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1 Introduction

Let C be a nonlinear code, that is, a code which is not necessarily linear. There are some
related computational problems which are of interest, that we list as the computation of: the
distance distribution (A), the minimum distance (A1), a minimum-distance codeword-pair
(A2), the weight distribution (B), the minimum weight (B1), a minimum-weight codeword
(B2). The decoding performance of C can be established by solving Problem A.

Remark 1: Solving Problem A2 (respectively, B2) implies solving Problem A1 (B1), but
the converse does not hold. However, it is noteworthy that no known algorithm is able to
solve A1 (B1) without solving A2 (B2).

If C is linear, Problem A (respectively, A1, A2) and B (B1, B2) are equivalents. This holds
also for some nonlinear codes, called distance-invariant codes (Mitchell, 1989), and many
of these are optimal codes (e.g., the Preparata and Kerdock codes (Preparata, 1968)). When
C is linear, we consider also the decoding problem, which is implied by solving Problem
B2 in the suitable code coset (which is a nonlinear code). Observe that the considerations
in Remark 1 remain valid also if we restrict to linear codes.

To compute the minimum weight of a binary linear code, both deterministic and
probabilistic algorithms are known. Example of the former is the Brouwer-Zimmermann
algorithm (Zimmermann, 1996), or some recent improvements (Lisoněk and Trummer,
2015) and generalisations (Bouyukliev and Bakoev, 2008) of it. Example of the latter is
given in Canteaut and Chabaud (1998), Leon (1988), or Stern (1989). Although several
theoretical bounds for the distance are known (see e.g., Singleton (1964), Guerrini et al.
(2016) and Bellini et al. (2014)), we remark that in this paper we are interested only in
computational methods. We note that these algorithms must actually retrieve (at least) one
minimum-weight codeword in order to obtain the minimum-weight value. Also recall that
the following problems have been proved to be NP-hard in the case of binary nonlinear codes:
computing the weight distribution (Berlekamp et al., 1978) and computing the minimum
distance (Vardy, 1997). In the nonlinear case, the minimum weight and the minimum
distance may be different. For some classes of nonlinear codes there are algorithms which
perform much better than brute force, e.g., codes with a large kernel (Villanueva et al.,
2014) or additive codes (White and Grassl, 2006). However, in the general nonlinear case,
it is not possible to improve significantly on the brute force approach, as shown in Guerrini
et al. (2010). Indeed, we are not aware of any non-exponential probabilistic or deterministic
algorithm to solve any of the problems A, A1, A2, B, B1, B2.

In particular, to compute the weight distribution of a generic binary (n, 2k)-nonlinear
code given as a list of binary vectors, we need to perform O(n2k) bit operations,
while finding the distance distribution requires O(n22k) bit operations. These complexity
estimates depend heavily on the way the code is presented as input to the relevant algorithms.

The main result of this paper is a deterministic algorithm to compute the distance and
weight distribution, and thus the minimum distance and the minimum weight, of any random
binary code represented as a set of Boolean functions in numerical normal form (NNF).
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Our method performs better than brute force for those codes with low information rate
and sparse NNF representation, while in the general case, it achieves the same asymptotic
computational complexity as brute force methods.
In Section 2, after some preliminaries on Boolean functions, we argue that representing
a code as a set of Boolean functions in NNF does not have any particular drawback with
respect to the classical representation of a code as a set of binary vectors. In Section 3, to
each binary code we associate a polynomial whose evaluations are the weights of the code.
Similarly, in Section 4, to each binary code we associate a polynomial whose evaluations
are the distances of all possible pairs of codewords. Given these two polynomials we are
able to compute the weight and the distance distribution of any binary nonlinear code.
Finally, in Section 5 we provide some complexity considerations regarding our algorithms.
In particular, we show that, to compute the weight distribution starting from the NNF
representation of a binary nonlinear code has a complexity of O((n/h+ k)2k), where n/h
is the average number of nonzero monomials of the Boolean functions representing the
code. Moreover, there are cases where our approach is provably faster than brute force (e.g.,
in the nonlinear case when the NNF representation of the code is sparse), and cases where
it is experimentally faster than the Brouwer-Zimmermann method.

