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Abstract: Additive cyclic codes of length (α, β) over ZpZp[u] can be viewed as
Zp[u][x]-submodules of Zp[x]/(x

α − 1)× Zp[u][x]/(x
β − 1), where Zp[u] =

Zp + uZp, u2 = 0. In this paper, we determine the generator polynomials and
the minimal generating sets of this family of codes as Zp[u]-submodules of
Zp[x]/(x

α − 1)× Zp[u][x]/(x
β − 1). Further, we also determine the generator

polynomials of the dual codes of ZpZp[u]-additive cyclic codes. Moreover, some
binary quantum codes are constructed by additive cyclic codes over Z2Z2[u].
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1 Introduction

Codes over finite rings have been studied since the early 1970s. Hammons et al. (1994)
showed that some certain good nonlinear binary codes can be constructed from cyclic codes
overZ4 via the Gray map. Recently, many coding scholars have done a lot of works on codes
over finite rings. Delsarte and Levenshtein (1998) defined additive codes as the subgroups
of the underlying commutative group. In the year 2009, Borges et al. (2009) proposed the
concept of Z2Z4-additive codes. The generator matrices and the duality of Z2Z4-additive
codes are also studied (Borges et al., 2009). Afterward, the additive code has been applied
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in the engineering field, which has aroused the interest of encoding scholars, and some good
results have emerged (Abualrub et al., 2014b; Aydogdu et al., 2015; Aydogdu and Siap, 20).
Z2Z4-additive cyclic codes are first studied by Abualrub et al. (2014a). Borges et al. have
studied the structural properties of dual codes of Z2Z4-additive cyclic codes (Borges et al.,
2016). As an interesting generalisation, Srinivasulu and Maheshanand (2016) studied the
additive cyclic codes and their dual codes over Z2Z2[u].

In the year 1995, Shor has found the first quantum error-correcting code (Shor, 1995).
Later, a method to construct quantum error-correcting codes from classical error-correcting
codes was introduced by Calderbank et al. (1998). Recently, the construction of quantum
error-correcting codes by using classical error-correcting codes over the finite field Fq has
developed rapidly. In the year 2009, Qian has given a method to construct quantum error-
correcting codes by using cyclic codes over the finite chain ring F2 + uF2 with u2 = 0
(Qian et al., 2009).

The paper is organised as follows. In Section 2, we give some preliminaries. In Section 3,
we introduce some definitions and give some structural properties of additive cyclic codes
over ZpZp[u]. Moreover, we determine the minimal generating sets of additive cyclic codes
overZpZp[u]. In Section 4, we determine the relationship of generators between the additive
cyclic code and its dual code. In Section 5, we give a necessary and sufficient condition
for the additive cyclic code that contains its dual code over Z2Z2[u]. Finally, some binary
quantum codes are obtained from additive cyclic codes over Z2Z2[u].

2 Preliminaries

Let Zp be the ring of integers modulo p. Let Zp[u] = Zp + uZp = {a+ ub | a, b ∈
Zp}, where u2 = 0. Zp[u] is a commutative ring, and Zp is a proper subring of Zp[u].
Let ZpZp[u] = Zp × Zp[u] = {(v|v′)|v ∈ Zp and v′ ∈ Zp[u]}. ZpZp[u] is a commutative
group with respect to componentwise addition. We denote the space of n-tuples over these
rings as Zn

p and Zp[u]
n. If that any non-empty subset C of Zn

p is a vector space then we
say that it is a linear code. A code over Zp[u] is a non-empty subset C of Zp[u]

n and a
submodule of Zp[u]

n is called a linear code over Zp[u].
For a vector v ∈ Zα

p × Zp[u]
β , we write v = (v|v′) where v = (v0, . . . , vα−1) ∈ Zα

p

and v′ = (v′0, . . . , v
′
β−1) ∈ Zp[u]

β .

Definition 1: A non-empty subset C of Zα
p × Zp[u]

β is called a ZpZp[u]-additive code if
C is an additive subgroup of Zα

p × Zp[u]
β .

Let C be a ZpZp[u]-additive code. Since C is an additive subgroup of Zα
p × Zp[u]

β , it
is also isomorphic to a commutative structure like Zk0

p × Z2k1
p × Zk2

p . Therefore, C is of
type pk0+2k1+k2 as a group, it has |C | = pk0+2k1+k2 codewords. Considering all these
parameters, we will say that C is of type (α, β; k0, k1, k2).

Let X (respectively Y ) be the set of Zp (respectively Zp[u]) coordinate positions.
Then |X| = α and |Y | = β. Unless otherwise stated, the set X corresponds to the first α
coordinates and Y corresponds to the last β coordinates. Call CX (respectively CY ) the
punctured code of C by deleting the coordinates outside X (respectively Y ). A ZpZp[u]-
additive code C is said to be separable if C = CX × CY .
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We define a Grey map as Φ : Zα
p × Zp[u]

β → Zα+2β
p such that Φ(u) = Φ(u|u′) =

(u, ϕ(u′)), where ϕ is the usual Grey map defined by

ϕ : Zp[u] → Z2
p

a+ ub 7→ (b, a+ b).

Definition 2: Let v = (v|v′) ∈ Zα
p × Zp[u]

β , where v = (v0, . . . , vα−1) ∈ Zα
p and v′ =

(v′0, . . . , v
′
β−1) ∈ Zp[u]

β . Then the Lee weight of v is defined as

wL(v) = wH(Φ(v)),

where wH denotes the Hamming weight.

