist. We
denote the set {1,2,...,m} by A.

For a proper subset {i1,i2,...,ix} C A, i, #i5, 1 <75 < k,let Dy;, ;, . 4,7 denote the
odd-like idempotent
D{ilai27---1ik} = (nil + Ny 0 F ﬁik>d1 + (1 —Niy — MNiyg — " — nik)d2~ (4)

/ —
{i1,i2,.. ik}

iy +Miy + -+ mi )+ (L—ni, —0iy — -+ — 14, )i 5)
Similarly, we define even-like idempotents
Efiy i, iny = Miy F iy + -+ mi)er + (1 —=n0s, — 13y — -+ — 04, )e2. 6)
Bl gt = iy 1y i )ea + (L —miy = niy — -+ = n, e @)
Let Qyiyig,... i} {{il,iz,...,ik} denote the odd-like duadic codes and Sy ;... .15

{/:il insoin} denote the even-like duadic codes over R generated by the corresponding

idempotents, i.e.,

Qirinysiny = (Dfirsiny.in} ) {{il,iz,...,ik} = <Dj[i1,i2,...,ik}>’
S{i1,i2 ----- in} — <E{i17i2 ----- ik}>’ Siil,iQ,.“,ik} = <E*I{i1,i2,...,ik}>‘

Theorem 3: For iq,ia,... ik € A, ip # 15, 1< 1,8 <k, Qi 4,5} IS equivalent to

f{il izrrin} and Sg;, i,....ix} 15 equivalent to S*/{h-iz in} Further there are 2™~ 1 — 1

inequivalent odd-like duadic codes and 2™~ — 1 inequivalent even-like duadic codes over
the ring R.

Theorem 4: For subsets {i1,1i2,...,ix} of A, the following assertions hold for duadic
codes over R.

i Qirigyiny N Q{{il,iz,.“,ik} = (j(z))
i Qivyis,in} T @iy i, iny = R
it S{il,i27~~-7ik} N Siil,iz,...,ik} = {0}
WV Sgiiginy T S%il,ig,...7ik} =(1—j(2))
Vo Stz N U@) ={0}, 4 4, 0 N G(@) = {0}

vi S{ilai27-~-7ik} + G(x)) = Q{i17i27---aik}7 Siil,ig,...,ik} + G(I» = Q/{il,ig,...,ikp

m(n+1)

m(n—1)

Vil Qv iy =4 2 5 Sty =@ 2

Theorem 5: If p_1(Cy) =Cy,  p_1(Co) =Cy, then for each possible tuple
{i1,42,... ik} € A, the following assertions hold for duadic codes over R.

. J_ _ . . .
! Q{il,iQ,...,ik} = Sisin,in}

it S is,....i) 18 self orthogonal.
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Theorem 6: If 1—1(Cq1) =Cy, p_1(Co) =Cy, then for all possible choices of
{i1,i2,...,ik} € A the following assertions hold for duadic codes over R.

: 1 _Q/
! Q{ilﬂ'm»--,ik} - S{ih’i%---vik}’

/L — o .
{i1,02,.. ik} S{7’17127---77’k}'

il
Consider the equation
1+7*n = 0. ®)

This equation has a solution v in [F; if and only if n and —1 are both squares or both non-
squares in ¥, (see [Huffman and Pless (2003), Chapter 6]). Extended duadic codes over the
ring R are defined in a similar way as defined over the field I, (see Lemma 4).

Theorem 7: Suppose there exists a vy in F satisfying equation (8). If ;1_1(C1) = Cy,
1—1(Cy) = Cy, then for all possible choices of {iy,i2,...,ix} € A, the extended duadic
codes Qy;, i,,....iy of length n + 1 are self-dual.

Theorem 8: Suppose there exists a ~y in F, satisfying equation (8). If p_1(Cq) =
Cy, p—1(Cs) = Cy , then for all possible choices of {i1,i2,...,ix} € A, the extended

. . L .
duadic codes satisfy Q;, i,....i,} = ’{“71,27___7%} and hence are isodual.

Corollary 1: Let the matrix V taken in the definition of the Gray map ® satisfy VV' =
My, X € By If 11 (Cy) = Cq, then for all possible choices of {i1,iz,...,ix} € A, the
Gray images of extended duadic codes Qy;, i,....i.}» 1€, ®(Qiyis,...iy) are self-dual
codes of length m(n + 1) over F, and the Gray images of the even-like duadic codes
Stirsinsiny €5 P(Sfiyia, ..., ik}) are self-orthogonal codes of length mn over Fy. If
p—1(C1) = Cy, then ®(Qyi, 4s.....i,.y) are isodual codes of length m(n + 1) over .