2 Preliminaries

We denote by F the field F2. The set Fr is the set of all binary vectors of length r, viewed
as an F-vector space.
Let n ≥ k ≥ 1 be integers. Let C ⊆ Fn, C ̸= ∅. We say that C is a binary (n, |C|)-code
(since we only deal with binary codes, we often omit the word binary). Any c ∈ C is a
codeword. If C is a vector subspace of dimension k of Fn, then C is a binary [n, k]-linear
code.
Let v ∈ Fn. The Hamming weight w(v) of the vector v is the number of its nonzero
coordinates. For any two vectors v1, v2 ∈ Fn, the Hamming distance between v1 and v2,
denoted by d(v1, v2), is the number of coordinates in which the two vectors differ.
We call minimum weight of a code C the integer w = min{w(c) | c ∈ C}, and (minimum)
distance of a code C the integer d = min{d(c, c′) | c, c′ ∈ C, c ̸= c′}. If C is an (n, |C|)-
code with distance d then we can write that C is an (n, |C|, d)-code.
Finally, we call weight distribution of the code C the sequence of numbers At = |{c ∈
C | w(c) = t}| and distance distribution of an (n, |C|)-code C the sequence of numbers
At =

1
|C| |{(c, c

′) ∈ C × C | d(c, c′) = t}|

2.1 Representations of Boolean functions

In this section we briefly summarise some definitions and known results from Carlet (2010)
and MacWilliams and Sloane (1977), concerning representations of Boolean functions.

A Boolean function (B.f. ) is a function f : Fk → F. The set of all Boolean functions
from Fk to F will be denoted by Bk. There are several ways one can uniquely represent a
B.f. . We briefly outline those we need.



A deterministic algorithm for the distance and weight distribution 21

2.1.1 Evaluation vector

We assume to have ordered Fk, so that Fk = {p1, . . . , p2k}. A Boolean function f can
be specified by a truth table, which gives the evaluation of f at all pi’s. We consider the
evaluation map:

Bk −→ F2k f 7−→ f = (f(p1), . . . , f(p2k)).

The vector f is called the evaluation vector of f . Once the order on Fk is chosen, i.e., the
pi’s are fixed, it is clear that the evaluation vector of f identifies f .

2.1.2 Algebraic normal form

A Boolean function f ∈ Bk can be expressed in a unique way as a square-free polynomial
in F[X] = F[x1, . . . , xk], i.e.,

f(x1, . . . , xk) =
∑
v∈Fk

bvX
v,

where bu ∈ F and v = (v1, . . . , vk), and Xv = xv1
1 · · ·xvk

k .
This representation is called the Algebraic Normal Form (ANF).
There exists a simple divide-and-conquer butterfly algorithm (Carlet, 2010), p.10) to
compute the ANF from the truth table (or vice-versa) of a Boolean function, which requires
k2k−1 bit sums (i.e., complexity O(k2k)), while O(2k) bits must be stored. This algorithm
is known as the fast Möbius transform.

2.1.3 Numerical normal form

In Carlet and Guillot (1999) (see also Carlet and Guillot (2001), Carlet (2002)) the following
representation of Boolean functions has been introduced.
Let f be a function on Fk taking values in a field K. We call the numerical normal form
(NNF) of f the following expression of f as a polynomial:

f(x1, . . . , xk) =
∑
u∈Fk

λu(

k∏
i=1

xui
i ) =

∑
u∈Fk

λuX
u,

with λu ∈ K and u = (u1, . . . , uk). This representation of f considers f as a mapping from
the set {0, 1}k to the set {0, 1}, where 0,1 are the in K. Clearly, such a mapping can be
represented by a polynomial via multivariate interpolation.

It can be proved (Carlet and Guillot, 1999), Proposition 1) that any Boolean function
f admits a unique NNF. As for the ANF, it is possible to compute the NNF of a Boolean
function from its truth table by mean of an algorithm similar to a fast Fourier transform,
thus requiring O(k2k) additions over K and storing O(2k) elements of K.

From now on let K = Q.
The truth table of f can be recovered from its NNF by the formula

f(u) =
∑

a∈Fk|a≼u

λa, ∀u ∈ Fk,



22 E. Bellini and M. Sala

where a ≼ u ⇐⇒ ∀i ∈ {1, . . . , k} ai ≤ ui. Conversely, as shown in Carlet and Guillot
(1999) (Section 3.1), it is possible to derive an explicit formula for the coefficients of the
NNF by means of the truth table of f .

Proposition 1: Let f be any integer-valued function on Fk. For every u ∈ Fk, the
coefficient λu of the monomial Xu in the NNF of f is

λu = (−1)w(u)
∑

a∈Fk|a≼u

(−1)w(a)f(a). (1)

It is possible to convert a Boolean function from NNF to ANF simply by reducing its
coefficients modulo 2. The inverse process is less trivial. One can either apply Proposition
1 to the evaluation vector of f or apply recursively the fact that

a+F b = a+Z b+Z (−2ab), (2)

and the fact that each variable has to be square-free (we are working in the affine algebra
Q[x1, · · · , xk]/⟨x2

1 − x1, · · · , x2
k − xk⟩).

From Equation 2 we can derive recursively

a1 +F . . .+F am =
m∑
i=1

(−1)m−12m−1
∑

(e1,...,em)∈Fm,
w((e1,...,em))=i

ae11 · . . . · aemm (3)

where the summations on the left side are over the integers.

2.2 Representing a code as a set of Boolean functions

Recall that we only consider binary codes, i.e., codes over the finite field F of length n, with
M codewords.