Definition 3: Let v,w ∈ Zα
p × Zp[u]

β . Then the Lee distance of v and w is defined as

dL(v,w) = wL(v −w).

An inner product for two elements v,w ∈ Zα
p × Zp[u]

β is defined as Aydogdu et al. (2015)
v ·w = u(

∑α−1
i=0 viwi) +

∑β−1
j=0 v′jw

′
j ∈ Zp[u].

Let C be a ZpZp[u]-additive code. The additive dual code of C , denoted by C⊥, is then
defined in a standard way as C⊥ = {w ∈ Zα

p × Zp[u]
β | v ·w = 0, for all v ∈ C }. If C

is separable then C⊥ = (CX)⊥ × (CY )
⊥.

Proposition 1: Let C be a ZpZp[u]-additive code of type (α, β; k0, k1, k2). Then

(i) |C | = pk0p2k1pk2 , |C⊥| = pα−k0p2(β−k1−k2)pk2 ,

(ii) |CX | = pk0+k1,1 , |(CX)⊥| = pα−k0−k1,1 ,

(iii) |CY | = p2k1pk2+k0,2 , |(CY )
⊥| = p2(β−k1−k2−k0,2)pk2+k0,2 ,

where k0 = k0,1 + k0,2 and k1 = k1,1 + k1,2.

Proof: The proof is similar to that of Proposition 4.8 appeared in Srinivasulu and
Maheshanand (2016). �

3 ZpZp[u]-additive cyclic codes

Let v = (v|v′) ∈ Zα
p × Zp[u]

β and let i be an integer. Then we denote by

v
(i) = (v(i)|v′(i)) = (v0+i, v1+i, . . . , vα−1+i|v′0+i, v

′
1+i, . . . , v

′
β−1+i)

the ith cyclic shift of v, where the subscripts are read modulo α and β, respectively.

Definition 4: Let C ⊆ Zα
p × Zp[u]

β be a ZpZp[u]-additive code. The code C is called a
ZpZp[u]-additive cyclic code if for any codeword v ∈ C we have v(1) ∈ C .
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Let Rα,β = Zp[x]/(x
α − 1)× Zp[u][x]/(x

β − 1), where β ≥ 0 and gcd(β, p) = 1. We
consider the mapping δ : Zp[u] → Zp defined by δ(a+ ub) = a. Clearly, δ is well defined
and is a ring homomorphism. Let λ(x) = c0 + c1x+ · · ·+ ctx

t ∈ Zp[u][x], define the
operation ⋆ : Zp[u][x]×Rα,β → Rα,β as λ(x) ⋆ (p(x)|q(x)) = (δ(λ(x))p(x)|λ(x)q(x))
where δ(λ(x)) = δ(c0) + δ(c1)x+ · · ·+ δ(ct)x

t. From Srinivasulu and Maheshanand
(2016), we know that ZpZp[u]-additive cyclic codes are identified as Zp[u][x]-submodules
of Rα,β .

Theorem 1 (Abualrub et al., 2014a): Let C be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2). Then it is of the form

C = ⟨(b(x)|0), (l(x)|f(x)h(x) + uf(x))⟩,

where f(x)h(x)g(x) = xβ − 1 in Zp[u][x], b(x), l(x) ∈ Zp[x]/(x
α − 1) with b(x)|(xα −

1), deg(l(x)) < deg(b(x)) and b(x)|x
β−1
f(x) l(x) (mod p) .

Note that if C is a ZpZp[u]-additive cyclic code with C = ⟨(b(x)|0), (l(x)|f(x)h(x) +
uf(x))⟩, then the canonical projections CX and CY are a cyclic code over Zp and a cyclic
code over Zp[u] generated by gcd(b(x), l(x)) and f(x)h(x) + uf(x), respectively (see
MacMilliams and Sloane (1975) and Wan (1997)). Moreover, if C = CX × CY , then l(x) =
0.

Since b(x)|x
β−1
f(x) l(x) (mod p), we have the following result.

Corollary 1: Let C be a ZpZp[u]-additive cyclic code of type (α, β; k0, k1, k2) with C =
⟨(b(x)|0), (l(x)|f(x)h(x) + uf(x))⟩. Then,

b(x)|x
β − 1

f(x)
gcd(b(x), l(x)) (mod p),

b(x)|h(x)gcd(b(x), l(x)g(x)) (mod p).

In the following, a polynomial f(x) ∈ Zp[x] or Zp[u][x] will be denoted simply by f and
the parameter β will be an integer satisfied gcd(β, p) = 1.

Theorem 2: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1. Let

S1 =

α−deg(b)−1∪
i=0

{xi ⋆ (b|0)},

S2 =

deg(g)−1∪
i=0

{xi ⋆ (l|fh+ uf)},

S3 =

deg(h)−1∪
i=0

{xi ⋆ (lg|ufg)}.

Then S1 ∪ S2 ∪ S3 forms a minimal generating set for C as a Zp[u]-module.
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Proof: The proof is similar to that of Theorem 3.10 appeared in Srinivasulu and
Maheshanand (2016). �

Theorem 3: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1. Then

k0 = α− deg(gcd(b, lg)),

k1 = deg(g),

k2 = deg(fh)− deg(f)− deg(b) + deg(gcd(b, lg)).