Example 1 illustrates our theory for duadic codes. Some other examples when ¢ =
5,7,9,11,13 are given in Table 1. The minimum distances of all these codes have been
computed by the Magma Computational Algebra System.

Example1: Letm=2,¢=7,n=3, f(u)=(u—1)(u+3) and V = (1114) be a

matrix over F7 satisfying V'V7 = 31. The even-like idempotent generators of duadic codes
of length 3 over F7 are e; = 622 + 3x + 5, eo = 322 + 62 + 5. The Gray image of even-
like duadic code Sy1} is self-orthogonal and MDS [6,2,5] code over F7 and the Gray image
fb(@{l}) is [8.,4,4] self-dual and nearly MDS code over F-.



48

M. Goyal and M. Raka

Table 1 Gray images of duadic codes

q n__m f(u) v ®(S13) 2(Q1y)
5 11 3 (u—2)(u—3)(u—4) 23,1 [33,15,10] [36,18,9]
1,2,2 self-orthogonal self-dual
2,1,3
7 3 2 (u—1)(u+3) 4,1 [6,2,5] [8,4,4]
1,4 self-orthogonal self-dual
MDS nearly MDS
7 3 4 (u—2)(u—23) 2,-2,1,1 [12,4,6] [16,8,4]
(u+1)(u+3) -1,1,2,2  self-orthogonal self-dual
2,2,1,-1
1,1,-2,2
9* 5 2 (u—a?)(u—a®) Lo [10,4,4] [12,6,4]
a,—1 LCD isodual
9* 5 3 (u—aH)u—a)(u—ab) 1,0,0 [15,6,4] [18,9,4]
0,1,0 LCD isodual
0,0,1
11 5 3 (uw—=3)(u—4)(u—9) 44,2 [15,6,8] [18,9,6]
24,4 LCD isodual
4,24
11t 5 4 (uw—3)(u—4) 2,-2,1,1 [20,8,8] [24,12,6]
(u—5)(u—29) -1,1,2,2 LCD isodual
2,2,1,-1
1,1,-2,2
13 3 2 (u+1)(u—5) 2,1 [6,2,4] [8,4,4]
1,2 self-orthogonal self-dual
nearly MDS nearly MDS
13 3 4 u(u+1)(uw—5)(u—8) 2,-2,1,1 [12,4,6] [16,8,4]
-1,1,2,2 self-orthogonal self-dual
2,2,1,-1
1,1,-2,2

“Here « is a primitive element of Fyg.
T Note that, here, one does not have ¢ = 1(mod (m — 1)).

5 Triadic codes over the ring R

We now define triadic codes of length n over the ring R in terms of their idempotent
generators with the assumption that the conditions on n and ¢ for the existence of triadic
codes over the field I, are satisfied. Let 7;, 1 <14 < m be the idempotents as defined in
equation (1). Let the set of suffixes {1, 2, ..., m} be divided into three disjoint non-empty

sets

{172,...77’)’1}: {2'1,7;2,...71.7«}U{jl,jg,...

2Jsy Uk, ko

where r + s +t = m and r, s, t vary from 1 to m — 2. Denote

Niy + Niy + -+ + M,

Using Lemma 5, we find that

Qir +6.js +6kt =1,

=0;., nj, +njp + -+,

7kt}a

=05, My + Ny + -+ + 1k, = O,

€))
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and that ; , 6;_, 8, are mutually orthogonal idempotents in the ring R, i.e.

912’ = 91‘7,7 9?5 = 9]‘5, Qit = Hkt and Qi,,ﬂjs = Hjﬁkt = 9;%9%;,, =0. (]0)
Fori=1,2,3, lete;, ¢}, d;, d; be the idempotent generators of triadic codes over F, as
defined in Section 2.2. Let p,, be the corresponding multiplier. For any tuple (r, s, t), let

E, = EY’S’t) =0;.e1+0;,e2+ 0 e3,
Ey = pa(Er) = 0;,pale1) + 05, pale) + Ok, pales)
= 0“63 —+ 9j561 —+ 9]%82,
E3 = p1q(E2) = 0;.e2 4 0;,e3 + O, e1, (11)
E, = B — ¢, 6’1 +0;.¢eh + O, e,
Ey = pa(E7) = 0;,€5 +0j,€} + Ok, ey and
(E3) = 0i,¢5 4 6;. €5+ Or, e}

n

be even-like idempotents in the ring R[x]/(z™ — 1). Similarly, let
D, = DY’”) =0;,.d1 + 0;,da + Ok, d3,

Dy = p14(D1) = 6;,ds + 6;,d1 + 0y, do,

D3 = ,ua(DQ) = oirdz + ojsdg + aktdlv

D/ (T s,t) = otrdll + ojgdlz =+ ekt g

D’ = ua(D’l) = 0;,.d5 + 0;,dy + 6k, d5 and

D' = pra(D3) = 0i,dy + 0;,d3 + Or, dy

12)

be odd-like idempotents in the ring R[z]/{z™ — 1).