Now we show that any binary (n, 2k)-code C can be represented in a unique way as a
set of n Boolean functions f1, . . . , fn : Fk → F. We indicate with f (F) a Boolean function
represented in algebraic normal form, and with f (Z) a Boolean function represented in NNF.

Definition 1: Given a binary (n, 2k)-code C, consider a fixed order of the codewords of C
and of the vectors of Fk. Then consider the matrix M whose rows are the codewords of C.
We call the defining polynomials of the code C the set FC = {f1, . . . , fn} of the uniquely
determined Boolean functions whose truth table are the columns of M . We also indicate
with F = (f

(F)
1 , . . . , f

(F)
n ) ∈ F[X]n, where X = x1, . . . , xk, the polynomial vector whose

components are the defining polynomials of C in ANF, and with F̄ = (f
(Z)
1 , . . . , f

(Z)
n ) ∈

K[X]n the polynomial vector whose components are the defining polynomials ofC in NNF.
With abuse of notation, we sometimes write

FC = {f (F)
1 , . . . , f (F)

n } or FC = {f (Z)
1 , . . . , f (Z)

n }.

Notice that F can be seen as an encoding function, since F : Fk → Fn.
Therefore, there is a bijection between the points in Fk and the codewords of C, given

by F . Moreover, this bijection extends to a bijection between the points in {0, 1}k and the
codewords of C, given by F̄ .



A deterministic algorithm for the distance and weight distribution 23

2.2.1 Memory cost of representing a code

Let us call vectorial the representation of a code as a list of vectors over F, and Boolean the
representation of the same code as a list of Boolean functions.
For a random code, in terms of memory cost, the two representations are equivalent. In the
vectorial representation, we need to store all the components of each codeword, which are
n times 2k codewords. In the Boolean representation, we need to store the 2k coefficients
of the n defining polynomials. In both cases, we need a memory space of order O(n2k).
If the code C is linear it can be represented with a binary generator matrix of size k × n.
In this case, the defining polynomials are linear Boolean functions, i.e., any is of the form∑k

i=1 λixi, λi ∈ F, which means that to represent them it is sufficient to store kn elements
of F, yielding again an equivalent representation.

Recall the kernel of a binary code C is defined as ker(C) = {x ∈ Fn | x+ C = C}.
If the all-zero vector is in C, as we can always suppose without loss of generality, then
K = ker(C) is a binary linear sub-code of C. Let us denote with kK the dimension of K.
Then the code C can be written as union of cosets of K, i.e., C =

∪t
i=0 (K + ci), where

c0 = (0, . . . , 0), t+ 1 = |C|/2k and c1, . . . , ct are representatives of the cosets of K. Note
that the representatives need not to be the ones having minimum weight in their respective
cosets.

As shown in Pujol et al. (2012); Villanueva et al. (2014), since the kernel needs a memory
space of order O(nkK), then the kernel plus the t coset representatives takes up a memory
space of orderO(n(kK + t)). WhenC is linear thenC = ker(C), so the generator matrix is
used to represent C. On the other hand, when t+ 1 = |C|, then representing the code as the
kernel plus the coset representatives requires a memory of O(n|C|) = O(n2k) (since we
are supposing the code has 2k codewords). In the latter case, a Boolean representation can
be equivalent or even more convenient, especially if the Boolean polynomials representing
the code are sparse. Notice that the Boolean representation depends on how the codewords
are ordered, and so, it is possible to choose the most convenient ordering to obtain the
sparser representation.

It is worth noticing that a linear structure of a nonlinear binary code can be found over
a different ring. For example, there are binary codes which have a Z4-linear or Z2Z4-linear
structure and, therefore, they can also be compactly represented using quaternary generator
matrix, as shown in Hammons et al. (1994) and Borges et al. (2010).

2.2.2 Number of coefficients of the NNF

In this section, we show that, when k is small, i.e., for codes which can be used in practice,
the Boolean representation of a code using ANF polynomials is as convenient as the one
using or NNF polynomials.

In particular, we study the distribution of the number of nonzero coefficients of a
B.f. represented in NNF, i.e., once the number of variables k is fixed we want to know how
many B.f. ’s have only one nonzero coefficient, how many have two, and so on.

We are also interested in finding a relation between this distribution and the distribution
of the number of nonzero coefficients of a B.f. represented in ANF.

In Table 1, we report the distribution of the nonzero coefficients of B.f. ’s represented in
ANF and NNF with k = 1, 2, 3, 4 variables. As one may expect, the ANF follows a binomial
distribution. This means that choosing a random B.f. its ANF is likely to have half of the
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coefficients equal to 0 and a half equal to 1. This does not happen for the NNF, although for
k small the two distributions are close. This means that, when k is small, a random binary
(n, 2k) code can be represented with a set of B.f. ’s in NNF with half of the coefficients
equal to 0 with high probability, while sparse NNF representations are rarer as k grows.