Proof: The proof is similar to that of Theorem 4.9 appeared in Srinivasulu and
Maheshanand (2016). �

Theorem 4: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, k0 = k0,1 + k0,2 and k1 = k1,1 + k1,2. Then
k1,1 = deg(gcd(b, lg))− deg(gcd(b, l)).

Proof: The proof is similar to that of Theorem 4.10 appeared in Srinivasulu and
Maheshanand (2016). �

4 Duality of ZpZp[u]-additive cyclic codes

Lemma 1: If C is any ZpZp[u]-additive cyclic code, then C⊥ is also cyclic.

Proof: The proof is similar to that of Proposition 4.4 in Srinivasulu and Maheshanand
(2016). �

Denote

C⊥ = ⟨(b|0), (l|fh+ uf)⟩,

where fhg = xβ − 1 in Zp[u][x], b, l ∈ Zp[x]/(x
α − 1) with b|(xα − 1), deg(l) < deg(b)

and b|x
β−1
f

l (mod p).
We denote p∗(x) the reciprocal polynomial of a polynomial p(x), i.e., p∗(x) =

xdeg(p(x))p(x−1).
In the following, we denote the polynomial

∑m−1
i=0 xi by θm(x).

Proposition 2: Let n,m ∈ N. Then,

xnm − 1 = (xn − 1)θm(xn).

Proof: Obvious that ym − 1 = (y − 1)θm(y). Let y = xn. Then the result is obtained
immediately. �
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In the following, let m = lcm[α, β].

Definition 5: Let v(x) = (v(x)|v′(x)),w(x) = (w(x)|w′(x)) ∈ Rα,β . We define the
map

◦ : Rα,β ×Rα,β → Zp[u][x]/(x
m − 1)

such that

◦(v(x),w(x)) =uv(x)θm
α
(xα)xm−1−deg(w(x))w∗(x)

+ v′(x)θm
β
(xβ)xm−1−deg(w′(x))w′∗(x) mod (xm − 1).

From now on, we denote ◦(v(x),w(x)) by v(x) ◦w(x). Note that v(x) ◦w(x) ∈
Zp[u][x]/(x

m − 1).

Proposition 3: Let v,w ∈ Zα
p × Zp[u]

β be with associated polynomials v(x) =
(v(x)|v′(x)) andw(x) = (w(x)|w′(x)). Then, v is orthogonal tow and all its shifts if and
only if

v(x) ◦w(x) = 0.

Proof: The proof is similar to that of Lemma 4.6 appeared in Srinivasulu and Maheshanand
(2016). �

Lemma 2: Let v(x) = (v(x)|v′(x)),w(x) = (w(x)|w′(x)) ∈ Rα,β such that v(x) ◦
w(x) = 0. If v′(x) = 0 or w′(x) = 0, then v(x)w∗(x) ≡ 0 (mod (xα − 1)) over Zp. If
v(x) = 0 or w(x) = 0, then v′(x)w′∗(x) ≡ 0 (mod (xβ − 1)) over Zp[u].

Proof: Let v′(x) = 0 or w′(x) = 0. Then

0 = v(x) ◦w(x)

= uv(x)θm
α
(xα)xm−1−deg(w(x))w∗(x) + 0 mod (xm − 1).

Therefore,

uv(x)θm
α
(xα)xm−1−deg(w(x))w∗(x) = uµ′(x)(xm − 1),

for some µ′(x) ∈ Zp[u][x]. This is equivalent to

v(x)θm
α
(xα)xm−1−deg(w(x))w∗(x) = µ′(x)(xm − 1) ∈ Zp[x].

From Proposition 2, xm − 1 = (xα − 1)θm
α
(xα). So,

v(x)xmw∗(x) = µ(x)(xα − 1),

v(x)w∗(x) ≡ 0 (mod (xα − 1)).

A similar argument can be used to prove the other case. �
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Lemma 3 (Srinivasulu and Maheshanand, 2016): If C is a ZpZp[u]-additive code of type
(α, β; k0, k1, k2), then C⊥ is an additive code of type (α, β;α− k0, β − k1 − k2, k2).

Proposition 4: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, and with dual code C⊥ = ⟨(b|0), (l|fh+ uf)⟩,
where fgh = xβ − 1. Then

deg(b) = α− deg(gcd(b, l)),

deg(fh) = β − deg(f)− deg(b) + deg(gcd(b, lg)),

deg(f) = β − deg(fh) + deg(gcd(b, l))− deg(gcd(b, lg)).

Proof: From Proposition 1, Theorems 3, 4 and Lemma 3, it is easy to prove the results. �

Proposition 5: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, and with dual code C⊥ = ⟨(b|0), (l|fh+ uf)⟩,
where fgh = xβ − 1. Then,

b =
1− xα

(gcd(b, l))∗
∈ Zp[x].

Proof: Since (b|0) ∈ C⊥ and (b|0), (l|fh+ uf) ∈ C , then, from Proposition 3,

(b|0) ◦ (b|0) = 0,

(l|fh+ uf) ◦ (b|0) = 0.

