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Abstract: In the modern world, with the continuous evolution of the financial
market, there has been a continuous development of different financial
instruments. Derivative trading is becoming an integral part of stock market .In
recent years trading volume in stock market has increased tremendously which
has led to the high volatility in the option prices. A derivative is a type of such
evolved financial instrument which has attracted the financial marketers all
over the world. An option is a financial contract between two or more parties
whose value depends on a given underlying asset, and any change in the value
of the underlying has a subsequent change in the value of the derivative
contract. Black-Scholes option model is used for fair value pricing for option
contracts. In this research work, an attempt has been made to find out the
relevance of Black-Scholes model values with the market values for stock
options. This paper aimed to find out the significant relationship between
BSOPM and actual market price. As a conclusion, the study found out that the
option values have insignificant relevance to the market values.
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This paper is a revised and expanded version of a paper entitled ‘A study of
relevance of Black Scholes model on option prices of Indian stock market’
presented at The 4th Sebelas Maret International Conference on Business,
Economics and Social Science (SMICBESS), Solo, Central Java Indonesia,
9-10 August 2017.

1 Introduction

Today, Derivatives trading is worth $600 trillion — six times more than the total economic
output of the entire world.' The Indian stock market is one of the most attractive places
for the investors all over the world, because of the attractive returns on equities and other
instruments. The two' main stock exchanges for equity trading in India are the Bombay
Stock Exchange (BSE) and the National Stock Exchange (NSE). An option is a type of
financial derivative that represents a contract between the seller (option writer) and the
buyer (option holder), which offers the buyer the right, not the obligation, to execute the
contract. The options contract allows the buyer to buy (or sell) a security or other
financial asset at an agreed-upon price (strike price) during a certain period or on a
specific date. In 1975, Black emphasised that there are some good reasons for the
growing popularity of option trading, such as the fact that the brokerage charge for taking
position in options can sometimes be lower than the charge for the equivalent position
directly in the underlying stocks.

Derivative contracts exist on a variety of commodities such as corn, pepper, cotton,
wheat, silver, etc. besides commodities. Derivatives contracts also exist on a lot of
financial underlying assets like stocks, interest rates, exchange rates, etc. In 1976, Cox
and Ross introduced several alternative jump and diffusion processes, and provided
solutions for the limiting diffusion cases and for the single-stage forms of the jump
processes. The explicit solutions have potential empirical applications and a comparative
study of them should give additional insight into the structure of security valuation.
Derivative products initially emerged as hedging devices against fluctuations in
commodity prices. Financial derivatives came into the spotlight in the post-1970 period
due to growing instability in the financial markets. However, since their emergence, these
products have become popular and by 1990s, they accounted for about two — thirds of
total transactions in derivative products. In recent years, the market for financial
derivatives has grown tremendously in terms of instruments available, their complexity
and also turnover.”

In 1973, Black and Scholes developed a theoretical model for the pricing of options,
which can deduce the prices of call and put options depending on the relevant factors like
the spot value of the underlying, strike price of the option contract, time to maturity,
volatility in the prices of the underlying and the risk-free rate of return available in the
market. The Black-Scholes mathematical model explains that the price of heavily traded
assets follow a geometric Brownian motion with constant drift and volatility (Black and
Scholes, 1973). This model of option pricing is based on the fundamental that in the
future, the price of the option contract either increases or decreases based on the spot
price of the underlying asset. Following are the purpose of the study
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The first purpose of the study is to determine the theoretical prices of options of
the stocks; based on the Market capitalisation, using Black-Scholes Option
Pricing Model (BSOPM)

The second significant objective is to understand and find out whether there is
significant difference between BSOPM prices and the actual market prices.

This study reveals that the volatility play an important role in establishing the relationship
between theoretical and actual price, the more is the volatility the higher is the gap
between actual and theoretical price. Besides the difference between the model value and
actual price can be attributed to many micro and macro factors in financial market. In this
research the call option values have been more consistent than put option because of
investor sentiment and perception. Another important observation of the study is that the
scripts with lower spot prices (underlying price) are more consistent and predictable,
because the premiums for such option contracts are also usually low.

2 Literature review

This paper tries to find out the relationship between model value and actual value of
stocks by testing hypotheses on various parameters. In 1979, Cox et al. concluded that
whenever stock price movements conform to a discrete binomial process, or to a limiting
form of such a process, options can be priced solely on the basis of arbitrage
considerations. Indeed, we could have significantly complicated the simple binomial
process while still retaining this property. Though the outcome of the hypothesis test
proved that there are overall mismatch and inconsistencies if an investor tries to rely on
the model values of the option premiums from the Black-Scholes equation, but if the
investor wants to take the advantage of arbitrage opportunity then in this research the
daily spreadsheet of the theoretical values of almost all the contracts (at different strike
prices of both call and put options) explains that the market values for subsequent days
can be predicted with the help of these theoretical values. Hence the arbitrage opportunity
exists.