Proposition 2: Let f be a B.f. in k variables. Let f (F) and f (Z) be respectively the ANF
and the NNF of f . Then if f (F) is a polynomial with r ≤ 2k nonzero coefficients, then f (Z)

is a polynomial with no more than min{2k, 2r − 1} nonzero coefficients.

Proof: When computing the NNF from the ANF we have again the r initial terms of the
ANF, plus

(
r
2

)
terms which are all possible double product of the r initial terms, plus,

in general,
(
r
i

)
terms which are all possible i-product of the r initial terms, for each i ∈

{1, . . . , r}. Thus we will have

r∑
i=1

(
r

i

)
= 2r − 1 (4)

terms to be summed together. If no sum of similar monomials becomes zero then we have
2r − 1 nonzero terms. �

By Proposition 2, if we want an NNF with no more than s terms, then we have to choose
the ANF with no more than r = log2(s+ 1) terms.

Proposition 3: Let f be a linear B.f. in k variables with r nonzero coefficients. Let f (F)

and f (Z) be respectively the ANF and the NNF of f . Then, for r ≤ k and for some i1 <
i2 < . . . < ir,

f (F) = xi1 + . . .+ xir .

Moreover, f (Z) is a polynomial with exactly 2r − 1 nonzero coefficients:

f (Z) =
r∑

i=1

(−1)r−12r−1
∑

(v1,...,vr)∈Fr,
w((v1,...,vr))=i

vv1
1 · . . . · xvr

r (5)

Proof: Equation 5 is the same as Equation 3.
For each i there are

(
r
i

)
nonzero terms in the inner summation, so the total of nonzero terms

is
∑r

i=1

(
r
i

)
= 2r − 1. �

Proposition 3 shows that for a linear B.f. , its NNF representation is exponentially denser
than its ANF representation.
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Table 1 Distribution of the nonzero coefficients in the ANF and NNF

k
0

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

A
:1

1
2

1
–

–
–

–
–

–
–

–
–

–
–

–
–

–
N

:1
1

2
1

–
–

–
–

–
–

–
–

–
–

–
–

–
–

A
:2

1
4

6
4

1
–

–
–

–
–

–
–

–
–

–
–

–
N

:2
1

4
5

4
2

–
–

–
–

–
–

–
–

–
–

–
–

A
:3

1
8

28
56

7
0

56
28

8
1

–
–

–
–

–
–

–
–

N
:3

1
8

19
42

5
9

50
34

28
15

–
–

–
–

–
–

–
–

A
:4

1
16

12
0

56
0

18
20

43
68

80
08

11
44

0
1

2
8

7
0

11
44

0
80

08
43

68
18

20
56

0
12

0
16

1
N

:4
1

16
65

30
4

84
0

17
68

32
50

54
58

80
77

9
9

8
6

98
19

79
48

59
54

44
58

31
93

28
30

15
69
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3 Finding the codewords with weight exactly t

It is possible to construct a polynomial with integer coefficients whose evaluations in
{0, 1}k ⊆ Zk are the weights of the codewords of the code C.

Definition 2: Let X = {x1, . . . , xk}, and X2 −X = {x2
1 − x1, . . . , x

2
k − xk}. We call

the weight polynomial of the code C the polynomial

wC(X) =
n∑

i=1

f
(Z)
i (X) ∈ Z[X]/⟨X2 −X⟩,

where the f
(Z)
i ’s are the defining polynomials of the code C in NNF.

Theorem 1: Let v ∈ {0, 1}k ⊆ Zk. The two sets {w(c) | c ∈ C} and {wC(P ) | P ∈
{0, 1}k} are equal.

Proof: From the discussion following Definition (1), it is clear that for any c ∈ C there
is one and only one P ∈ {0, 1}k such that c = (f

(Z)
1 (P ), . . . , f

(Z)
n (P )). Our claim follows

from observing that the sum of allf (Z)
i is over the integers andf (Z)

i (P ) ≥ 0, for i = 1, . . . , n.
�

Once we have the weight polynomial wC of the code C, not only we can find the
minimum weight of C, but we also find which are the codewords having certain weights by
looking at its evaluation vector over the set {0, 1}k. As we will see in Section 5.4, computing
this evaluation has a cost of O(k2k).

We summarise in Algorithm 1 the steps to obtain the weight distribution of a binary
(n, 2k)-code C given as a list of 2k codewords (and thus also the minimum weight of C),
by finding the evaluation vector of the weight polynomial wC . We indicate with Ci,j the
jth component of the ith word of C, with 1 ≤ j ≤ n and 1 ≤ i ≤ 2k.

Algorithm 1 To find the weight distribution wC of a binary nonlinear code C.