Hence, by Lemma 2,

bb
∗ ≡ 0 (mod (xα − 1))

and

lb
∗ ≡ 0 (mod (xα − 1))

over Zp. Obviously, we obtain that gcd(b, l)b
∗ ≡ 0 (mod (xα − 1)), which implies

that there exists µ ∈ Zp[x] such that gcd(b, l)b
∗
= µ(xα − 1). Furthermore, since

gcd(b, l)|(xα − 1) and b
∗|(xα − 1), from Proposition 4, deg(b) = α− deg(gcd(b, l)). So,

we have that µ = 1. Therefore

b
∗
=

xα − 1

(gcd(b, l))
∈ Zp[x].

Then

b =
1− xα

(gcd(b, l))∗
∈ Zp[x].

�
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Proposition 6: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, and with dual code C⊥ = ⟨(b|0), (l|fh+ uf)⟩,
where fgh = xβ − 1. Then,

fh =
(xβ − 1)gcd(b, lg)∗

f∗b∗
∈ Zp[u][x].

Proof: Since gcd(h, g) = 1, so we have p1fh+ p2fg = f , for some p1, p2 ∈ Zp[u][x].
Since (b | 0), (0 | ufh), (lg | ufg) ∈ C , so

(0| b

gcd(b, lg)
(up1fh+ up2fg)) = (0| b

gcd(b, lg)
uf) ∈ C .

And since (l|fh+ uf) ∈ C⊥, hence, from Proposition 3,

(l|fh+ uf) ◦ (0| b

gcd(b, lg)
uf) = 0.

Then, by Lemma 2,

(fh+ uf)

(
b∗uf∗

gcd(b, lg)∗

)
≡ 0 (mod (xβ − 1)).

This is equivalent to

(ufh)

(
b∗f∗

gcd(b, lg)∗

)
= uµ(xβ − 1), (1)

for some µ ∈ Zp[u][x].
If (1) holds over Zp[u], then it is equivalent to

(fh)

(
b∗f∗

gcd(b, lg)∗

)
= µ(xβ − 1) ∈ Zp[u][x].

We known that fh|xβ − 1, from Corollary 1, we can get
(

b∗f∗

gcd(b,lg)∗

)
|(xβ − 1). By

Proposition 4, deg(fh) = β − deg(f)− deg(b) + deg(gcd(b, lg)), thus

β = deg(fh
b∗f∗

gcd(b, lg)∗
) = deg(xβ − 1).

So, we obtain that µ = 1 ∈ Zp[u], and hence,

fh =
(xβ − 1)gcd(b, lg)∗

f∗b∗
∈ Zp[u][x].

�
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Proposition 7: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, and with dual code C⊥ = ⟨(b|0), (l|fh+ uf)⟩,
where fgh = xβ − 1. Then,

f =
(xβ − 1)gcd(b, l)∗

f∗h∗gcd(b, lg)∗
∈ Zp[u][x].

Proof: In Zp[x], one can factorise the polynomials b, l, lg in the following way

l = gcd(b, l)ρ,

lg = gcd(b, lg)ρτ1,

b = gcd(b, lg)τ2,

where gcd(τ1, τ2) = 1. Therefore, there exist t1, t2 ∈ Zp[x] such that t1τ1 + t2τ2 = 1.
Then,

gcd(b, lg)ρ(t1τ1 + t2τ2) = gcd(b, lg)ρ

and

t1lg + ρt2b =
gcd(b, lg)

gcd(b, l)
l.

Thus,

gcd(b, lg)

gcd(b, l)
⋆ (l|fh+ uf)− t1 ⋆ (lg|ufg)− ρt2 ⋆ (b|0) =

(0|gcd(b, lg)
gcd(b, l)

(fh+ uf)− t1ufg) ∈ C .

Since gcd(h, g) = 1, then there exist p1, p2 ∈ Zp[u][x] such that up1fh+ up2fg = uf .
So, (up1 + p2g) ⋆ (l|fh+ uf) = (p2lg|uf) ∈ C⊥. Then, from Proposition 3,

(p2lg|uf) ◦ (0|
gcd(b, lg)

gcd(b, l)
(fh+ uf)− t1ufg) = 0.

By Lemma 2 and, arranging properly, we obtain that

uf

(
gcd(b, lg)∗

gcd(b, l)∗

)
f∗h∗ ≡ 0 (mod (xβ − 1)).

This is equivalent to

uf

(
gcd(b, lg)∗

gcd(b, l)∗

)
f∗h∗ = uµ(xβ − 1), (2)

for some µ ∈ Zp[u][x].
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If (2) holds over Zp[u], then it is equivalent to

f

(
gcd(b, lg)∗

gcd(b, l)∗

)
f∗h∗ = µ(xβ − 1) ∈ Zp[u][x].

It is known that f |(xβ − 1). From Corollary 1, we have that
(

gcd(b,lg)∗

gcd(b,l)∗

)
f∗h∗|(xβ − 1).

By Proposition 4, deg(f) = β − deg(fh) + deg(gcd(b, l))− deg(gcd(b, lg)). Thus

β = deg(f

(
gcd(b, lg)∗

gcd(b, l)∗

)
f∗h∗) = deg(xβ − 1).

Hence, we obtain that µ = 1, and hence,

f =
(xβ − 1)gcd(b, l)∗

f∗h∗gcd(b, lg)∗
∈ Zp[u][x].

