Estimation of cutting forces in conventional and ultrasonic-vibration assisted turning using inverse modelling
by U.S. Dixit; V. Yadav; V. Sharma; P.M. Pandey; A. Roy; V.V. Silberschmidt
International Journal of Additive and Subtractive Materials Manufacturing (IJASMM), Vol. 1, No. 3/4, 2017

Abstract: In this work, cutting forces in conventional and ultrasonic-vibration assisted turning are estimated using an inverse method to evaluate the velocity-dependent friction and fracture toughness based on a few tests in conventional turning. The inverse methodology requires the data on cutting and feed forces at two specified cutting speeds. Analytical expressions are employed to estimate the cutting forces in conventional as well as ultrasonic-vibration assisted turning. The suggested method was verified with experimental data. The validation of the direct model with the finite-element results available in the literature was also carried out. A sensitivity analysis revealed a significant effect of friction on cutting forces. Thanks to its simplicity, the proposed procedure may find a good application in industrial practice.

Online publication date: Sun, 25-Feb-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Additive and Subtractive Materials Manufacturing (IJASMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com