For each tuple (r,s,t), 1<r,s,t<m—2 and for each 4, 1<i<3, let
7" T/ denote the odd-like triadic codes and """ P/"*") denote the even-like
triadic codes over R generated by the corresponding idempotents, i.e.

Ti(r,s,t) _ <D£T7S,t)>, ,1—;/(7’,5,t) _ <D/(r s, t)> (13)
P‘(T,S,t) _ <E‘(7‘,S,t)>, P,i/(r,s,t) _ <EZ/(TSt)>

3 (2

Theorem 9: For any tuple (r,s,t), 1 <r,s,t <m—2, Tl(r’s’t), Tz(r’s’t) and TS(T’S’t)

(ret), Té(r’s’t) and T?/,(T’S’t) are equivalent; Pl(r’s’t), PQ(T’S’t) and

are equivalent; T
P(7 =:t) are equivalent; P| (reit) P/(T’s’t) and P/(T’S’t) are equivalent. Further there are
Z 2y 1( (™) lneqmvalent odd-like triadic codes and the same number of

meqmvalent even-like triadic codes over the ring R.

Proof: The first statement is clear. Out of m idempotents n;, 1 < ¢ < m, 6, can be chosen
in (") ways; out of the remaining m — r idempotents 7;’s, 6;, can be chosenin (") ways.
As 0), must have at least one 7;, the number of choices of idempotents 0; di + 6;_ d2 +
Or,dsis > v Zm T 1( ) (™). Since pa(D1) = DQ, ta(D2) = D3, 1o (D3) = Dy,
the 1nequ1valent odd-like idempotents D(r “sare EP D Zm rl (™) (™). The other

D;(r 5 contribute an equal number of inequivalent odd like idempotents. Hence the

result. O
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We drop the superscript (7, s,t), when there is no confusion with the idempotents or the
corresponding triadic codes.

Theorem 10: The following assertions hold for triadic codes over R.

i TiNTyNnTs = {j(x)) = therepetition code over R
i Ti+hLh+T3=T+Th=T+T3=T+1;
i PNPoNPs=PNP,=PNP;=P NPF;
iv. P+ Py+ Py =(1l—j(x)) = the even weight code over R

v Pin{j(z)) = {0}, ;N {j(x)) = (j(z)) and
vi P+T,= R[m]/(x" - 1>, P,NT;, = {0}

Proof: From the definitions and relations (9)—-(12), we see that

FEi+FEy+ Es=e;+ex+e3, D+ Do+ D3 =dy + ds + ds,
D1D>D3 = dyidads, E1ExFE3 = erezes,

D1Dy + Dy D3 + D3Dy = dids + dads + dzds,

FE\FEs + EyEs + E3sE| = ejea + eses + ezeq.

Therefore by Lemma 1(iii) and Proposition 1(viii), 7y N T N T3 = (D1 Dy D3) = (j(z)).
This proves (i).

To prove (ii), we find that T3 + 15 + 15 = (D1 + Dy + D3 — D1 Dy — Dy D3 —
D3Dy + D1DsD3), Ty + Ty = (D1 + Dy — D1 Ds). Now by Proposition 1(ix),

Dy + Dy — D1Ds = 0;,.(d1 + ds — dids) + 65, (d2 + d1 — dad1) + Ok, (d2 + d3 — dad3)
=dy +d2 +d3 — did2 — d2ds — dids + didads
= D1+ Do+ D3 — D1Dy — D2D3 — D3 D1 + D1 D2 Ds.

Hence T1 + T2 + T3 = T1 + Tg. Slmllarly T2 + T3 = T1 + T2 + T3 = T1 + T3.
Again by Proposition 1(vi),

FEFEy = 0,‘,,_<61€3) + 9‘5 (6261) + 0;% (6263)
= (0i, +0;, + 0k,)(e16263)
— €1€2€3 — E1E2E3 = E2E3 = EgEl.

ThereforePlﬁPgﬁszPlﬁPg:PgﬂPg:PlﬂPg.Similarly

Ey+ Ey+E3— E1FEy — Exll3 — EsEy + B B> B3
=e1 + ey + €3 — €1€9 — €9€3 — €1€3 + €1€2€3
=e1 +eg+ ez —2ere0e3 =1 — j(x).