�

Proposition 8: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, and with dual code C⊥ = ⟨(b|0), (l|fh+ uf)⟩,
where fgh = xβ − 1. Let ρ = l

gcd(b,l) . Then

l =
xα − 1

b∗
(λ1 + λ2).

where
λ1 = −gcd(b, lg)∗

gcd(b, l)∗
xm−deg(f)+deg(l)(ρ∗)−1 mod

(
b∗

gcd(b, lg)∗

)
,

λ2 = − b∗

gcd(b, lg)∗
xm−deg(fh)+deg(l)(ρ∗)−1 mod

(
b∗

gcd(b, l)∗

)
.

Proof: Since (b|0) ∈ C and (l|fh+ uf) ∈ C⊥, then from Proposition 3, (l|fh+ uf) ◦
(b|0) = 0. By Lemma 2, lb∗ ≡ 0 (mod(xα − 1)) and, for some λ ∈ Zp[x], we have that
l = xα−1

b∗ λ. Next, we will calculate λ.
Since gcd(b,lg)

gcd(b,l) ⋆ (l|fh+ uf) ∈ C and (l|fh+ uf) ∈ C⊥, then from Proposition

3, (l|fh+ uf) ◦
(

gcd(b,lg)
gcd(b,l) l|

gcd(b,lg)
gcd(b,l) fh+ u gcd(b,lg)

gcd(b,l) f
)
= 0. Let t = deg

(
gcd(b,lg)
gcd(b,l)

)
and

note that (fh+ uf)∗ = f∗h∗ + uxdeg(h)f∗. By Definition 5, we obtain that
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0 =(l|fh+ uf) ◦
(
gcd(b, lg)

gcd(b, l)
l|gcd(b, lg)
gcd(b, l)

fh+ u
gcd(b, lg)

gcd(b, l)
f

)
=

ulθm
α
(xα)xm−deg(l)−1−t gcd(b, lg)

∗

gcd(b, l)∗
l∗

+ fhθm
β
(xβ)xm−deg(fh)−1−t gcd(b, lg)

∗

gcd(b, l)∗
f∗h∗

+ ufhθm
β
(xβ)xm−deg(f)−1−t gcd(b, lg)

∗

gcd(b, l)∗
f∗

+ ufθm
β
(xβ)xm−deg(fh)−1−t gcd(b, lg)

∗

gcd(b, l)∗
f∗h∗ mod (xm − 1).

(3)

By Proposition 2, we know that θm
α
(xα) = xm−1

xα−1 and θm
β
(xβ) = xm−1

xβ−1
. And l =

xα−1
b∗ λ. Applying Propositions 6 and 7, we know that fh = (xβ−1)gcd(b,lg)∗

f∗b∗ and f =
(xβ−1)gcd(b,l)∗

f∗h∗gcd(b,lg)∗ . In addend (3), we can replace all the above. Moreover, by Corollary 1,
b∗

gcd(b,lg)∗ |h
∗. Therefore

0 =(l|fh+ uf) ◦
(
gcd(b, lg)

gcd(b, l)
l|gcd(b, lg)
gcd(b, l)

fh+ u
gcd(b, lg)

gcd(b, l)
f

)
=

u
xm − 1

b∗
λxm−deg(l)−1−t gcd(b, lg)

∗

gcd(b, l)∗
l∗

+ u
(xm − 1)gcd(b, lg)∗

b∗
xm−deg(f)−1−t gcd(b, lg)

∗

gcd(b, l)∗
mod (xm − 1).

(4)

Clearly, the addend (4) is equal to

u
(xm − 1)gcd(b, lg)∗

b∗
(λxm−deg(l)−1−tρ∗

+ xm−deg(f)−1−t gcd(b, lg)
∗

gcd(b, l)∗
) ≡ 0 (mod (xm − 1)).

(5)

This is equivalent to

(xm − 1)gcd(b, lg)∗

b∗
(λxm−deg(l)−1−tρ∗

+ xm−deg(f)−1−t gcd(b, lg)
∗

gcd(b, l)∗
) ≡ 0 (mod (xm − 1))

over Zp. Therefore,

(λxm−deg(l)−1−tρ∗ + xm−deg(f)−1−t gcd(b, lg)
∗

gcd(b, l)∗
) ≡ 0 (mod (xm − 1)) (6)

or

(λxm−deg(l)−1−tρ∗ + xm−deg(f)−1−t gcd(b, lg)
∗

gcd(b, l)∗
) ≡ 0 (mod

(
b∗

gcd(b, lg)∗

)
). (7)
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Since
(

b∗

gcd(b,lg)∗

)
|(xm − 1), then (6) implies (7). Since gcd(ρ, b

gcd(b,lg) ) = 1, therefore

ρ∗ is invertible modulo
(

b∗

gcd(b,lg)∗

)
. So,

λ = −gcd(b, lg)∗

gcd(b, l)∗
xm−deg(f)+deg(l)(ρ∗)−1 mod

(
b∗

gcd(b, lg)∗

)
.

Let λ1 = − gcd(b,lg)∗

gcd(b,l)∗ xm−deg(f)+deg(l)(ρ∗)−1 mod
(

b∗

gcd(b,lg)∗

)
. Then λ = λ1 + λ2 with

λ2 ≡ 0
(
mod

(
b∗

gcd(b,lg)∗

))
.

Since (l|fh+ uf) ∈ C and (l|fh+ uf) ∈ C⊥, then, by Proposition 3 and Definition 5,

0 =(l|fh+ uf) ◦ (l|fh+ uf) =

ulθm
α
(xα)xm−deg(l)−1l∗

+ fhθm
β
(xβ)xm−deg(fh)−1f∗h∗

+ ufhθm
β
(xβ)xm−deg(f)−1f∗

+ ufθm
β
(xβ)xm−deg(fh)−1f∗h∗ mod (xm − 1).