Require: c1, . . . , c2k ∈ C

Ensure: the evaluation vector wC of wC

1: f
(Z)
j ← NNF of the binary vector (C1,j , . . . , C2k,j) for 1 ≤ j ≤ n

2: wC ← f
(Z)
1 + . . .+ f

(Z)
n

3: wC ← Evaluation of wC over {0, 1}k

4: return wC

4 Finding pairs of codewords with distance exactly t

It is straightforward to adapt the techniques in Section 3 to the computation of the distance
distribution of a code C.

First, we show how to construct a polynomial with integer coefficients whose evaluations
in {0, 1}2k ⊆ Z2k are the distances of all possible pairs of codewords of the code C.
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Definition 3: Let X = x1, . . . , xk, X̃ = x̃1, . . . , x̃k, and X2 −X = x2
1 − x1, . . . , x

2
k −

xk, X̃2 − X̃ = x̃1
2 − x̃1, . . . , x̃k

2 − x̃k.
We call the distance polynomial of the code C the polynomial

dC(X, X̃) =
n∑

i=1

(f
(Z)
i (X)− f

(Z)
i (X̃))2

∈ Z[X, X̃]/⟨X2 −X, X̃2 − X̃⟩,

where the f
(Z)
i ’s are the defining polynomials of the code C in NNF.

Notice that the squaring operation does not introduce squared variables in the expression
of dC , because we are working in the quotient ring Z[X, X̃]/⟨X2 −X, X̃2 − X̃⟩.
Notice also that, for v = (v1, . . . , vk, vk+i, . . . , v2k) ∈ {0, 1}2k, we have that
dC((v1, . . . , vk, vk+1, . . . , v2k)) = 0 if and only if vi = vk+1 for i = 1, . . . , k, and that
dC((v1, . . . , vk, vk+1, . . . , v2k)) = dC((vk+1, . . . , v2k, v1, . . . , vk)).

Theorem 2: The two sets {d(c1, c2) | c1, c2 ∈ C, c1 ̸= c2} and {dC(P,Q) | P,Q ∈
{0, 1}k, P ̸= Q} are equal.

Proof: Note that ∀c1, c2 ∈ C, c1 ̸= c2 we have that c1 − c2 = ((f
(Z)
1 (P )−

f
(Z)
1 (Q))2, . . . , (f

(Z)
n (P )− f

(Z)
n (Q))2) ∈ {0, 1}n, for some P,Q ∈ {0, 1}k, P ̸= Q. The

squaring operation is needed in order to correct those components which have become a
−1 after the subtraction operation. Finally, the sum of all (f (Z)

i (X)− f
(Z)
i (X̃))2 is over

the integers. �

We summarise in Algorithm 2 the steps to obtain the distance distribution of a binary
(n, 2k)-code C given as a list of 2k codewords (and thus also the minimum distance of C),
by finding the evaluation vector of the distance polynomial dC . We indicate with Ci,j the
jth component of the ith word of C, with 1 ≤ j ≤ n and 1 ≤ i ≤ 2k.

Algorithm 2 To find the distance distribution dC of a binary nonlinear code C.

Require: c1, . . . , c2k ∈ C

Ensure: the evaluation vector dC of dC

1: f
(Z)
j ← NNF of the binary vector (C1,j , . . . , C2k,j) for 1 ≤ j ≤ n

2: dC ← (f
(Z)
1 (X)− f

(Z)
1 (X̃))2 + . . .+ (f

(Z)
n (X)− f

(Z)
n (X̃))2

3: dC ← Evaluation of dC over {0, 1}2k

4: return dC

5 Complexity considerations

First of all let us notice that given a binary (n, 2k)-code as a list of 2k codewords, to find
the weight distribution of a binary nonlinear code C using brute force requires n2k bit
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operations, since we have to check each component of each codeword of C. Similarly, to
find the distance distribution, n22k operations are needed.

We note that the operations involved in our following complexity estimates are over the
integers, but the size of the integers involved in our operations, i.e., the nonzero coefficients
of the NNF of a Boolean function, is limited by 2k, as shown by equation (3). Moreover,
in the cases of our interest, i.e., for sparse Boolean functions, these coefficients have a
sparse binary representation, and in particular, when the Boolean function is linear, by
Proposition 3 we have that the coefficients are precisely powers of 2.

We now analyse the complexity of Steps 1–3 of Algorithms 1 and 2. Then, due to
the similarities of the two algorithms, we only concentrate on the first one. We compare
our method to compute the minimum weight of a binary code with brute force and, in
the linear case, with the Brouwer-Zimmermann method (Zimmermann, 1996). We provide
more emphasis on the comparison in the linear case since no other methods than brute force
are known in the nonlinear case, with the only exception of Pujol et al. (2012); Villanueva
et al. (2014). We do not provide a computational comparison with these works since their
methods are known to perform better than brute force only for codes with a large kernel.