Black and Scholes (1973) presented a theoretical formula to calculate the options
prices, which follow a certain systematic pattern based on relevant market factors, which
include spot prices, volatility, time to expiry and expected risk-free rate of return.

Sethi and Nilakantan (2016) examines if the Black-Scholes model is a good
descriptor of option pricing the research involves an empirical study conducted on ten
most active stocks (of NSE) and concluded that involves a significant degree of
mispricing. The trading of the option contracts is relatively a recent practice on the
exchanges of the Indian stock market, and therefore not much research is done regarding
the relevance of the Black-Scholes model on Indian stock market.

Kumar and Agrawal (2017) investigates the efficiency of Black-Scholes model used
for valuation of call option contracts written on Eight Indian stocks quoted on NSE. It has
been generally observed that the B&S Model misprices options considerably on several
occasions and the volatilities are ‘high for options which are highly overpriced.
Mispriced worsen with the increased in volatility of the underlying stocks. Panduranga
(2013) analysed banking stocks to check the reliability of the Black-Scholes model, and
three out of four stocks showed no significant difference, yet there was scope of
improvement in the model to account for market conditions.
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Bi et al. (2014) used GARCH and Black-Scholes model to study the option prices of
Indian stock market, and found out that the market prices of the options are overpriced as
per the model. Nagendran and Venkateswar (2014) carried out different sample tests to
find the relevance of the model on the call options in Indian stock market, and they
concluded that an increase in the volatility of a stock, results in the increased deviations
of the model value and the actual market value.

Kim et al. (1997) tested the impact of implied volatility across option pricing models
for at-the-money put options. It was concluded that the implied volatility estimates
calculated from the Black-Scholes European option pricing model were approximately
similar to those obtained from other more complex pricing models. In 1987, Hull and
White developed a solution in a series form for the situation in which the stock price is
instanceously uncorrelated with volatility. We do not assume that volatility is a traded
asset.

Sharma and Arora (2015), tested the model on a selected group of ten stocks of NSE,
and came out with a conclusion that Black-Scholes model is partially relevant, mainly
because it is theoretical, and does not account for market perceptions. Frino et al. (1991)
carried out cross sectional tests of the model using the historical data. He concluded that
the Black-Scholes model cannot be rejected. He carried out a time series analysis of
mispricing in order to determine whether that could be attributed to a market learning
effect over time.

Ramazan and Aslih (2003) pointed out that the Black-Scholes pricing errors are larger
in the deeper out-of-the-money options, and mispricing increases with increased
volatility. This result indicated that the Black-Scholes model is not proper pricing tool in
high volatility with considerably lower errors for out-of-the-money call and put options.

Angeli and Bonz (2010) evaluated the performance of the Black-Scholes model for
price stock index options. They calculated the theoretical values of options under the
Black-Scholes assumptions and compared these values with the real market prices in
order to put the degree of deviation in two different time windows. They found clear
evidence to state that BS model performed different in the period before and after
financial crisis.

Bakshi et al. (1997) stated that taking care of the stochastic volatility is the first
important step in improving the Black-Scholes formula. To account for the negative
skewness and excess kurtosis implicit on option prices, each model with stochastic
volatility requires highly implausible levels of volatility return correlation and volatility
variation. McKenzie et al. (2007) stated that the Black-Scholes model is relatively
accurate. Comparing the qualitative regression models provides evidence that the
Black-Scholes model is significant at the 1% level in estimating the probability of an
option being exercised. Chappell (1992) explained that one problem with the
Black-Scholes analysis is that the mathematical skills required in the derivation and
solution of the model are fairly advanced and probably unfamiliar to many economists.

According to Ramazan and Aslihan (2003), Black-Scholes model is not the proper
pricing tool in high volatility situations, especially for very deep out of-the-money
options. For the deepest out-of-the-money options, the Black-Scholes prices overestimate
market prices whereas market prices are underestimated for the deeper and near
out-of-the money options. In particular, the performance of the Black-Scholes model in
explaining the observed market prices is quite poor for the deepest out-of-the-money
options. According to Khan (2012) changes in Black-Scholes option pricing model
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formula is required by adding some new variables on the basis of given assumption
related to risk-free rate of interest , and he also emphasised on the calculation process of
new risk-free interest rate on the basis of modified variable. In 2013, Khan et al.
conducted research and identified the various situations in empirical testing of modified
and original Black-Scholes formula with respect to the market value on the basis of
assumed and calculated risk-free interest rate.