(8)

By Proposition 2, we know that θm
α
(xα) = xm−1

xα−1 and θm
β
(xβ) = xm−1

xβ−1
. Then l =

xα−1
b∗ λ. Applying Propositions 6 and 7, we know that fh = (xβ−1)gcd(b,lg)∗

f∗b∗ and f =
(xβ−1)gcd(b,l)∗

f∗h∗gcd(b,lg)∗ . In addend (8), we can replace all the above. Moreover, by Corollary 1,
b∗

gcd(b,lg)∗ |h
∗. Therefore, we get that

0 =(l|fh+ uf) ◦ (l|fh+ uf) =

u
xm − 1

b∗
(λ1 + λ2)x

m−deg(l)−1l∗

+ u
(xm − 1)gcd(b, lg)∗

b∗
xm−deg(f)−1

+ u
(xm − 1)gcd(b, l)∗

gcd(b, lg)∗
xm−deg(fh)−1 mod (xm − 1).

(9)

Clearly, the addend (9) is equal to

u
xm − 1

b∗
(λ1 + λ2)x

m−deg(l)−1l∗

+ u
(xm − 1)gcd(b, lg)∗

b∗
xm−deg(f)−1

+ u
(xm − 1)gcd(b, l)∗

gcd(b, lg)∗
xm−deg(fh)−1 ≡ 0 (mod (xm − 1)).

Since λ1 = − gcd(b,lg)∗

gcd(b,l)∗ xm−deg(f)+deg(l)(ρ∗)−1 mod
(

b∗

gcd(b,lg)∗

)
, so

u
xm − 1

b∗
λ1x

m−deg(l)−1l∗

+ u
(xm − 1)gcd(b, lg)∗

b∗
xm−deg(f)−1 ≡ 0 (mod (xm − 1)).
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Thus,

u
xm − 1

b∗
λ2x

m−deg(l)−1l∗

+ u
(xm − 1)gcd(b, l)∗

gcd(b, lg)∗
xm−deg(fh)−1 ≡ 0 (mod (xm − 1)).

Substituting l∗

gcd(b,l)∗ = ρ∗, we obtain that

u
(xm − 1)gcd(b, l)∗

b∗
(λ2x

m−deg(l)−1ρ∗

+
b∗

gcd(b, lg)∗
xm−deg(fh)−1) ≡ 0 (mod (xm − 1)).

Arguing similar to the calculation of λ in equation (5), we obtain that

λ2 = − b∗

gcd(b, lg)∗
xm−deg(fh)+deg(l)(ρ∗)−1 mod

(
b∗

gcd(b, l)∗

)
.

�

Theorem 5: Let C = ⟨(b|0), (l|fh+ uf)⟩ be a ZpZp[u]-additive cyclic code of type
(α, β; k0, k1, k2), where fhg = xβ − 1, and with dual code C⊥ = ⟨(b|0), (l|fh+ uf)⟩,
where fgh = xβ − 1. Let ρ = l

gcd(b,l) . Then

1) b = 1−xα

(gcd(b,l))∗ ∈ Zp[x];

2) fh = (xβ−1)gcd(b,lg)∗

f∗b∗ ∈ Zp[u][x];

3) f = (xβ−1)gcd(b,l)∗

f∗h∗gcd(b,lg)∗ ∈ Zp[u][x];

4)

l =
xα − 1

b∗
(λ1 + λ2),

where
λ1 = −gcd(b, lg)∗

gcd(b, l)∗
xm−deg(f)+deg(l)(ρ∗)−1 mod

(
b∗

gcd(b, lg)∗

)
,

λ2 = − b∗

gcd(b, lg)∗
xm−deg(fh)+deg(l)(ρ∗)−1 mod

(
b∗

gcd(b, l)∗

)
.

Example 1: Let p = 3, α = 4, β = 4, b(x) = x3 + 2x2 + x+ 2, l(x) = x2 + 1, f(x) =
x+ 1, h(x) = x+ 2, g(x) = x2 + 1. According to the results above, we have that
C = ⟨(b|0), (l|fh+ uf)⟩ is a Z3Z3[u]-additive cyclic code of type (4, 4; 2, 2, 0). By
Theorem 2, S1 ∪ S2 ∪ S3 forms a minimal generating set for C as an Z3[u]-module,
where S1 = {(b|0)}, S2 = {(l|fh+ uf), x ⋆ (l|fh+ uf)}, S3 = {(lg|ufg)}. Then, the
generator matrix of C is

G =


2 1 2 1 0 0 0 0
1 0 1 0 2 + u u 1 0
0 1 0 1 0 2 + u u 1
2 0 2 0 u u u u

 .
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Applying the formulas of Theorem 5, we have that b = 2x2 + 1 and fh = 2x2 + 2, f =
2x2 + 2, l = x+ 1. Therefore, C⊥ = ⟨(b|0), (l|fh+ uf)⟩, is of type (4, 4; 2, 2, 0). By
Theorem 2, S1 ∪ S2 ∪ S3 forms a minimal generating set for C⊥ as an Z3[u]-module,
where S1 = {(b|0), x ⋆ (b|0)}, S2 = {(l|fh+ uf), x ⋆ (l|fh+ uf)}, S3 = ∅. Then, the
generator matrix of C⊥ is

H =


1 0 2 0 0 0 0 0
0 1 0 2 0 0 0 0
1 1 0 0 2 + 2u 0 2 + 2u 0
0 1 1 0 0 2 + 2u 0 2 + 2u

 .