5.1 From the list of codewords to defining polynomials in NNF

Proposition 4: The overall worst-case complexity of determining the coefficients of the n
defining polynomials in NNF of the code C given as a list of vectors is O(nk2k).

Proof: We want to find the NNF of the Boolean function whose truth table is given by a
column of the binary matrix whose rows are the codewords of the code C. In (Carlet and
Guillot, 1999, Proposition 2) it is shown that to compute the NNF of a Boolean function
in k variables given its truth table requires k2k−1 integer subtractions. Since we have to
compute the NNF for n columns the overall complexity is O(nk2k). �

5.2 From defining polynomials to weight polynomial

Proposition 5: The overall worst-case complexity of summing together all the defining
polynomials in NNF is O(n2k).

Proof: Each monomial m in a defining polynomial is square-free, and since m ∈
Z[x1, . . . , xk], then a defining polynomial can have no more than 2k monomials. Since the
defining polynomials are n, the proposition follows. �

Remark 2: Clearly, the computational complexity of this steps decreases if the defining
polynomials are sparse when considering their NNF.

5.3 From defining polynomials to distance polynomial

Proposition 6: The overall worst-case complexity of Step 2 of Algorithm 2 is O(n22k).

Proof: The sum f̂i = f
(Z)
i (X)− f

(Z)
i (X̃) for i = 1, . . . , n is just a concatenation of

coefficients, where the coefficients of f (Z)
i (X̃) need to have their sign switched.

The polynomial obtained has 2k+1 terms in the worst-case, and squaring it requires 22(k+1)

integer multiplications and the same number of integer sums, for a total of 22k+3 integer
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operations. Since we have n such polynomials f̂i, to compute their square requires n22k+3

integer operations. Each f̂2
i has at most 22k terms, since f̂i ∈ Z[X, X̃]/⟨X2 −X, X̃2 − X̃⟩.

Summing all f̂2
i together thus requires at most n22k integer sums. The overall worst-case

complexity of Step 2 of Algorithm 2 is then

n22k+3 + n22k = n22k(23 + 1).

�

Remark 3: Again, the complexity of this step is lower if the defining polynomials are
sparse in their NNF. If, for example, the nonzero coefficients of f (Z)

i (X) are ∼ k, so are
the coefficients of f (Z)

i (X̃), and the squaring of f̂i requires ∼ (2k)2 integer operations.

5.4 Evaluation of the weight and the distance polynomial

Algorithm 3 describes the fast Möbius transform to compute the evaluation vector of a
Boolean function f in NNF in k variables. We use the following notation: the coefficient
c2k is the coefficient of the greatest monomial, i.e., of x1 · · ·xk, c2k−1 the coefficient of
the second greatest monomial, and so on until c1, which is the constant term. We provide
Example 1 to clarify our notation.

Notice that the sum in Step 6 is over our integers. If it was a sum in F then we would
obtain the truth table of f .

Algorithm 3 Fast Möbius transform for fast integer polynomial evaluation.

Require: vector of coefficients c = (c1, . . . , c2k)
Ensure: evaluation vector e = (e1, . . . , e2k)
1: e← c

2: for i = 0, . . . , k do

3: b← 0
4: repeat

5: for x = b, . . . , b+ 2i − 1 do

6: ex+1+2i ← ex+1 + ex+1+2i

7: b← b+ 2i+1

8: until b = 2k

9: return e

Example 1: Consider k = 3 and lexicographical ordering with x1 ≻ x2 ≻ x3. Let f =
8x1x2x3 + 3x1 + 2. Then c = (c1, . . . , c8) = (2, 0, 0, 0, 3, 0, 0, 8) and e = (e1, . . . , e8) =
(2, 2, 2, 2, 5, 5, 5, 13).

Proposition 7: Evaluating the weight polynomial over the set {0, 1}k has a computational
cost of O(k2k).

Proof: This is the cost of Algorithm 3, i.e., k2k−1 integer sums. �

Similarly, we can derive the following estimate.
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Proposition 8: Evaluating the distance polynomial over the set {0, 1}2k has a
computational cost of O(k22k).

5.5 Comparison with brute force method

Because of the similarities of Algorithms 1 and 2, we now concentrate our analysis only on
Algorithm 1. All considerations we expose can be easily extended for Algorithm 2.

Theorem 3: Let h be a positive integer. If the code C is given as a set of B.f. ’s whose NNF
have on average 2k/h coefficients different from 0, then computing the minimum weight of
C requires at most(

n

h
+

k

2

)
2k.

integer sums. Thus the complexity is

O
((n

h
+ k

)
2k
)
.

Proof: By Proposition 8 computing the evaluation vector of the weight polynomial wC

requires k2k−1 integer sums using the fast Möbius transform. To compute the weight
polynomial we need to sum the n defining polynomials f (Z)

i , i = 1, . . . , n, in NNF. If each
of these polynomials has on average 2k/h coefficients then the complexity of computing
wC requires O(n 2k

h ) integer sums. So the final complexity is at most (n/h)2k + k2k−1. �

Remark 4: Our method is more efficient than brute force when n/h+ k < n. This is very
likely to happen for a random code of low information rate where k ≪ n. If k ∼ n and the
NNF is dense, then it is convenient to use brute force rather than our method.