Hence P, + P, + P3 = (1 — j(x)). This proves (iii) and (iv).

Since ¢;(j(z)) = 0 by Proposition 2(xv), we get E;(j(z)) = 0 and so P; N (j(z)) = {0}.
As d; =1—e¢;, we get D; =1 — E;, so we have D;(j(z)) = j(z) — Ei(j(z)) = j(x).
Therefore T; N (j(x)) = (j(x)). This proves (v).

Finally to prove (vi), we note that Fy D = 0;_(e1dy) + 0;, (eada) + 0Oy, (esds3) and Ey +
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Dy =0, (e1 +d1) + 0;_(e2 + dz) + 0y, (e3 + d3), which are equal to 0 and 1 respectively
by Proposition 1(x). Therefore Py NTy = (E1D1) = {0} and P, + Ty = (E1 + Dy —
E1D;) = (1). In the same way P, N T; = {0} and P, + T; = (1) fori = 2, 3. O

Similarly, we have

Theorem 11:

i NN TE=TINTy=TyNT5 =T, NT}
i T +T,+T,=(1)=R[z]/(z" — 1)
iii PN PyNP,={0}
iv P +Py+P;=P +Py=P+P;=DP + P;
v Pin (i) = {0}, T/ N (j(2)) = ((=))
vi P+T]=Rz]/(a" = 1), P NT] = {0}
vii . P+ (j(x)) =T/, P+ (j(2)) =T,
viik Pi+ P/ =(1-j(z)), P,n P/ ={0} and
ix T+ T =R]/(@" = 1), TiNT] = (j(z)).

Proof: The proof of statements (i) to (vi) is similar to that of (i) to (vi) of Theorem 10. To
prove (vii), we note that

By +j(z) — E1(j(2)) = E1 + j (@)

=0i,e1+0j,e2 + O, e3 +j(x)(0;, +0;, +0,)

=0;,(e1 + (j(2)) + 05, (e2 + (j(2)) + Ok, (e3 + (j(2))

=0, dy +0;,dy+ 0,ds = D}, by Proposition 2(xv).

Hence P, + (j(z)) = TY. Similarly others. The remaining statements (viii) and (ix) follow
from the definition and Proposition 2(xvi). O

Theorem 12: Let P;, Pi’, fori=1,2 3, be two pairs of even-like triadic codes over the
ring with T;, T} the associated pairs of odd-like triadic codes. Then
P = (T and P = (1)
Further if p_1(d;) = d; fori = 1,2, 3, then
Pt =T, P* =T/ and P,, P! are LCD codes over R.
Proof: By Proposition 1(x),e; +d; = 1.Sopu_1(e;) + p—1(d;) = p—1
1= p—1(Er)=0i, + 0, + 0k, — p—1(0s, €1 + 0; ez + Oy, e3)
=0;, (1= p—1(e1)) +6;, (1 — p—1(e2)) + Ok, (1 — p—
= 0;,pi—1(d1) + 05, p—1(d2) + Ok, p1—1(d3)
= p—1(0i,d1 + 0j,da + O, d3) = p—1(D1).
Hence Pi* = (1 — u_1(E1)) = (u_1(D1)) = p—1((D1)) = p—1(T}). Similarly, we get
the others.
Further if p_1(d;) = d; for i = 1,2,3, and so u_1(d;) = dj, then by Theorem 10(vi) and

(1) = 1. Therefore

(e3))
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Theorem 11(vi), we see that
PN P =PNT, ={0}, PN P* =P NT ={0}
proving thereby that P; and P/ are LCD codes over R. 0

Theorem 13: [f X/ is empty, then we have the following additional results:

m(n—1)

i |Pl=q 5 ,|Ti|=¢

2m(n—1) m(2n+1)
3 .

i |Pl=q 5 ,|Til=¢

m(n+2)
5 and

Proof: Since ejeses = e1e9 = eseg = eze; = 0, we find that 4 Fy = (91‘1,61 + 9j562 +
ekt€3)(0ir63 + 9]'561 + 9]%62) = 9u€1€3 + 9]'56261 + 9]%6362 = 0. Similarly (E1 +
EQ - E1E2)E3 = 0. Therefore P1 n P2 = <E1E2> = {O} and (Pl + PQ) n P3 = <(E1 +
E, — E1E5)E3) = {0}. Hence, by Theorem 10(iv), we have