5 Quantum codes from Z2Z2[u]-additive cyclic codes

Proposition 9: Let C be a code of length α+ β over Z2Z2[u]. If C is self-orthogonal, so
is Φ(C ).

Proof: Let v = (v0, v1, . . . , vα−1|v′0, v′1, . . . , v′β−1),w = (w0, w1, . . . , wα−1|w′
0, w

′
1,

. . . , w′
β−1) ∈ C , where v′j = aj + ubj , w

′
j = cj + udj , j = 0, · · ·β − 1. Then

v ·w = u(
α−1∑
i=0

viwi) +

β−1∑
j=0

v′jw
′
j

= u(
α−1∑
i=0

viwi) +

β−1∑
j=0

[ajcj + u(ajdj + bjcj)].

If C is self-orthogonal, then
∑α−1

i=0 viwi +
∑β−1

j=0 (ajdj + bjcj) = 0 and
∑β−1

j=0 ajcj = 0.
Thus, in Z2, we have

Φ(v) · Φ(w) =
α−1∑
i=0

viwi +

β−1∑
j=0

(bjdj + ajdj + ajcj + bjcj + bjdj) = 0.

Therefore, Φ(C ) is self-orthogonal. �

Note that if C is a Z2Z2[u]-additive cyclic code with C = ⟨(b(x)|0), (l(x)|f(x)h(x) +
uf(x))⟩, then the canonical projections CX and CY are a cyclic code over Z2 and a cyclic
code over Z2[u] generated by gcd(b(x), l(x)) and f(x)h(x) + uf(x), respectively. If C is
separable, then C = CX × CY and l(x) = 0.

Lemma 3 (Calderbank et al., 1998): Let CX = ⟨b(x)⟩ is a binary linear cyclic code of
length α over Z2. Then CX contains its dual code if and only if

xα − 1 ≡ 0 (mod b(x)b∗(x)).
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Lemma 4 (Qian et al., 2009): Let CY = ⟨f(x)h(x) + uf(x)⟩ be a cyclic code of length
β over Z2[u], where f(x)h(x)g(x) = xβ − 1. Then CY contains its dual code if and only
if

xβ − 1 ≡ 0 (mod (uf(x)g(x))(f(x)g(x))∗),

xβ − 1 ≡ 0 (mod (f(x)h(x))u(f(x)h(x))∗),

xβ − 1 ≡ 0 (mod (f(x)h(x))(f(x)g(x))∗),

xβ − 1 ≡ 0 (mod (uf(x)g(x))u(f(x)h(x))∗).

Theorem 6: Let C = CX × CY be a separable cyclic code of length α+ β over Z2Z2[u].
Then C⊥ ⊆ C if and only if (CX)⊥ ⊆ CX and (CY )

⊥ ⊆ CY .

Proof: If C⊥ ⊆ C , let v = (v|v′) ∈ C = CX × CY , where v ∈ CX , v′ ∈ CY . Let
w = (w|w′) ∈ C⊥ = (CX)⊥ × (CY )

⊥ such that v ·w = u(vw) + v′w′ = 0. Then vw =
0, v′w′ = 0, it implies that w ∈ (CX)⊥, w′ ∈ (CY )

⊥. Sincew = (w|w′) ∈ C , where w ∈
CX , w′ ∈ CY , it follows that (CX)⊥ ⊆ CX and (CY )

⊥ ⊆ CY .
Conversely, if (CX)⊥ ⊆ CX and (CY )

⊥ ⊆ CY . Let v = (v|v′) ∈ C = CX × CY ,
where v ∈ CX , v′ ∈ CY . Let w = (w|w′) ∈ C⊥ = (CX)⊥ × (CY )

⊥ such that v ·w =
u(vw) + v′w′ = 0. Then vw = 0, v′w′ = 0, which implies that w ∈ (CX)⊥, w′ ∈ (CY )

⊥.
So, w ∈ CX , w′ ∈ CY . Hence, w = (w|w′) ∈ C , so, C⊥ ⊆ C . �

Corollary 2: Let C = CX × CY be a separable cyclic code of lengthα+ β overZ2Z2[u],
where CX = ⟨b(x)⟩ and CY = ⟨f(x)h(x) + uf(x)⟩. Then C⊥ ⊆ C if and only if the
following two conditions are satisfied

(i) xα − 1 ≡ 0 (mod b(x)b∗(x)).
(ii) xβ − 1 ≡ 0 (mod (uf(x)g(x))(f(x)g(x))∗), xβ − 1 ≡

0 (mod (f(x)h(x))u(f(x)h(x))∗), xβ − 1 ≡ 0 (mod (f(x)h(x))(f(x)g(x))∗) and
xβ − 1 ≡ 0 (mod (uf(x)g(x))u(f(x)h(x))∗).

Theorem 7 (Calderbank et al., 1998): Let C and C ′ be binary [n, k, d] and [n, k1, d1]
codes, respectively. If C⊥ ⊂ C ′, then an [[n, k + k1 − n,min{d, d1}]] quantum code can
be constructed. Especially, if C⊥ ⊆ C, then there exists an [[n, 2k − n, d]] quantum code.