Notice also that if the sets of nonzero monomials of two polynomials in NNF are disjoint,
then the sum of the two polynomials is simply their concatenation. So, if the defining
polynomials of a code are “disjoint”, then the cost of computing the weight polynomial is
O(1), and the final cost of finding the minimum weight becomes the cost of computing the
evaluation of wC , i.e., O(k2k).

Fact 1 shows that, for n ≫ k, when the code is linear our method to compute the
minimum nonzero weight (i.e., the distance of the code) given the set of the defining
polynomials in NNF is more efficient than the classical method which uses brute force,
given the list of the codewords of the code.

Fact 1 (Comparison with brute force, linear case, n ∼ 2k):
Consider a random binary [n, k]-linear code C such that n ∼ 2k. Then computing the

weight distribution of C

• given the list of its codewords and using brute force requires O(22k).

• given the list of the defining polynomials in NNF and finding the minimum of wC

requires O(2
3
2k).
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Proof: The complexity of finding the weight distribution of C in case 1 is O(n2k) =
O(22k), since n ∼ 2k.
The complexity of finding the weight distribution of C in case 2 is O((n/h+ k)2k) (by
Theorem 3), where n/h is the average number of nonzero coefficients of the NNF. If the
linear code C is random, then so are the random linear defining polynomials. A random
linear function in k variables has on average k/2 nonzero coefficient in ANF and thus
2k/2 − 1 nonzero coefficients in NNF, i.e., n/h ∼ 2k/2, and

O((n/h+ k)2k) = O((2k/2 + k)2k) = O(2
3
2k).

�

Fact 2 (Comparison with brute force, nonlinear case, n ∼ 2k): Consider a random binary
(n, 2k)-nonlinear codeC such thatn ∼ 2k, and whose defining polynomials have on average
k/2 nonzero coefficients in the ANF. Then computing the weight distribution of C given
the list of the defining polynomials in NNF and finding the minimum of wC requires at
most O(2

3
2k).

Proof: The arguments are the same as in the proof of Fact 1, except that this time the
nonzero coefficients of the NNF are less than 2k/2 − 1. This implies that in practice the
overall complexity, in this case, is even lower, as shown in Table 2. �

Given two codes C1, C2 we can consider the time t1, t2 to compute the minimum weight
of each code. We call coefficient of growth (of C2 with respect to C1) of an algorithm the
number log2(t2/t1).

In Table 2, we show the coefficient of growth of the complexity of our method in three
different cases. The first line shows the coefficient of growth of the brute force method
applied to a generic code, while the second line refers to linear codes. The third line shows
the coefficient of growth of our method applied to a linear code. In the fourth line our
method is applied to a nonlinear code whose ANF representation is sparse, and in the last
line nonlinear codes with dense ANF representation are considered.

For the comparison we chose for each k, 10, 000 random (2k, 2k)-codes and 10, 000
random (2k+1, 2k+1)-codes and compute the average number of clock cycles t1, t2 to
compute the minimum weight in each case. Then we report the number log2(t2/t1).

We can see, as expected, that our method performs best in the case of sparse nonlinear
ANF.

An Intel Core i7 CPU 920 processor at 2.67 GHz has been used for the computations.

Table 2 Coefficients of growth of our method compared with brute force

Method Code Representation k: 2-3 k: 3-4 k: 4-5 k: 5-6 k: 6-7 k: 7-8 k: 8-9 k: 9-10
Brute force Nonlinear any 0.89 1.30 1.66 1.77 1.91 1.92 1.98 1.99
Brute force Linear Sparse ANF 0.87 1.28 1.59 1.81 1.91 1.95 1.96 2.01
Our method Linear Sparse ANF 0.32 0.60 0.82 1.03 1.13 1.24 1.36 1.49
Our method Nonlinear Sparse ANF 0.68 0.77 1.02 1.18 1.20 1.26 1.29 1.31
Our method Nonlinear Dense ANF 0.65 0.99 1.21 1.48 1.77 1.99 2.04 2.03
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5.6 Comparison with Brouwer-Zimmermann method for linear codes

We now provide an experimental comparison of our method with brute force and Brouwer-
Zimmermann methods to find the minimum weight of a linear code.

In Tables 3–5, different values of (n, k) and samples of 10,000 codes have been
considered. For each (n, k)-pair, let us call

• t1, the number of clock cycles needed to compute the minimum weight using
MAGMA implementation of our method

• t2, the number of clock cycles needed to compute the minimum weight using
MAGMA command

MinimumWeight(C:Method:=“Distribution”);

• t3, the number of clock cycles needed to compute the minimum weight using
MAGMA command

MinimumWeight(C:Method:=“Zimmermann”).