Arora and Sharma (2013) calculated the volatility and threw a light on that how the
implied volatility levels of an option contract of a stock is connected to the pricing of that
option .He also explained about the overpricing and underpricing of the stocks the basic
approach was used to determine the volatility of a stock and used this historical volatility
in the Black-Scholes model in order to determine the implied volatility and then
compared the historical volatility with the implied volatility to find whether an option is
fairly priced.

3 Research methodology

Research is an academic activity and as such should be used in advance manner and in a
technical sense. For this study, the stocks of the companies listed on NSE are divided on
the basis of market capitalisation. Seven stocks are selected from each of large-cap,
mid-cap and small-cap. The option contracts are taken for the month of January 2017, to
be expired on 25/1/2017. Hence samples of 18 trading days (2/1/2017 to 25/1/2017), for
both call and put option contracts for 3 different strike prices of each of the 21 stocks are
taken. The theoretical option prices of all these stocks are calculated using the
Black-Scholes model, which uses following variables; spot price, strike price, volatility,
risk-free rate of return an time to maturity. The volatility, which is an important
parameter to calculate the prices of the options using Black-Scholes model, has been
calculated using the monthly closing prices of the last five years, taken from
http://in.finance.yahoo.com. The data of closing prices of shares and the actual option
premiums are collected from the website http:/www.nseindia.com and
http://www.bseindia.com. The model is based on certain assumptions, including:

e the options are European and can only be exercised at expiration

e 1o dividends payments on stock during the life of the option

e cfficient markets (i.e., market movements cannot be predicted)

e no commissions

o there are no risk less arbitrage opportunities.

o the risk-free rate and volatility of the underlying are known and constant

e the prices of the stocks follow a lognormal distribution; that is, returns on the
underlying are normally distributed.

The Black-Scholes formula takes the following variables into consideration:
e current underlying price

e options strike price
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e time until expiration, expressed as a percent of a year

e implied volatility

o risk-free interest rates.

Using the Black-Scholes equation, the premium for a call option can be calculated as:
C=S*N(dl)+K *e ™9 % N(d2)

where

C call premium

S current stock price (spot price)

t  time until option exercise (in years)

K strike price of the option contract

r risk-free interest rate available in the market

N cumulative standard normal distribution

e exponential term.

and d1 and d2 are calculated as follows:

_ In(S/K) + (r+v?/2) #t
Vvt

dl

In(S/K) + (r+v2/2)xt

d2=dl — (v*t)ord2 =
vV*t

v volatility of the stock (standard deviation)
In natural log

The model is essentially divided into two parts:
The first part

S *N(d1) multiplies the price by the change in the call premium in relation to
a change in the underlying price. This part of the formula shows
the expected benefit of purchasing the underlying outright.

The second part

K * e(-r*t) * N(d2) provides the current value of paying the exercise price upon
expiration.

The value of the option is calculated by taking the difference between the two parts, as
shown in the equation.
Similarly, the premium for the put option can be calculated by using the formula:

P=S*N(-dl)+K *e ™ «N(-d2)
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The following steps are applied for the determining the fair option prices and implies
volatility of stock options:

Step 1  First, we calculate the historical volatility using the daily log returns by using
moving average method.

Daily return = Ln (today’s closing price / yesterday’s closing price)
Daily standard deviation (SD) = (Variance of daily returns) * 0.5
Historical volatility = Daily SD x (250) ~ 0.5

(Here we consider 250 trading days in a year)

Step 2 We get all required value in the black formula from the NSE website and use
them in the Black-Scholes model and we get the fair value of call and put
options of various strike prices.

In the next step, we will find the differences between Model value and the actual
market values.

Step 3 Now, we can compare the fair option premium with the actual value of option
premium.

The historical volatility is calculated using the monthly log returns of the
corresponding stocks.

Monthly return = Ln [(this month’s closing price)/(last month’s closing price)]

Volatility = standard deviationof the monthly returns

The risk-free rate of return is taken as 6.88%, which is the current yield on ten-year bonds
issued by Indian government.

The time to maturity is calculated as the fractional value of the number of days
remaining to the maturity date.

The spot prices of the different stocks are taken from the website www.nseindia.com.

Three different strike prices of all the stocks are taken, and then the option prices of
the call option and put option contracts are calculated using the Black-Scholes model.
The actual (or market) prices of all these contracts are taken from www.nseindia.com.