[(P1 + P2) N P3|
_ | Pu[| P2 | 75
o |P1 ﬂPQH(Pl +P2) ﬂPg\

(1 =j(@)| =P+ P+ P3| =

=P

m(n—1)

As |(1—7(2))] = (¢™)™ V), we get that |P|=¢q 5 = |Ps| = |Ps|. Since from
Theorems 11(vii) and 10(v), we have P; + (j(z)) = T/ and P; N (j(z)) = {0}, we get

m(n—1)

T/ = |P]|Gx) =q 7 ¢" =q

m(n+2)
3

Again from Theorem 11(viii), we see that | P;||P/| = |(1 — j(z))| = ¢™("~1), which gives
|P!| = qzm(;_n. Finally, by Theorem 11(v) and (vii), we have P/ & (j(z)) = T; which

gives

2m(n—1)
3

m

g =4q

m(2n+1)
3 .

ITi| = [P (G(2)] = q
O

Corollary 2: Let the matrix V taken in the definition of the Gray map ® satisfy VVT =
My, M€ F; If poi1(ei) = e, e, if p_1(S;) = S;, for i = 1,2,3, then for all possible
choices of (r,s,t), 1 < r,s,t < m — 2, the Gray images of even-like triadic codes Pi(r’s’t)
and Pi/(r’s’t), Le., @(B(T’S’t)) and @(P{(T’s’t)) are linear complementary dual(LCD) codes
of length mn over F,. Also <I>(Ti(r’s’t)) is dual of CI>(Pi(r"s’t)) and @(Ti/(r’s’t)) is dual
of (ID(Pi/(T’S’t)). Further if X! is empty, then @(Pi(r’s’t)) is of dimension w and
@(H(T’s’t)) is of dimension w

The following example illustrates our theory for triadic codes when m = 4. Some other
examples for m = 3 are given in Table 2. The minimum distances of all these codes have
been computed by the Magma Computational Algebra System.
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Example 2: Letg=5n=13,m=4, f(u) =u(u—1)(u— 3)(u —4) and

13 19
-31 9 -1
V= -1-91 3
-9 1 -31
be a matrix over F5 satisfying VVT =2I. Here S ={1,5,8,12},5; =

{2,3,10,11}, S3 = {4,6,7,9} and X/ = 0. The even-like idempotent generators of
triadic codes of length 13 over 5 are e; = 422 + 32! + 3210 + 29 + 428 + 27 + 26 +
A0 + 2 + 323 + 322 + 4z + 3, ey =302 + 21 + 210 + 429 + 328 + 427 + 428 +
325 + 4zt + 22 + 22 + 3z + 3andes = 212 + 4t + 4210 + 329 + 28 + 327 + 328 +
2% + 3wt + 423 + 422 + 2 + 3. Here pu_1(e1) = e1, p—_1(e2) = ez and p_q(e3) = e3.
The Gray image of triadic codes Pl(Q’l’l), T1(2’1’1), P1/(2,171) and T{(Q’l’l) with 6;, =
M + 4,05, =n2 and O, =n3 are respectively [52,16,16], [52,36,5], [52,32,6] and

[52,20,12] LCD codes over F5.

Table 2 Gray images of some triadic codes when m = 3 and

4 4 =2
V=1[-2 4 4
4 -2 4
¢ n /() (P ety e(pttY) et
5 13 (u—1)(u+1) [39,12,12] [39,27,5] [39,24,6] [39,15,10]
(u—3) LCD LCD LCD LCD
dual of ®(Py) dual of ®(Py)
5 132 (w—1)(u+1) [507,480,2] [507,27,65] [507,24,78] [507,483,2]
(u—3) LCD LCD LCD LCD
dual of ®(Py) dual of ®(Py)
7 19 (uw—1)(u—2) [57,18,18] [57,39,7] [57,36,8] [57,21,15]
(u—4) LCD LCD LCD LCD
dual of ®(Py) dual of ®(Py)
11 19 (uw—8)(u+2) [57,18,26] [57,39,8] [57,36] [57,21,19]
(u+5) LCD LCD LCD LCD
dual of ®(Py) dual of ®(Py)

6 Conclusion

In this paper, duadic codes, their extensions and triadic codes over a non-chain ring R =
F,u]/(f(u)) are studied, where f(u) is a polynomial of degree m(> 2) which splits
into distinct linear factors over F,. A Gray map from R" to (IF;*)" is defined which
preserves self-duality of linear codes. As a consequence, self-dual, isodual, self-orthogonal
and complementary dual(LCD) codes over F, are constructed. Some examples are also
given to illustrate this. Further, in this direction, polyadic codes or duadic constacyclic codes
over the ring R can be explored.
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