Using Proposition 9, Corollary 2, and Theorem 7, we can construct quantum codes as
follows.

Theorem 8: Let C = ((b(x)|0), (0|f(x)h(x) + uf(x))) be a [α+ β, 2k04k12k2 , dL]
separable additive cyclic code of length α+ β over Z2Z2[u], where dL is the minimum Lee
distance of C and f(x)h(x)g(x) = xβ − 1. If C⊥ ⊆ C , then there exists a quantum code
with parameters [[α+ 2β, 2k0 + 4k1 + 2k2 − α− 2β, dL]].

Example 2: Let α = 14, β = 7. x14 − 1 = (x+ 1)2(x3 + x+ 1)2(x3 + x2 +
1)2 in Z2[x] and x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1) in Z2[u][x]. Let
b(x) = x+ 1, f(x) = x+ 1, h(x) = x3 + x2 + 1, g(x) = x3 + x+ 1, and C =
⟨(b(x)|0), (0|f(x)h(x) + uf(x))⟩. Then, C is a [21, 2134323, 2] additive cyclic code.
Observe that it satisfies the two conditions in Corollary 2. Thus, we have C⊥ ⊆ C . Then,
there exists a quantum code with parameters [[28, 16, 2]].
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Example 3: Let α = 31, β = 23. x31 − 1 = (x+ 1)(x5 + x2 + 1)(x5 + x3 + 1)(x5 +
x3 + x2 + x+ 1)(x5 + x4 + x2 + x+ 1)(x5 + x4 + x3 + x+ 1)(x5 + x4 + x3 + x2 +
1) inZ2[x] and x23 − 1 = (x+ 1)(x11 + x9 + x7 + x6 + x5 + x+ 1)(x11 + x10 + x6 +
x5 + x4 + x2 + 1) in Z2[u][x]. Let b(x) = x10 + x8 + x6 + x5 + x4 + x+ 1, f(x) =
x+ 1, h(x) = x11 + x10 + x6 + x5 + x4 + x2 + 1, g(x) = x11 + x9 + x7 + x6 + x5 +
x+ 1, and C = ⟨(b(x)|0), (0|f(x)h(x) + uf(x))⟩. Then, C is a [54, 221411211, 5] additive
cyclic code. Observe that it satisfies the two conditions in Corollary 2. Thus, we have
C⊥ ⊆ C . Then, there exists a quantum code with parameters [[77, 31, 5]].

Example 4: Let α = 93, β = 23. x93 − 1 = (x+ 1)(x2 + x+ 1)(x5 + x2 + 1)(x5 +
x3 + 1)(x5 + x3 + x2 + x+ 1)(x5 + x4 + x2 + x+ 1)(x5 + x4 + x3 + x+ 1)(x5 +
x4 + x3 + x2 + 1)(x10 + x5 + x4 + x2 + 1)(x10 + x8 + x3 + x+ 1)(x10 + x8 +
x6 + x5 + 1)(x10 + x9 + x7 + x2 + 1)(x10 + x9 + x7 + x5 + x2 + x+ 1)(x10 + x9 +
x8 + x5 + x3 + x+ 1) in Z2[x] and x23 − 1 = (x+ 1)(x11 + x9 + x7 + x6 + x5 +
x+ 1)(x11 + x10 + x6 + x5 + x4 + x2 + 1) in Z2[u][x]. Let b(x) = x15 + x14 +
x11 + x7 + x5 + x3 + x2 + x+ 1, f(x) = x+ 1, h(x) = x11 + x10 + x6 + x5 + x4 +
x2 + 1, g(x) = x11 + x9 + x7 + x6 + x5 + x+ 1, and C = ⟨(b(x)|0), (0|f(x)h(x) +
uf(x))⟩. Then, C is a [116, 278411211, 5] additive cyclic code. Observe that it satisfies the
two conditions in Corollary 2. Thus, we have C⊥ ⊆ C . Then, there exists a quantum code
with parameters [[139, 83, 5]].

Some more quantum codes with larger length obtained from additive cyclic codes over the
ring Z2Z2[u] are listed in Table 1.

Table 1 Quantum codes [[N,K,D]]

α β [α+ β, 2k04k12k2 , dL] [[N,K,D]]

91 21 [112, 27641525, 4] [[133, 89, 4]]
93 23 [116, 278411211, 5] [[139, 83, 5]]
105 21 [126, 29041525, 4] [[147, 103, 4]]
117 15 [132, 2934825, 6] [[147, 81, 6]]
126 7 [133, 21134323, 4] [[140, 104, 4]]
126 21 [147, 211341525, 4] [[168, 128, 4]]
127 23 [150, 2113411211, 5] [[173, 119, 5]]
133 15 [148, 21124825, 6] [[163, 103, 6]]
154 7 [161, 21384323, 4] [[168, 126, 4]]
154 21 [175, 213841525, 4] [[196, 150, 4]]

6 Conclusion

In this paper, we consider the additive cyclic codes overZpZp[u]. We determine the generator
polynomials of this family of codes, and give their minimal generating sets. Further, we
also discuss the relationship of generators between the ZpZp[u]-additive cyclic code and its
dual. Examples are given to show that some quantum codes can be constructed. We believe
that some more good quantum codes can be obtained from this class of codes, and it will
be an interesting and challenge work in future.
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