For finding whether there is a significant difference between model values and actual
values, we have used paired sample t test, where

Null hypothesis (HO) There is no significant difference between BS model values
and actual market values.

Alternate hypothesis (Ha)  There is significant difference between BS model values
and actual market values.

At 95% level of confidence:
If P-value > 0.05 then null hypothesis is accepted.

A total of 126 hypotheses are formed (63 for call option contracts, and 63 for put option
contracts).
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These hypotheses are tested using the paired sample t test, which compares the means
and standard deviations of the two series of numbers, to evaluate if there is a significant
difference between the two series of numbers or not.

This analysis includes only seven stocks from each of large-cap, mid-cap and
small-cap for only a period of 18 trading days to calculate model based fair price.
Volatility, which is an important parameter to calculate the prices of the options using the
Black-Scholes model, too, has been calculated using the monthly closing prices of the
last five years only. Hence this study has time and data limitation. Because of limited
sampling and time duration, the conclusion drawn may not hold true for the entire
population. The constraints of the model should also be considered as limitation of the
study.

4 Data analysis and interpretation

The fair values have been calculated by using Black-Scholes option pricing model. The
Model values and the market values are presented in Tables 1-6. The two set of values
are then compared to find out if there is any significant difference in the actual values and
market values, with the help of the paired sample t test. Further, Tables 7 and 8 shows the
result of the paired sample t test results of 126 sets where each set has the historical price
data of 17 days. The paired sample t test is used between the Black-Scholes pricing
model value and the actual market prices of option contracts.

From paired sample t test, it was concluded that out of 63 call option sets, the null
hypothesis is accepted in five pairs which show that there is no significant difference
between fair prices and actual prices for these sets. In remaining 58 call option pairs, the
null hypothesis is rejected; it shows that there is significant difference between the fair
prices and actual prices.

In case of put option, only one pair out of 63 shows that the difference is
insignificant, and other 62 sets show that the difference is significant.

Since, only 6 out of the 126 given sets of the option prices have the p-value greater
than 0.05, it can be concluded that there is a significant difference between the market
prices of the option premiums and the values given by the Black-Scholes equation of
option pricing.

Though the results of the t-test have presented that there are overall inconsistencies if
one tries to depend on the theoretical values of the option premiums from the
Black-Scholes equation, but the daily spreadsheet of the theoretical values of almost all
the contracts (at different strike prices of both call and put options) shows that the market
values for subsequent days can be predicted with the help of these theoretical values, and
hence there are arbitrage opportunities.

Moreover, it can be seen that in cases of stocks with high volatility (v > 15%), the
difference between the predicted and actual values is more as compared to those which
are less volatile.

An important observation from the research is that the stocks with lower spot prices
(underlying price) are more consistent and predictable, because the premiums for these
option contracts are also usually low and do not show much variations, due to the
rumours and sentiments of the market.
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Call options for large cap stocks

Table 1
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Call options for mid cap stocks