Note that our method is applied to random linear codes represented as Boolean functions
in NNF, while Brouwer-Zimmermann and brute force are applied to random linear code
represented by their generator matrix.

In Table 3, the ratio t1/t2 is reported for random linear codes with low information
rate (n ∼ 2k). In Table 4, the ratio t1/t3 is reported for random linear codes with low
information rate (n ∼ 2k). In Table 5, the ratio t1/t3 is reported for random linear codes
with low information rate (n ∼ k).

An Intel Core i7 CPU 920 processor at 2.67 GHz has been used for the computations.

Table 3 Ratio between our method and MAGMA brute force implementation timings

kn 2k 2k+1 2k+2 2k+3 2k+4 2k+5 2k+6 2k+7 2k+8 2k+9 2k+10

2 5.433 5.176 4.871 4.699 4.149 3.693 3.167 2.825 2.693 2.507 2.450
3 6.990 6.421 6.045 5.318 4.454 3.593 3.184 2.874 2.637 2.527 2.492
4 9.900 8.910 7.721 6.079 4.733 3.859 3.335 3.010 2.863 2.810 2.789
5 15.25 12.80 9.809 7.254 5.533 4.507 3.961 3.635 3.531 3.492 3.445
6 22.43 16.64 11.82 8.660 6.776 5.706 5.130 4.877 4.795 4.693 4.694

There are many cases, both in the high and low information rate range, where our method
is faster than the Brouwer-Zimmermann method. This is not surprising, since it is known
that there are cases where even brute force performs better than the Brouwer-Zimmermann
method, especially for low information rate codes.

However, in the analysed range, our method never succeeded when compared to
MAGMA implementation of brute force. Only for n exponentially growing with k the ratio
t1/t2 tends to decrease.
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Table 4 Ratio between our method and MAGMA Brouwer-Zimmermann implementation timings:
low information rate codes

kn 2k 2k+1 2k+2 2k+3 2k+4 2k+5 2k+6 2k+7 2k+8 2k+9 2k+10

2 0.474 0.300 0.152 0.212 0.130 0.073 0.089 0.041 0.033 0.018 0.009
3 0.344 0.250 0.344 0.203 0.109 0.055 0.054 0.040 0.022 0.011 0.005
4 0.452 0.232 0.302 0.154 0.074 0.064 0.046 0.025 0.013 0.006 0.003
5 0.514 0.645 0.308 0.140 0.104 0.071 0.038 0.019 0.008 0.004 0.002
6 1.208 0.568 0.248 0.092 0.109 0.057 0.028 0.012 0.006 0.003 0.001

Table 5 Ratio between our method and MAGMA Brouwer-Zimmermann implementation timings:
high information rate codes

kn k + 2 k + 3 k + 4 k + 5 k + 6 k + 7 k + 8 k + 9 k + 10 k + 10 k + 12

2 0.465 0.394 0.327 0.336 0.269 0.255 0.234 0.256 0.189 0.222 0.186
3 0.755 0.438 0.410 0.406 0.357 0.321 0.356 0.294 0.311 0.290 0.255
4 1.347 0.958 0.559 0.604 0.655 0.708 0.491 0.522 0.540 0.559 0.412
5 2.689 2.216 1.471 0.954 1.072 1.121 1.425 1.149 0.839 0.893 1.148
6 5.278 4.471 3.877 2.880 1.613 2.138 2.424 3.133 2.496 2.517 1.253

6 Binary codes whose cardinality is not a power of 2

Algorithm 1 can be modified to work also with binary codes whose cardinality is not a
power of 2. We only mention two techniques that can be used.
The first method consists of expanding the code until it reaches a size of 2k. The key
observation is that the minimum weight vector of a list of vectors in Fn (i.e., the codewords
of C) is equal to the minimum weight vector of the same list concatenated to the list of
some repeated words of C (even though this new list is not a code anymore).
A second approach is to divide the code C in sub-codes whose cardinality is a power of 2.
Then to each of these codes we can apply Algorithm 1 and then take the minimum of all
the results. See Bellini (2014) for details.

7 Conclusions

We presented a deterministic algorithm to compute the distance and weight distribution, and
thus the minimum distance and the minimum weight, of any random binary code represented
as a set of Boolean functions in NNF. We showed that our method performs better than
brute force (applied instead to the vectorial representation of a code) for those codes with
low information rate and sparse NNF representation, while in the general case, it achieves
the same asymptotic computational complexity as brute force methods.

It is not straightforward to generalise our method to generic random codes over a
finite field Fq , and such a generalisation may drastically increase the complexity of the
method. Also, a deeper analysis and a precise characterisation should be performed to
understand when a Boolean NNF representation of a code is more convenient than a vectorial
representation.
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