Table 3

$8'6€ Ly'OY 0T'9 09 01°08 L0°08 0r'9L LEIL 00°LS S1'8S 00°01 L86 oror 80°01 LI0T/ 14T L1
00°CT €r'Ie 009 96'S SE'68 ¥L'68 0S°6¢ 0S'LE oLee 68°CE 06'8 61°6 086 LL'6 L10T/1/€C 91
00°61 P61 ST9 w9 SES6 STS6 00'vY 10°8T SE'LT 80°1T 0L'8 S¥'L 0£'6 16'8 L10T/1/0T ST
0s’LT SE0€ SeL €€°L 00°1TT [{Unkas SS°LT 19T 0€'8¢ 6S7°€E sLot Lot STTL 0801 L10T/1/61 14!
0€'ce wee SO'L €0°L 0%'8TI r'8C1 0€°0¢ 99'8C 0€'vy w6t $6'6 E0l1 oryl 8I'¥1 L10T/1/81 €1
0zT’0T 68'81 06'9 689 ST'6€ET IT'6¢l SEVT 60T S¥'6€ 65°1¢ 00°01 101 0S°€l et LTOT/T/LT 4
SEVT SEET $9'9 99 08'8TT 8S°8IT S9vE 9T0¢ S8'TY 81v¢ syor €501 08°CI e L10T/1/91 1
08'%C IL'YT 0’9 19 orrer E0T1 00'%C 9791 SEor 8T°9C SL'6 €6 oIyl vIel LI0T/1/€1 [
0S°€T LT6T 09°L 9S°L sTeel IS°1€T 00°€T 0£'8 S9'Cs [4384 S0'6 0’6 05°0T woe L10T/1/21 6
00°CT LY'1T S8 %3 00°0€T 8L°8TI 06'CC LLoT 0€'0L 60°€9 or'6 w6 08°CC 9s°TT L10T/1/TT 8
SL'¥T LY'¥T 01’8 L0'8 STell 06911 SOvl ;e 000 69°SS 099 $S9 $€0T 661 LT10T/1/01 L
0s°ce £8'ST 0z'8 L1'8 0€°66 w6 006 Il 0L°0L 8€°09 ore €59 sLet 8LI1 L10T/1/6 9
01°€e 6€°8C 06’8 68'8 0L98 wLL 540 9°0 0S'29 0'9% 089 96'S (U298 w$rl L10T/1/9 S
0s'ce L1'9C $9'6 ¥9°6 $8'68 6S6L 0S¥1 681 0169 6L°6S or'9 ¥0'S Syl 9¢€l L10T/1/S 4
SEP1 8691 0’6 0’6 STL6 10°L8 or'el Wl 0T’y a6y sUs £€'e sLTt w0t L10T/1/y €
s8¢l or'e6l SE6 SE€6 057001 €168 08°€l Pl S6'vL €LY s9°¢ 107 SSPI 86°C1 L10T/1/€ T
or'tI LS01 06'6 98°6 0T°€6 01'8L 00°%1 6L'1 0S'IS w0o0r or’s 6T'¢ o€l Y911 L10T/1/T 1
oo1ud ppnpoy  2014d 41D, ao14d [pnyoy 2014d 110,] aoud oy 2o14d 41D, 2014d pprpoy 2014d 410,] 2014d jpnpoy 2014d 410,] 2o1d (oo 2014d 410, 2oud ppnpoy  2014d 410,
s.£ojout A1 w0y loapony XY /) sajxa ] Ampua)) vipuy fo yung sauA] ojjody g ou g

syo0ps dpo prut 1of suondo jip)




93

on prices

A study of relevance of Black-Scholes model on opt

Put options for mid cap stocks
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Call options for small cap stocks
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Paired sample T-test for Black-Scholes model premium value and actual market
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Paired sample T-test for Black-Scholes model premium value and actual market
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Paired sample T-test for Black-Scholes model premium value and actual market
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5 Conclusions

A conclusion can be derived is that, the difference in the predicted and actual prices
increases as the moneyness of an option contract moves from the in-the-money to
out-of-the-money, which can be reasoned as when the stocks start behaving against the
expectations of the investors, there is an increase in the volume of the trade which leads
to an increase in volatility, and hence an increased difference between the predicted
values and actual values. The Black-Scholes model is partially relevant and it can be
made effective by taking into consideration all other constraints of the model to make the
option pricing more effective. In spite of several loopholes in Black-Scholes option
pricing model, there are several reasons for wide use of this model. The most important
one is that the concepts behind the Black-Scholes analysis provide the framework for
thinking about option pricing.

The significant differences in a large number of hypotheses sets can be attributed a
number of different factors that drive the financial market. The prices of the options, just
like any other commodity, are dependent on its demand and supply in the market.

The prices of the options are also dependent on the news related to the market, or any
particular industry, or any particular company. These news and information affect the
market sentiments of the related stocks, and therefore drives the prices accordingly.

The market prices of the options depend on the prevailing market conditions, such as
a forecasted slump in the economy, a decline in the company’s performance, expansion
opportunities of a company, etc.

The prices of call option are more consistent with the theoretical values, than those of
the put option. This may be because of the perceptions of the investors during the
specified period of research, who may be bidding for the Bullish market, and hence the
prices of the out-of-the-money contracts for the put options are significantly different.

Because the market remains in the semi-strong form, all the investors have the same
information available to them. They look for the underpriced securities and when the
demand of the underpriced securities increase, their price also starts increasing to the fair
value.

Most of the limitations of the Black-Scholes model are fundamental and, thus, it is
crucial to come up with models that will take into consideration some of the assumptions
not considered under the Black-Scholes models. And, there have been a number of other
models which have been developed in recent times which try to emulate the exact
characteristics of the market, but the fundamental behind these models is the
Black-Scholes model.
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Appendix

List of stocks chosen for study

Large-cap Mid-cap Small-cap

1 Idea 1 Apollo Tyres 1 Allahabad Bank
2 ITC 2 Bank of India 2 BEML

3 Maruti Suzuki 3 Century Textiles 3 Granules

4 ONGC 4 CESC 4 ICIL

5 SBI 5 Godrej 5 Jet airways

6 Sun Pharma 6 RComm 6 KSCL

7 TCS 7 TVS Motors 7 PC Jewellers




